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ABSTRACT: Heterogenous hydrogenation reactions are essential in
a wide range of chemical industries. In this work, we find that the
hydrogenation of acetaldehyde on birnessite cannot occur through the
traditional mechanisms due to the strong adsorption of the aldehyde
and hydrogen on the surface, using first-principles calculations. We
discover that this reaction can occur feasibly via a solvent-cocatalyzed
mechanism with molecular hydrogen in the liquid phase: a methanol
solvent or a similar solvent is required for the reaction. Free energy
calculations shows that the methanol solvent preferentially fills the
oxygen vacancies of the catalyst surface and spontaneously dissociates
on the surface, in which the resulting hydroxyl group then acts as the
coordination site for the carbonyl bond and allows the reaction to
proceed without adsorption of the reactants on the surface. The
reasons this new mechanism is more favorable over the traditional
mechanisms in the literature are scrutinized and discussed. The new mechanism may be followed in many other systems.
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Hydrogenation reactions in heterogeneous catalysis are
among the most important reactions. In particular, the

hydrogenation of aldehydes is vital in a plethora of industrial
applications, which include the food, petrochemical, and
fragrance industries.1−6 However, traditional mechanisms in
heterogeneous catalysis become pinched in facing a wide range
of catalysts and a variety of reaction environments.7 In this
letter, we present a novel solvent-cocatalyzed hydrogenation
mechanism that bypasses the overly strong adsorption of key
reactants, using acetaldehyde hydrogenation on birnessite as an
example. In the presence of methanol solvent, an alternative
reaction pathway was established, and the details of this
process under the solid−liquid environment were fully
captured via first-principles free energy calculations using ab
initio molecular dynamics (AIMD) simulations.
In general, a surface reaction can proceed through one of

three main mechanisms in heterogeneous catalysis: namely (i)
the Langmuir−Hinshelwood mechanism (Figure 1a),8 (ii) the
Eley−Rideal mechanism (Figure 1b),9 and (iii) the Mars−Van
Krevelen mechanism (Figure 1c).10 For hydrogenation
reactions on solid catalysts, more specific mechanisms,
Horiuti−Polanyi and non-Horiuti−Polanyi mechanisms, both
of which belong to Langmuir−Hinshelwood style mechanisms,
were reported. The Horiuti−Polanyi mechanism is the most
commonly accepted mechanism for hydrogenation reactions,
as shown in Figure 1d.11−15 This mechanism is prevalent in a

wide range of hydrogenations, including the saturation of
aldehydes, ketones, and alkenes.3,16−20 However, there are
occasions whereby the hydrogenation reaction occurs via a
non-Horiuti−Polanyi mechanism, reported first by our
group,22 in which the hydrogenation reaction occurs via
molecular hydrogen on the surface as opposed to dissociated
hydrogen, as shown in Figure 1e. This occurs because some
surfaces are too inert to effectively break the H−H bond.
Experimental work showed that manganese oxide octahedral

molecular sieves have great activity and selectivity for
hydrogenation reactions of aldehydes.21 As one of them,
birnessite, a two-dimensional layered structure comprised of
edge-shared MnO6 octahedra with the interlayer region
occupied by either/and water molecules or metal cations,22−24

often possesses numerous surface defects, usually as oxygen
vacancies and edges.25 A surface oxygen vacancy site contains
three open Mn atoms, offering a significant level of bonding
with the d orbitals resulting in a strong adsorption site. This
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Figure 1. Schematic illustration of the three main surface mechanisms: (a) Langmuir−Hinshelwood; (b) Eley−Rideal; (c) Mars−Van Krevelen
mechanism. All of the reported heterogeneous hydrogenation reactions follow Langmuir−Hinshelwood style mechanisms: (d) Horiuti−Polanyi
mechanism; (e) non-Horiuti−Polanyi mechanism with molecular hydrogen.

Figure 2. (a) Relative free energy profiles and (b) transition state structures from the non-Horiuti−Polanyi mechanism investigation. (c) Relative
free energy profiles and (d) transition state structures from the Horiuti−Polanyi mechanism investigation. (e) Relative free energy profile and (f)
transition state structures of the coordination-based hydrogenation of acetaldehyde from surface hydroxyl groups. IS, IMS, TS, and FS stand for the
initial, intermediate, transition, and final states, respectively.
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leads to a fatal problem: the overly strong adsorption could
hinder the reaction via the traditional ways. When it is
considered that (i) the traditional mechanisms have
beenextensively investigated on metal surfaces while metal
oxides (common catalysts) have been less studied and (ii) all
of the traditional mechanisms involve adsorption of reactants
on the surface, and strong adsorption may result in very
different chemistry on oxides, it is worth asking the following
questions. (i) Is the Langmuir−Hinshelwood mechanism
universal for all hydrogenation reactions? (ii) If not, is there
an alternative mechanism? How does it allow hydrogenation
reactions to proceed without the adsorption of the reactants?
This speculation has stimulated our interest in exploring a
fundamentally different mechanism for hydrogenation reac-
tions.
Herein, the traditional mechanisms have been investigated

using DFT and compared to the solvent-cocatalyzed
mechanism resulting from exhaustive AIMD simulations in
the current work. Our calculations show that, among them, the
solvent-cocatalyzed mechanism is much preferred over the
traditional mechanisms. The presence of methanol solvent
offers multiple distinct effects that resolve the issues of overly
binding reactants and significantly reduce the reaction barrier.
Without an oxygen vacancy, no adsorption of hydrogen or

acetaldehyde can occur, even on the edge sites of birnessite
(see Figure S2 and Table S1). When the oxygen vacancies are
present, the hydrogen molecule has an adsorption energy of
−0.67 eV, and the acetaldehyde molecule possesses an
adsorption energy of −2.22 eV. The initial structure is
shown in Figure S3. The Langmuir−Hinshelwood style
mechanisms are first investigated. For the non-Horiuti−
Polanyi mechanism, the reaction can occur right after
adsorption. The first step is to determine the first hydronation
target in the unsaturated CO. Our results in Figure 2a show
unequivocally that the attack of the C is heavily favored. The
barrier for attacking C is 0.31 eV in comparison to 0.83 eV for
O, which is expected as the carbon is activated from the
adsorption of the O to the surface. The barrier for adding the
second H to the O atom is substantial with a value of 2.13 eV,
which makes it very hard for the reaction to proceed via the
non-Horiuti−Polanyi mechanism. For the Horiuti−Polanyi
mechanism, an additional step of the H2 dissociation was
calculated, shown in Figure S6. Since the attack of the C of
CO is heavily favored, the dissociation of H2 into Mn−H
and Mn−OH leaves only two possible reaction pathways for
the reaction to proceed. The transition states are shown in
Figure 2c, and the reaction energy profiles are depicted in
Figure 2d, in which Mn−H is determined to be the favorable
pathway. However, we see that these two mechanisms
stumbled upon the same problem: the oxygen of acetaldehyde
bonds to three Mn atoms, which offers a significant level of
bonding with the d orbitals of the metal atoms, resulting in a
strong bond. The overly strong adsorption of the acetaldehyde
prohibits the hydrogenation of the O of CO. To find a
feasible pathway, an Eley−Rideal style coordination-based
mechanism that avoids the binding of acetaldehyde to the
surface was tested to see if this has a reducing effect on the
hydrogenation barriers. The reaction mechanism and profiles
are shown in Figure 2e,f. Two pathways were considered; the
first one starts with hydrogenation of the O of CO, and the
other starts with the C. An interesting result was observed in a
search for the transition state structures of the C hydro-
genation in the second pathway: when H attacks the C, the O

will pick the H first before the transition state is reached. Both
pathways lead to the same mechanism with an effective barrier
of 1.52 eV. This can be attributed to the low reaction barrier of
the hydrogenation of the O, and once the CO become less
unsaturated, it can pick up the H instantly. However, the
effective barrier is still high, and alternative approaches are
needed, where both the hydrogen and acetaldehyde are not
strongly adsorbed to the surface (calculation details are given
in the Supporting Information).
To this end, after all the traditional mechanisms were ruled

out, we tried a completely new mechanism to resolve the issues
of the adsorption of hydrogen by considering the solvent in the
system in the calculations.26−29 Methanol was chosen as the
solvent, as it was experimentally used on similar manganese
oxides in the literature.23,30 The solvent adds another
competitor that can adsorb and dissociate on the surface
oxygen vacancies. The free energies of adsorption of each
species on an oxygen vacancy are shown in Table 1.

The free energies of adsorption show that methanol is most
thermodynamically favored to adsorb on an oxygen vacancy.
MD simulations were conducted to further test the results
(details are given in the Supporting Information). An
interesting result from the MD simulations was that, apart
from adsorbing to the oxygen vacancy, the methanol molecule
spontaneously dissociated on the surface, resulting in an
−OCH3 group that fills the oxygen vacancy and −H on the
existing surface O to form a hydroxy group. The hydroxyl
group provides a coordination site for the carbonyl group of
the aldehyde. On the basis of the MD simulations and free
energy results, a dissociated methanol on the oxygen vacancy
in the presence of another methanol as solvent was chosen to
further investigate the hydrogenation mechanism, shown in
Figure 3a and Figure S8.
From the MD simulations, the hydrogen molecule is

observed to reside close to the surface and parallel to the
CO bond of the aldehyde. AIMD including explicit solvent
molecules on the solid surface was used for an accurate
description of the processes associated with the solid−liquid
environment.31−36,37 The free energy barriers of H2 attacking
the C/O from CO were then obtained using the umbrella
sampling calculations within the framework of DFT (details
are given in the Supporting Information), and energy profiles
are shown in Figure 3c,d. The results show that the preferred
pathway is to attack the C of CO with a barrier of 0.92 eV,
while the O attack pathway has a much greater barrier of 1.29
eV. When the hydrogen molecule is forced to attack the carbon
and the C−H bond begins to form, the O of the CO bond
simultaneously picks up the H of the OH on the surface. The
other H of the hydrogen molecule then moves to the surface
and regenerates the O−H on the surface. This is important, as
another acetaldehyde molecule can then coordinate to this
hydroxyl group and the reaction can occur again with a cycle
being formed. Furthermore, an equivalent gas-phase mecha-

Table 1. Free Energies of Adsorption of Hydrogen,
Acetaldehyde, and Methanol on an Oxygen Vacancy on the
Birnessite Surface

species free energy of adsorption (eV)

hydrogen −0.026
acetaldehyde −1.85
methanol −2.57
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nism was tested against the liquid-phase mechanism for
comparison using static calculations. It is found that the gas-
phase mechanism is not favored in comparison to the liquid-
phase mechanism presented in Figure 4 (see details in the
Supporting Information).
A schematic presentation of the complete solvent-

cocatalyzed mechanism with molecular hydrogen for aldehyde
hydrogenation is shown in Figure 4. Unlike the water solvent
in previous work which only helps to facilitate the dissociation
of H2,

21 the methanol solvent provides an alternative reaction
pathway. The solvent has an integral effect in not only filling
the surface vacancies but also providing a hydroxyl after

dissociation for coordinating acetaldehyde. The preferential
solvent adsorption on the surface allows the hydrogenation
reaction to occur by H2, which alleviates the high barriers
observed when the hydrogen source is adsorbed on the surface.
The coordination of the aldehyde to the hydroxyl group also
enables the O of the CO to be hydrogenated; otherwise, the
bonding of the aldehyde directly to the surface is too strong.
Although the methoxy group was not involved in this reaction
system, one can envisage that other specific solvents may be
used to help adjust the stereochemistry of the reactants,
creating a certain angle or position that facilitates specific
reaction pathways.

Figure 3. (a) Schematic presentation of our AIMD simulations with explicit solvent molecules. The solvent methanol adsorbs to the O vacancy and
then dissociates into OCH3 (filling the vacancy) and H (on a surface O to form OH). The two possible pathways of the first hydrogenation step are
shown. (b) Atomic density profile from the AIMD simulations. The black line indicates the average atomic density, gray dashed lines indicate the
minimum/maximum density flux, and the red dashed line indicates the density of standard methanol solvent (792 kg/m3). Free energy analysis of
the first hydrogenation step on birnessite in the presence of methanol solvent by umbrella sampling: (c) the C attack from H2 along RH−C; (d) the
O attack from H2 along RH−O. The stacked color bars are an indication of a complete sampling process, with each bar representing the number of
samples collected at the reaction coordinate during the AIMD.
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Metal oxides are often used for hydrogenation reactions, in
which the overbonding of reactants, including hydrogen, with
the catalysts may be a common problem for the traditional
mechanisms. Our new mechanism may overcome this problem
and may be followed by many hydrogenation reactions in other
systems. It is worth mentioning that the methanol solvent plays
two roles here in addition to avoiding the overbonding of
reactants with the surface; (i) it dissociates, yielding a hydroxyl
group that can provide an anchor position for acetaldehyde to
be hydrogenated near the surface where H2 is rich in
concentration, and (ii) it activates the CO group of the
acetaldehyde by coordinating it with a strong hydrogen
bonding. Point ii is particularly interesting: one can envisage
that a specific solvent can be designed to anchor and activate
the reactants accordingly to achieve the desired selectivity.
This newly established mechanism refreshes our understanding
of the hydrogenation reactions in heterogeneous catalysis, and
the principles revealed above may be of general use.
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