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Abstract
Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of 
conditions. However direct interpretation or prediction of gene regulatory mechanisms may be diffi cult as only gene 
expression data is used. Information about gene regulators may also be available, most commonly about which transcription 
factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene 
expression and gene regulation information is desirable for clustering and analyzing.

Methods: By incorporating gene regulatory information with gene expression data, we defi ne regulated expression values 
(REV) as indicators of how a gene is regulated by a specifi c factor. Existing bi-clustering methods are extended to a three 
dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic 
Boundary Searching algorithm (ABS) is introduced to automatically determine the boundary threshold.

Results: Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the 
algorithms are effi cient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation 
REV data shows genes in this cluster exhibited signifi cant differences during the middle and late stages. The implicated 
regulatory network was then reconstructed for further study of defi ned regulatory mechanisms. Topological and statistical 
analysis of this network demonstrated evidence of signifi cant changes of TF activities during the different stages of yeast 
sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations.

Introduction
Clustering gene expression data generated has been intensively investigated in recent years and many 
effi cient clustering algorithms, e.g. hierarchical clustering, have been presented and widely adopted in 
ordinary research. These methods use the whole data set for clustering, which assumes that the expression 
level of a gene is consistent throughout all experimental conditions. However, large scale data analyses 
demand more versatile ways to recognize subtle co-regulation associations among genes which may 
only present in specifi c experimental conditions. Bi-clustering is one promising methodology that 
addresses this problem by clustering genes and experimental conditions at the same time. Several 
bi-clustering algorithms have been proposed for this purpose, including CC,1 ISA,2 Bimax,3 and COSA.4 
These methods vary signifi cantly but most apply heuristic or stochastic algorithms with randomly 
selected initial seeds. The defi nition of a bi-cluster for each method can also be substantially different. 
For example, the CC algorithm defi nes a bi-cluster as a subset with high similarity expression patterns 
and measures it with a mean squared residue.1 For ISA and Bimax, the bi-cluster (also called “co-regulation 
module”) represents the signifi cantly up-regulated or down-regulated genes under specifi c experimental 
conditions.2,3 The reason for different descriptions of a bi-cluster lies in the fact that there is no clear 
biological defi nition for it, no universal interpretation of the biological meaning, and no clear methods 
to validate proposed bi-clusters. In some studies, p-values calculated by the distribution of Gene Ontology 
terms5 or motifs detected with statistical signifi cance6 were utilized to verify the inherent functional 
connections of the genes forming a bi-cluster. However, in general, there is no direct evidence that such 
genes are controlled together or commonly involved in some regulation mechanism. It is also feasible 
to interpret a bi-cluster by evaluating whether some of the genes can be mapped to a known regulation 
frame-work.5 However, it is not always possible to fi nd a successful mapping for any one bi-cluster of 
interest. Thus, it would be desirable to extend the possible validation opportunities by identifying the 
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direct regulators of the genes for specifi c conditions 
within clusters. By studying clusters generated by 
such a method, one may not only answer questions 
like “which genes perform quite similarly under 
some set of experimental conditions?”, but 
also answer such question as “what are these 
co-expressed genes controlled by?” or even “what 
is the regulatory mechanism and why it is 
condition-specifi c?”

In this study, we address these problems by 
introducing a new strategy which takes into 
consideration gene regulation information from 
additional sources. As an example, gene regulatory 
data from ChIP-chip experiments7 can provide 
evidence for direct binding of a gene’s promoter 
region by DNA binding proteins or transcription 
factors (TF). To demonstrate and evaluate our 
method we have therefore incorporated ChIP-chip 
datasets in combination with gene expression data 
before clustering analysis. Currently it is not 
feasible to perform as many whole genome 
ChIP-chip or Chip-seq experiments for all TFs of 
interest. To remedy this problem, we didn’t directly 
use the raw data from ChIP-chip results but adopted 
a regulator coefficient based on informational 
inference. Either a small TF-binding score or a low 
expression value of a regulator gene will signifi cantly 
reduce this regulator coeffi cient and thus make it 
sensitive to variant experimental conditions. We 
refer to this measure as Regulated Expression Value 
(REV). The REV data space has three orthogonal 
dimensions: gene, experimental condition and gene 
regulator. None of the existing biclustering algo-
rithms was designed to work in this space. We 
designed a three-dimensional clustering algorithm 
named TRI-Clustering which utilizes a divide-and-
conquer strategy, and an Automatic Boundary 
Searching (ABS) algorithm that is able to detect 
statistically signifi cant REV values that correspond 
to a three dimensional region in the whole data 
space named as a “tri-cluster”. Finally, we tested 
and analyzed the results and outcomes of the 
searching procedure in detail, demonstrating the 
method is valid and effi cient.

This paper is organized as follows: fi rst, results 
on synthetic data sets are analyzed to illustrate the 
effect of different parameters on the fi nal results. 
Then we used the yeast sporulation data set to 
demonstrate how the algorithm works. We provide 
robust results and detailed analysis of the tri-
cluster obtained from our method. Finally, we 
reconstructed the regulatory modules based on the 

tri-cluster and studied the centrality measurement 
of the network topology, and showed signifi cant 
differences for the early and middle-late stages of 
sporulation.

Material and Methods
Microarray experiments under a variety of 
conditions are widely available, and have been 
used to infer information about other eukaryotic 
cells. The data we adopted in this paper was 
provided by Chu et al8 and has been widely used 
for gene expression analysis in yeast. It contains 
more than 6200 genes and 7 different experimental 
conditions, including the early, middle and late 
stages of sporulation. The ChIP-chip experimental 
results come from the work of Lee et al9 who 
investigated the evidence for binding of more than 
100 transcription factors to the promoter regions 
of 5535 genes. We found 5,349 genes with valid 
results on both ChIP-chip data and microarray sets, 
contributing to more than 86% and more than 96% 
of all the genes assayed by these experiments, 
respectively.

REV data
Figure S1 demonstrates how the available informa-
tion is used to construct a new three-dimensional 
data space. The fi rst step of the procedure is to fi nd 
the common genes analyzed in both ChIP-chip and 
microarray experiments (utilizing the ORF names 
annotated by Yeast Genome Database.10 The REV 
score indicates how a gene is affected by a TF in 
a certain experimental condition. For example, if 
the gene of a TF is highly expressed while at the 
same time, the expression of one of its possible 
target genes is significantly down-regulated 
(compared to other experimental conditions in 
the study), we should expect a high REV score 
assigned for this case. Thus, the REV score can 
be calculated by multiplying the normalized gene 
expression value with a regulation coeffi cient, 
formulated as:
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Here the subscripts g, c, t denote each of the possible 
genes, conditions and TFs. EN (t, c) and EN (g, c) 
are the normalized gene expression values for 
TF gene and target gene, respectively. In this study, 
all microarray results in an experimental condition 
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were standardized to a normal distribution with 0 
mean and unit standard error. C(g, t) is the ratio from 
ChIP-chip data and Ψ() is a linear-scale function 
which maps all ratio values for one experiment into 
the range of 0 to 1. When a gene is not regulated by 
a TF (low ChIP-chip value) or not differentially 
expressed (low microarray value), the correspond-
ing REV scores will be close to 0. On the contrary, 
when the absolute value of a REV is quite large, it 
suggests that the gene is activated or suppressed in 
this condition. Finally, we applied a tail-cutting 
function Θ with a threshold 0.01 to eliminate trivial 
values for further clustering and analysis, which 
simply sets all REV scores below this pre-defi ned 
threshold to 0.

Clustering algorithm
We introduce an effi cient algorithm named TRI-
Clustering (Three-dimensional REV Iterative 
Clustering Algorithm) to explore REV data. The 
outline of this algorithm is displayed in Figure 1. 
Similar to previous bi-clustering algorithms such 
as ISA2 or SAMBA,3 it employs a heuristic 
searching method with randomized initial tri-cluster 
and parameters. It will stop at a local optimization 
if the maximal number of iterations is reached (in 
this study, this number is set to 100). The algorithm 
starts with these randomly generated seeds. For 
each iteration, it exhaustively calculates the score 
of every possible two dimensional region in the 
whole subspace. For example, given a REV data 
space with N genes, M experimental conditions 
and L TFs, calculation of the TF score can be 
expressed as:
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where I() is an indication function to calculate the 
number of zeros or negative scores. Sg, Sc are 
further defi ned as the score vectors for gene and 
experiment scores. They are calculated similarly 
as St in equation 2. To avoid too many zero values 
in the fi nal results, we used a punishing coeffi cient 
δp (0.01 in this study) for every 0 value in a 
tri-cluster. The time complexity of Equation 2 is 
O (Ng * Nc), where Ng is the number of genes in 
the data sets and Nc is the number of experimental 

conditions. Thus, the time complexity for the 
computation of the TF score vector St will be 
O (Ng * Nc * Nt) where Nt is the number of TFs. 
The ABS algorithm is then used to automatically 
fi nd an appropriate threshold as the boundary of 
normal and outlier sets. In the same way, Sg and 
St are all recalculated and all three outlier sets are 
compared with those found in previous runs. The 
algorithm will continue running until all outlier 
sets are the same or a maximal number of iterations 
is reached.

Automatic boundary scanning 
algorithm
An important task for TRI-Clustering during the 
searching procedure is to identify significant 
averaged REV scores (outliers), which are distinct 
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Figure1. Flowchart of the TRI-Clustering algorithm.
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from the background distribution, as described in 
Equation 2, These outliers are related to a subset 
of genes/TFs/conditions that contribute to a 
tri-cluster. A fi xed threshold is not desirable as 
values calculated in different iterations may vary 
dramatically. In the ISA algorithm, the standard 
variance for all scores (including outliers) is used, 
which clearly may exaggerate the difference 
between normal scores and make it harder to 
identify outliers.2 Kloster et al5 suggested a variable 
threshold accounting for more than 70% of all 
scores to eliminate the effect of outliers. However, 
a pre-defined percentile as a threshold lacks 
fl exibility and may not be a good general estima-
tion of the number of normal scores. Here, we 
present a new algorithm that can statistically detect 
the boundary between the outliers and normal 
scores. The ABS algorithm (outlined in Supple-
mentary Fig. S2) starts from an initial parameter 
T (for specifi city, the initial value of T is set to 5 or 
more) and uses the whole set as the set for normal 
scores in the first iteration. Then outliers are 
detected and removed from the normal set. For 
each run, if no outliers can be found by ABS, T is 
updated by adding a small step size Delta. Both 
the outlier and normal sets are determined by the 
value of another variable (B), which is calculated 
as the mean of the current outlier and its standard 
variance multiplied by T. If the outlier sets for two 
continuous iterations are exactly the same, then the 
algorithm will stop and report outlier sets and 
current B Value. In one iteration of the TRI-
Clustering algorithm, the complexity of the ABS 
algorithm is O(Ng + Nc + Nt). So the time 
complexity for the whole procedure will be 
O(Ng*Nc*Nt) + O(Ng + Nc + Nt).

Data normalization
By using the data described in the material section, 
we found 5,349 genes have valid results on both 
ChIP-chip data and microarray sets, contributing 
to 86.2% and more than 96% of all the genes 
assayed by the two experiments, respectively. 
Furthermore, we normalized these genes within 
each one of the experimental conditions to a normal 
distribution with 0 mean and unit standard vari-
ance. To scale the ChIP-chip data set, following 
the work of Lee et al9 we fi rst used a simple “pres-
ent or not” assignment to every gene under each 
one of the TF binding experiments with a P-value 
threshold of 0.001. However, the results are clearly 
not precise with an arbitrary cut-off score, for at 

least two reasons. First, a score little less than 0.001 
will be treated differently than one slightly bigger 
than 0.001, while in fact the difference may be 
trivial. Second, the distance of scores from the 
threshold is not taken into account, with values 
above the threshold all scaled to 1, and all below 
the threshold assigned to 0. To solve this problem, 
we used the linear-scaled ratio values of ChIP-chip 
experiments within the range of 0 to 1. Given a 
series of scores R = {Ri, i = 1k … n} the formula-
tion of the linear scale is:

 ′ = −
−

R
R R

R Rj
i min( )

max( ) min( )
 (3)

Algorithm analysis
We selected a series of St scores during the 
execution of clustering and report how the ABS 
algorithm works. A typical initial T value (3.0) 
and a large initial value (5.0) were evaluated to 
see how they affect the results. Either of these 
thresholds is suffi cient to detect outliers (Fig. 2A 
shows the histogram of the scores), with boundary 
values of 1.89 (solid line) for T0 = 5 and 1.23 for 
T0 = 3 (dashed line). It is easy to conclude that 
the bigger T0 is more specifi c for outliers that are 
far away from the center, while with the more 
sensitive value of 3.0, we can fi nd outliers that are 
harder to distinguish visually, but which can also 
be detected by ABS. Figure 2B illustrates the 
outcome for each iteration. With T0 = 3.0, the ABS 
algorithm picked outliers at the fi rst step and 
converged in 3 iterations. With the larger initial 
value, the algorithm does not converge until 
9 iterations (the step size in this procedure was set 
to 0.1). Also, if big enough (usually �3), T score 
is not sensitive to the outliers generated in each 
iteration and thus does not have signifi cant effect 
on the tri-clusters found by the algorithm. Figure 2 
also shows the changes during execution of mean 
and standard variance (Fig. 2C), and the T and B 
values (Fig. 2D), We can conclude that the ABS 
algorithm, though varying with different param-
eters, always seeks a minimal variance within the 
normal set and a boundary as close to the center 
of scores as possible in order to identify more 
outliers.

In order to provide some understanding how the 
clustering algorithm converges, we display output 
information of the TRI-Clustering algorithm during 
execution as an example in Figure 3. In each run, 
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the subsets of genes, conditions and TFs detected 
were compared with the results for the previous 
time and the numbers of the unchanged elements 
were recorded, For convenience, a similarity score 
to describe the similarity of two sets returned by 
the TRI-Clustering algorithm in subsequent 
iterations (see Fig. 1) is defi ned below:

 I
O I O

O YOij
ij i j

ij i j

= −

−

|| ||

|| ||
1

1
 (4)

where i is the number of iterations and j ∈ {g, c, t}. 
Furthermore, the overall similarity score of a tri-
cluster can be derived as:

 R Ii ij
j g c t

= ∏
∈{ , , }

 (5)

All these scores calculated at each iteration are 
displayed in Figure 3A. All values start from a pre-
defi ned 0 value and usually increase very little for 
the fi rst several iterations (here iteration 2 only) as 
the random initial subsets can hardly be optimal 
which will lead to dramatic changes. Gradually, the 
algorithm will heuristically detect some tri-clusters 
which yield larger similarity scores (iteration 3, 4, 5) 
and may reach a local maximum (iteration 5). At this 

point, if the stopping criterion is satisfi ed (i.e. Iig = Iic 
= Iit = Ri = 1), TRI-Clustering algorithm will stop and 
return the current cluster. Otherwise, it will continue 
to search in the whole data space, which means usu-
ally changing from a small, subtle lattice to a large, 
obvious one. During this procedure, the scores will 
commonly decrease as further search continues since 
the identifi cation of another tri-cluster can not be 
perfectly achieved in only a single iteration (iterations 
6, 7). However, if the new tri-cluster is good enough, 
all values will increase and fi nally converge (itera-
tions 8–12) to a stable tri-cluster.

Furthermore, to study how well the cluster can 
be distinguished from the background data, we 
examined the distributions of scores belonging to 
subsets of a tri-cluster and compared them with 
those of normal scores. The Sc scores of a tri-cluster 
are demonstrated in Figure 3B. The white bars in 
the histogram represent the distribution of normal 
scores while the red represent outliers. The 
maximal value of the normal set is 0.3431 and 
the minimal value of the outlier set is 0.3755. These 
two sets are clearly separated, which indicates the 
tri-cluster is also very distinct in the St dimension. 
The T value at the end of iterations is 2.5, which 
can perfectly detect and separate the outliers from 
background.
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Results and Discussion

Effect of punishing coeffi cient
Non-zero values are usually sparse in REV data. 
Calculating the scores along one dimension (e.g. St 
along the TF dimension) in cooperation with a 
negative value δp, is equivalent to solving the 
mathematical average over a 2-dimensional space in 
which all zero-values are replaced with δp (Fig. S3A). 
Punishing coeffi cients are useful to enable the TRI-
Clustering algorithm to better identify sub-regions 
of interest. However, an extremely negative punish-
ing value can nullify the results of non-zero values 
and reduce the signal-noise ratio (Fig. S3B), as scores 
obtained this way are far smaller than zeros and with 
a much larger variance due to the large absolute value 
of δp. Furthermore, a moderate punishing value 
makes it easier for the heuristic algorithm to “climb 
over” a high “potential energy” region (Fig. S3C) to 
reach a better solution. With an extreme punishing 
value, it may only detect some local optimal clusters 
that are close to the regions of random initial seeds. 
We will provide detailed analysis on its effect in the 
synthetic data section.

Results on synthetic data sets
The effect of the punishing coefficient was 
investigated in order to fi nd an optimal value for 
further study. First, we start with the simple case by 
considering only one TF because it is easy to under-
stand and the results can be compared with other 
bi-clustering algorithms. Within a manually-generated 

data matrix with 400 genes and 400 conditions, we 
assume there exists a true rectangular cluster with 
the size of 100 (sampled from normal distribution 
N(0.5,1)). Also, to mimic real REV data, a false 
positive cluster was also generated which is statis-
tically distinguishable from the true cluster (sam-
pled from N(0,1)). All other values in the data 
matrix were set to 0, as would be the case commonly 
with REV data. We tested the sensitivity and 
specifi city of the algorithm (over 100 repetitions) 
with six coeffi cients with different absolute values: 
0, 0.001, 0.01, 0.1, 1, 10. (The results are displayed 
in Supplementary Table S1). T scores for genes, 
conditions and TFs, were set to 0.1, 0.1 and 1, and 
the parameter for initial seeds was 0.05. In this test, 
without any specifi c punishment for zero values in 
the cluster found by the algorithm, a perfect 
sensitivity can be achieved which means the 
TRI-Clustering algorithm can successfully detect 
the true cluster. When zero values in the false 
positive cluster, were also included in the results, 
the specifi city was reduced to 80.1%. At the same 
time, increasing the punishing coefficient can 
successfully increase specifi city to 98.1%. However, 
the algorithm will not benefi t from extreme large 
punishing scores as described previously. When 
set to greater than 1, the overall performance 
significantly decreased. Thus, for the further 
computation work in this study, the punishing 
coeffi cient was set to a moderate value of 0.01.

We explored the effect of the number of initial 
seeds on the results produced by the TRI-Clustering 
algorithm by simulating a new synthetic set 
of tri-clusters with different sizes. In total four 
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tri-clusters of size 20, 50, 100 and 200 were gener-
ated by sampling from a normal distribution with 
mean 1 and standard deviation of 0.1. Then we 
tested the performance using different percentages 
of total genes/conditions/TFs as initial seeds. In 
total, 5 different percentages, 0.1, 1, 5, 10 and 50, 
were used and initial seeds were randomly gener-
ated with uniform distribution. The program was 
run 1000 times for each parameter. The fi nal results 
are shown in Figure 4. As is evident, the biggest 
cluster dominated the results no matter what initial 
seeds were chosen. Our method exclusively 
detected the biggest cluster, especially when a large 
portion of data was used for the fi rst iteration, (e.g. 
10% or 50%). With a smaller percentage, 5%, the 
algorithm found 5 hits of the second largest clusters 
in 1000 times. With a coeffi cient 0.1% (i.e. an 
average of only 1 gene/condition/TF selected 
initially), all four clusters can be successfully 
identifi ed including the smallest cluster with size 
of 20. This is because the heuristic searching 
algorithm used by TRI-Clustering makes the 
optimal solution dependent on initial seeds, 
especially when there are multiple tri-clusters in 
the data. In the above example, when there is a 
large, signifi cant tri-cluster, more initial seeds will 
be selected within the large cluster if the number 
of initial seeds increase, which will lead the 
algorithm to have much more chance to fi nd this 
large cluster instead of subtle clusters. Therefore, 
a smaller number of initial seeds should be used if 
the TRI-Clustering algorithm is employed to detect 

subtle clusters. Alternatively, a higher number of 
initial seeds should be included to obtain more 
robust results. Also, if extremely large tri-clusters 
are found, they should be removed from the data 
and the algorithm should be rerun to detect more 
tri-clusters.

Finally, before working on real data, synthetic 
REV scores were generated to validate our method. 
We used different ways to create these data. First, 
we would like to see how it works compared to 
published bi-clustering methods. Two algorithms, 
Bimax and ISA, were selected as they have similar 
defi nitions of a bi-cluster to the one we use in this 
study. To make such a comparison reasonable, we 
used only one TF and thus the REV data reduced 
to two dimensions and behaves similarly to normal 
microarray data. We generated 500 genes from 
40 experimental conditions, and assumed only 
50 genes were controlled by the TF that worked 
actively in 10 conditions. The expression values of 
the (single) actively regulating TF were sampled 
from a normal distribution with mean 1 and a pre-
defi ned standard variation, which we varied in the 
simulations. Other TFs were sampled from a normal 
distribution of the same variation but with the mean 
of 0. With the hypothesis of exponential effect of a 
factor on the target, we expect a linear relationship 
between the corresponding expression values after 
log transformation. Therefore, a gene regulated by 
the TF was sampled from the expression of the TF 
plus a unit normal distribution of the same deviation 
above (we assume microarray data shares same 
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variation). Unregulated genes were generated from 
the unit normal distribution only. For the synthetic 
ChIP-chip data, the active status and inactive status 
were sampled from normal distributions of 1 and 
0, with a standard deviation of 0.1. Finally, to mimic 
false positives/false negatives in real ChIP-chip 
data, we randomly shuffl ed these data by a certain 
percentage (either 10% or 20% in separate simula-
tions). We tested a series of standard deviations 
from 0.1 to 0.5, ran each procedure 20 times and 
averaged the fi nal results. The implementation of 
the bi-clustering algorithms for comparison is from 
the BicAT toolbox.11 The values of sensitivity (sn), 
specifi city (sp), and over-all accuracy (acc) are 
defi ned as the percentage of correctly identifi ed 
TF-gene pairs and are shown in Table 1. With small 
standard deviation in the simulated data, all three 
algorithms worked well. As the microarray data 
variation increases, the performance of all methods 
decreases, especially when the standard variation 
reaches 0.5. TRI-Clustering algorithm performs 
comparably to other methods and even better in 
some scenarios, e.g. when standard deviation equals 
0.1. The results indicate that incorporating prior 
information about gene regulation, the TRI-Clustering 
algorithm can detect bi-clusters more accurately. 
However, it should be pointed out that the quality 
of prior information is critical to the prediction 
performance. As is shown in Table 1, the accuracy 
when 20% noise was added through permutation 
(more false positives/false negatives in simulated 
ChIP-chip data) was much less those obtained with 
only 10% permutation.

Interpretation of tri-clusters
We used the yeast sporulation data set to examine 
in detail the behavior of the TRI-Clustering algorithm. 

The initial seed ratio was set to 0.3. T scores for 
both TFs and conditions were 3. The T score for 
genes was fi xed at 6 as there are more than 5,000 
genes included and only the most signifi cantly 
changed genes are desired. The punishing coeffi cient 
used here was 0.01. One resultant tri-cluster is 
illustrated as an example. It contains 449 genes 
signifi cantly differentially expressed; 274 genes in 
the tri-cluster were up-regulated during this period 
and 175 were down-regulated. These induced genes 
were compared with list of 137 genes that 
were previously reported to be associated with 
sporulation,8 and 62 of them were found in the tri-
cluster. For the other 25 genes involved in 
metabolism in this process,8 all were included in 
this cluster.

In total, there are seven samples at time points 0, 
0.5, 2, 5, 7, 9, 11 hours. The subset of conditions 
selected is the latter 4 time points. We drew the 
heatmap of the microarray data for the 449 genes 
over all conditions as well as the expression values 
of the 19 TF genes (shown in Figs. 5A and B). Appar-
ently, the behavior of all these genes at baseline is 
far away from the other conditions. For the early 
stages of sporulation (condition 2 and 3), although 
a small number of genes is differently expressed, 
such as IME4 (up-regulated), ZIP2 (up-regulated), 
ENO2 (down-regulated) etc, the overall pattern in 
the early period is quite different from the middle 
or late stages. Also the 19 TF genes were up-regu-
lated in the middle and late stages of sporulation 
(Fig. 5B). For further analysis, the REV values for 
different TFs were averaged and then compared by 
experimental conditions (Supplemental Fig. S4). It is 
apparent that conditions within either group (Group 
1: condition. 1, 2, 3, Figure S4.a; Group 2: condition. 
4, 5, 6, 7, Fig. S4.b) perform quite similarly to each 

Table 1. Performance comparison of TRI-Clustering and other methods.

Std = 0.1 Std = 0.2 Std = 0.3 Std = 0.5
Sn Sp Acc Sn Sp Acc Sn Sp Acc Sn Sp Acc

TRI-Clustering 
(10% permutation)

99.5 100 99.9 86.4 100 99.7 94.0 99.7 99.6 37.6 99.0 97.5

TRI-Clustering 
(20% permutation)

92.0 100 99.8 82.8 100 99.6 92.0 99.7 99.6 35.3 99.1 97.5

BiMax 
(threshold = 0.7)

88.2 100 99.7 37.2 100 98.4 26.4 100 98.2 21.6 100 98.0

ISA (t_g = 1, c_g = 1) 99.0 97.8 97.8 90.0 97.9 96.8 90.0 97.6 97.4 40.0 95.3 93.9
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other but quite differently from those not in the same 
group. For example, the correlation coeffi cient (CC) 
for condition 3 and condition 2 is 0.680, but with 
condition 7, the score is only 0.003. The averaged 
correlation coeffi cient for all pairs of conditions 
present in the cluster is as high as 0.774.

Using the concept of REV score, we can 
access regulation behavior of a TF under different 
experimental conditions. We built the regulation 
profi le for each TF from the REV data and showed 
the profi le of IME4 and FKH1 in Figure 6. IME4 
is a factor identifi ed as a clone that enhances 

RES1–1-dependent spr3-lacZ expression and 
reduces or abolishes IME1 and IME2 expression 
and sporulation when disrupted.12,13 By analyzing 
the REV values of all genes regulated by IME4, 
it is observed that most of the signifi cant regulation 
events happen after the 2 hour time point (Fig. 
6A), which suggests for most cases, IME4 acts as 
a middle and late stage gene regulator. Although 
most of the TF profi les are similar to this one, for 
some specifi c TFs, the profi le patterns are quite 
different. For instance, the profi le of FKH1 (shown 
in Fig. 6B) shows the conditions that were affected 
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by FKH1 are focused on the early to middle 
stages instead of the fi rst and last condition. This 
verifi es the conclusion that FKH1 is induced early 
during sporulation and is involved in some 
transcriptional cascades for early and middle 
genes.8,13

Moreover, the results were validated by 
comparison with the Open REGulatory ANNOtation 
database (ORegAnno), an open database for the 
curation of known regulatory elements from the 
scientifi c literature.14 We downloaded the data fi les 
with all known TFs with target gene information in 
yeast and parsed them into more than 4,000 TF-gene 

pairs. We observed that 86 pairs in the tri-cluster 
can be verifi ed in the ORegAnno database (detailed 
information can be found in Table S1). To test if this 
result is statistically signifi cant, we performed a 
procedure that randomly selected tri-clusters with 
the exact same sizes as we got from TRI-Clustering 
algorithm, and calculated how many TF-gene pairs 
can be detected in OregAnno. We repeated this 
procedure 10,000 times and the p-value associated 
is 0.009, suggesting a signifi cant abundance of true 
TF-gene interactions found in the result of our 
method. Finally, we used TRANSFAC15 to 
investigate if there are any over-represented TF 
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Table 2. Centrality Changes (measured by Out-degree) of different stages in yeast sporulation.

TFs Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 Condition 7
ABF1 0 73 93 120 106 40 80
BAS1 6 9 48 86 107 102 114
FKH1 0 143 182 171 201 212 59
GAT3 0 0 0 226 245 241 228
HAP3 97 16 59 59 135 143 131
HMS1 0 99 0 126 180 151 158
IME4 0 85 115 176 180 165 146
INO4 0 65 0 101 155 148 123
LEU3 0 0 25 56 65 79 46
MET4 6 87 0 51 189 187 179
NDD1 69 0 0 0 91 105 27
PUT3 3 153 149 191 163 124 115
RAP1 0 108 177 222 219 217 199
REB1 78 26 92 142 159 168 159
RME1 0 30 17 54 48 125 119
RTG1 0 60 95 219 222 217 90
SIP4 26 137 157 192 168 161 145
UGA3 105 133 144 152 165 180 160
ZMS1 0 33 0 71 91 110 94
TOTAL 390 1257 1353 2415 2889 2875 2372

motifs in the promoter sequences of the genes in 
the tri-cluster. Up to 5,000 base-pair promoter 
sequences were downloaded from UCSC genome 
database and searched against the TRANSFAC 
motif database. The CLOVER program16 was 
employed to detect any Cis-element overrepresen-
tation. The promoter sequences of more than 5,000 
yeast genes were generated and used as a “back-
ground” in CLOVER. We identifi ed fi ve motifs 
resident in the promoter sequences: F$ABF1_01, 
F$HAP234_01, F$LEU3_B, F$RAP1_C and 
F$REB1_B, of which F$HAP234_01 and F$RAP1_
C are signifi cantly over-represented with p values 
0.009 and 0.008. All these results provide strong 
supportive evidence of gene regulation events 
inferred from the tri-cluster.

To further pinpoint the regulation mechanisms 
of these TFs, we tried to rebuild corresponding 
parts of regulatory modules from the tri-cluster. 
Here a threshold 0.1 was used to discretize the 
values in TF profi les described above. Network 
centrality was adopted in this work to describe the 
topologic character of condition specifi c networks.14 

One formulation of centrality is the out-degree that 
is the number of genes regulated by a TF. The out-
degrees for all 19 TFs in the tri-cluster are shown 
in Table 2. It is easy to fi nd the maximal values for 
TFs which only appear in the subset conditions of 
the cluster. At the same time, the average out-degrees 
of TFs in the middle-late stages are signifi cantly 
higher than the early stages, which can serve as an 
indicator for grouping different experimental 
conditions. The averaged out-degrees, when all 
TFs are taken into account, didn’t change much 
during the entire sporulation period (Table S2). 
The results suggest that during the middle and late 
stages of sporulation, these TFs are highly activated 
and have more infl uence on target genes.

Finally, a regulatory network was recon-
structed based on the gene regulatory information 
from the tri-cluster. We selected signifi cantly 
regulated TF-gene pairs (with a threshold of 0.5 
for the mean REV scores over all conditions in 
the cluster) and integrated them into a whole 
regulation network (shown in Fig. 7). This net-
work provides a broad picture of gene regulation 
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occurring in the tri-cluster. For example, we can 
observe in the middle and late stage of yeast 
sporulation, there are three target genes: OAC1, 
LEU1 and BAT1, controlled by LEU3. All of 
these can be verifi ed by either TRANSFAC or 
OregANNO. We can also identify more TFs with 
validated target genes and some novel ones that 
haven’t been verifi ed yet. A typical example is 
REB1, which has three target genes (YML119W, 
MRPS17 and GFA1) with strong evidence from 
both information resources and two more targets: 
YUH1 and MAM1 can be found in OregANNO 
database. Also, there are some new targets found 
without any previous knowledge, for example, 
HOP1, which is also regulated by another TF 
RAP1 and suggests a possible regulation mecha-
nism by these two TFs. Moreover, there are other 
important TFs acting as a hub node in the regula-
tion map, such as IME4, GAT3, UGA3, etc. 
Although we can not verify any target genes 
associated with them (sometimes due to the 
absence of known targets), but the functionaries 
of most of them have been recognized by previous 
studies. For example, IME4 is known as an impor-
tant regulator for middle and late sporulation and 
UGA3 is a transcriptional activator necessary for 
gamma-aminobutyrate (GABA)-dependent 
induction of GABA genes like UGA4, just as 
shown in the fi gure. Also they share a lot of target 
genes as well as with other TFs in the network, 
indicating intimate interactions and cooperative 

functions among these TFs and the complexity 
of the whole gene regulation network.

Conclusion
In this study, we extend the original two dimensional 
microarray data to a three dimensional REV space 
that incorporates TF binding information from 
ChIP-chip experiments, expression levels of TFs 
and expression levels of regulated genes. To 
explore this kind of data, we extended previously 
described two dimensional clustering approaches 
and developed an effi cient and robust method: 
TRI-Clustering algorithm with a sub-algorithm for 
automatic threshold detection. We provided 
detailed results and analysis of a tri-cluster and the 
associated regulatory network.

The bi-clustering concept provides for 
identifi cation of sets of genes that are condition 
specifi c, and may not be found by classical cluster-
ing which operates on all experimental conditions. 
However, bi-clustering only leads to the point of 
identifying co-expressed genes which then leaves 
the task of predicting or explaining the regulatory 
mechanisms as a further interpretive step. The tri-
clustering concept which we propose here provides 
an explicit representation of the regulatory effects 
in the TF-gene network and also clearly identifi es 
transitions in the network from condition to 
condition which are implicit in the boundaries of 
the identifi ed tri-clusters.

Figure 7. Regulation network reconstructed from tri-cluster. Red circles denote genes under regulation and yellow diamonds denote TF 
genes. Green arcs are signifi cant TF-gene regulations, yellow arcs are signifi cant TF-gene regulations with motif found in promoter sequences, 
blue arcs are signifi cant TF-gene regulations verifi ed by OregANNO, red arcs are signifi cant TF-gene regulations with motif information and 
can be found in OregANNO database.
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The meaning of this REV space involves the 
intersection of three orthogonal planes represented 
by familiar two dimensional matrices. The T-G 
(transcription regulatory factor-target gene) matrix 
defines a connectivity network in which the 
potential for a regulatory factor to infl uence a 
gene is present for at least some conditions. The 
links in this transcription factor connectivity net-
work indicate the potential for a regulatory factor 
to influence the expression of a gene through 
transcriptional or post-transcriptional means. In the 
case of DNA binding proteins, this indicates in the 
simplest case a potential DNA binding site in 
the promoter, or other regulatory region of a gene, 
and the potential for occupancy under some 
biological conditions relevant to the analysis at 
hand. For a microRNA similarly this might indicate 
similarly a complementary cis-regulatory region, 
or other target for a hairpin structure. Alternatively, 
for gene silencing, this connectivity network might 
indicate that DNA methylation of the promoter 
occurs under some relevant conditions. And, for 
chromatin modifi cations, this might indicate that 
the methylation or acetylation of a particular 
histone site may occur indicating silencing or 
activation under the relevant conditions. The G-C 
matrix is the matrix for the gene expression for the 
entire universe of genes under the complete 
conditions in which the hybridization was 
performed, while the T-C matrix (transcription 
factor-condition) represents the specifi c condition 
activity/infl uence of particular regulatory factors.

Unlike bi-clusters extracted from microarray 
data alone that have no explicit information about 
regulation, a gene in a tri-cluster always is controlled 
by at least one regulator. At the same time, com-
pared to traditional models inferred from ChIP-chip 
data, it has novel information about the specifi city 
of experimental conditions. From the view point of 
informatics theory, the regulation evidence from 
ChIP-chip experiments can be regarded as prior 
knowledge for general conditions. But it does not 
guarantee that under all circumstances, these rules 
can apply. By adding new sources of data specifying 
activity under different conditions, we can refi ne 
the existing information about transcription 
regulation by machine learning algorithms.

Vast amounts of detailed gene regulatory 
information are already or will become available in 
the near future, including transcription factor regula-
tory interactions, transcriptional or post-transcriptional 
events related to small RNAs, sense-anti-sense 

in-teractions, or epigenetic activities including DNA 
methylation, histone modifi cation, and chromatin 
remodeling. Novel approaches to detect subtle and 
complex regulatory events among various factors 
are needed. One intriguing question about REV data 
in higher dimensional spaces is the capability of 
refl ecting all these kinds of regulation infl uences, 
and extending related algorithms to analyze and 
integrate all such information.
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ABS (Automatic Boundary Scanning) algorithm

Function ABS(S, T, Delta):
S: a vector containing all scores
T: initial searching range coefficient 
Delta: step size, usually about 0.1
//initialize
Outliers = {};
Normal = S;

//iterations, stops only when the set of outliers doesn’t change 
while (TRUE) {
m1 = mean(Normal); //mean
std1 = std(Normal); // standard variance
B-Value = m1+T*std1;
Results = find((S>B-Value);

if (Results is empty) {
T = T-Delta; 
continue;
}

//outliers detected 
if (Results == Outliers) {break;} //invariant 
else {
Outliers = Results;
Normal = S-Outliers;
}

}

return Outliers;

Figure S2. Pseudo code for ABS algorithm.
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Table S1. Comparison of prediction performances with different punishing coeffi cients.

Punishing-Coeffi cient 0 0.001 0.01 0.1 1 10
Specifi city (%) 80.1 80.4 81.6 98.1 85.0 75.0
Sensitivity (%) 100 100 100 100 98.3 97.2

Table S2. Detailed information about out-degrees for different stages of yeast sporulation.

Condition 1 2 3 4 5 6 7
Mg/Mt 21 66 71 127 152 151 125
Mg/~Mt 27 20 12 7 5 6 11
~Mg/~Mt 258 110 42 9 4 6 18
All/All 266 183 121 100 111 110 102
Mg: list of genes included in the cube cluster, ~Mg: list of genes not included in the cube cluster, Mt: list of TFs included in the cube cluster, 
~Mt: list of TFs not included in the cube cluster, All/All: all genes and all TFs examined in this study.
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