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Abstract

Skin cancer is one of most deadly diseases in humans. According to the high similarity

between melanoma and nevus lesions, physicians take much more time to investigate

these lesions. The automated classification of skin lesions will save effort, time and human

life. The purpose of this paper is to present an automatic skin lesions classification system

with higher classification rate using the theory of transfer learning and the pre-trained deep

neural network. The transfer learning has been applied to the Alex-net in different ways,

including fine-tuning the weights of the architecture, replacing the classification layer with a

softmax layer that works with two or three kinds of skin lesions, and augmenting dataset by

fixed and random rotation angles. The new softmax layer has the ability to classify the seg-

mented color image lesions into melanoma and nevus or into melanoma, seborrheic kerato-

sis, and nevus. The three well-known datasets, MED-NODE, Derm (IS & Quest) and ISIC,

are used in testing and verifying the proposed method. The proposed DCNN weights have

been fine-tuned using the training and testing dataset from ISIC in addition to 10-fold cross

validation for MED-NODE and DermIS—DermQuest. The accuracy, sensitivity, specificity,

and precision measures are used to evaluate the performance of the proposed method and

the existing methods. For the datasets, MED-NODE, Derm (IS & Quest) and ISIC, the pro-

posed method has achieved accuracy percentages of 96.86%, 97.70%, and 95.91%

respectively. The performance of the proposed method has outperformed the performance

of the existing classification methods of skin cancer.

Introduction

Skin cancer is one of the most-deadly kinds of cancers [1]. Essentially, melanoma and non-

melanoma are the most known skin cancer types [2]. Death rate and incidence have increased

significantly in last years because of melanoma lesions. The rate of curing can reach over 90%

where physicians would save patients’ life if these lesions were detected in early stage [3]. Com-

monly, visual examination of skin cancer is difficult and may lead to wrong detection of lesions

because there is a high similarity between different types of skin lesions (melanoma and non-

melanoma) [4]. Therefore, the automatic classification of skin lesion images by using the
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image processing techniques and artificial intelligence is a successful alternative solution of the

visual examination [5].

About 75% of deaths related to skin cancer come from Melanoma lesions [6]. Survival rate

of patients could be increased if melanoma was recognized accurately in its early stages [7].

Manual detection of melanoma requires well-trained specialists to overcome variations of

inter-observation. Thus, if the melanoma recognition has been done automatically, it will

increase efficiency and accuracy of the early detection of this kind of cancer.

The performance of melanoma diagnosis has been improved using the dermoscopy tech-

nique [8]. Dermoscopy is a noninvasive imaging technique for skin, which is able to capture

illuminated and magnified images of skin lesion to increase the clarity of the spots. The visual

effect of the deeper skin level can be enhanced if the skin surface reflection is removed [9].

However, automatic recognition of melanoma dermoscopy images is a challenging task due to

few factors. First, segmentation of skin lesions is a very difficult and tedious task because of

lesions variation of intraclass such as, texture, size, color, shape and location. Second, the high

similarity between melanoma and non-melanoma lesions. Finally, the surrounding environ-

mental conditions like hair, veins, and charts of color calibration and ruler marks.

There are many trials to overcome these challenging problems. Early, researchers tried to

distinguish non-melanoma and melanoma lesions using low-level hand-crafted features [10].

Other researchers presented algorithms to select the proper hand-crafted features but features

suffer from high visual similarity, huge variations of intraclass and artifacts of dermoscopy

images which lead to bad results [11]. On the other hand, another group of researchers applied

segmentation methods to discard background and unneeded features [12]. In fact, the proce-

dures of segmentation and classification are based on low-level features with low discrimina-

tion capabilities which led to bad results [13].

A set of high-level intuitive features (HLIF) have been proposed by Amelard et al. [14] to

describe the amount of lesion border irregularity. To get more semantic meaning of the feature

set, a small set of HILF for low-level feature was used. This allowed the proposed system to

provide an intuitive rationale decision for the classification. Their system achieved a classifica-

tion rate of 87.38%. Karabulut and Ibrikci [15] utilized the convolutional neural network and

support vector machine (SVM) to classify the skin cancer. Preprocessing steps have been used

for enhancement and segmentation where the local binary pattern (LBP) and the difference of

block texture analysis of inverse probabilities were applied. Their system achieved an accuracy

rate of 71.4%.

Almaraz-Damian et al. [16] proposed a computer-aided diagnosis system in which the fea-

tures were extracted using the ABCD rule, and the SVM was used for classification. The accu-

racy of their system was 75.1%. Giotis et al. [17] used the descriptors of color and texture to

extract the region of lesion for classification purposes. Their system achieved a classification

rate of 81%. Jafari et al. [18] reduced the noise in the input images by a guided filtering

method, and then they applied the ABCD rule to extract the skin lesions features. The accuracy

of their method was 79%.

The deep convolutional networks (DCNN) has the ability to learn from features hierar-

chically. These networks have been applied in analyzing the medical images [19]. The level of

image classification accuracy has been increased by using the DCNN [20] especially with large

datasets [21]. Since the implementation of the DCNN required big number of images to

achieve high classification rates, insufficient number of skin cancer colorful images represents

an additional challenge in detection of the skin lesions.

Nasr-Esfahan et al. [22] applied the deep learning with clinical images. They used a correla-

tion for the illumination, and then they segmented the skin lesion in a preprocessing step to

increase the accuracy of their system. The enhanced and segmented images were sent to the

Classification of skin lesions using transfer learning with Alex-net

PLOS ONE | https://doi.org/10.1371/journal.pone.0217293 May 21, 2019 2 / 17

https://doi.org/10.1371/journal.pone.0217293


CNN for feature extraction and classification. The accuracy of this system was 81%. For Plain

photography, a computer-based analysis was proposed by Kostopoulos et al. [23]. The features

were extracted by Probabilistic Neural Network (PNN) to decide the type of skin lesion. Their

system achieved a classification rate equal to 76.2%.

Premaladha and Ravichandran [24] presented a computer-aided diagnosis system (CAD)

for skin lesion classification by combining the supervised algorithms and deep learning. The

input images were enhanced using the contrast limited adaptive histogram equalization tech-

nique (CLAHE), and then the normal skin was separated by the median filter with the Normal-

ized Otsu’s Segmentation (NOS). They utilized the Artificial Neural Network (ANN) and

Deep Learning Neural Network (DLNN) where the achieved classification rates were 90.12%

and 92.89% respectively.

Pham et.al. [25] used data augmentation and deep CNN to improve classification perfor-

mance of melanoma. They used Inception V4 architecture based on GoogleNet and achieved a

classification rate equal to 89%. Esteva et al. [26] used a single trained end-to-end CNN to clas-

sify skin lesions. They classified three classes called melanomas, seborrheic keratosis and

benign/nevus. They used the Inception v3 pertained architecture from google and achieved

moderately low classification rate of 72.1%. Yu et al. [27] presented an automated method for

melanoma recognition in dermoscopy images using very deep residual networks. They used

the residual learning to deal with overfitting and degradation problems. They built a Fully

Convolutional Residual Network (FCRN) for classification. The results of experiments show a

classification rate of 85.5%.

Accurate detection of melanoma and high classification rates are very essential in the early

detection of skin cancer. The general classification rates achieved by the existing methods are

less than 90%, which is unacceptable. Achieving high classification rate is essential in CAD sys-

tems for skin cancer. This motivates the authors to present a new deep learning neural net-

work-based method, which achieves a classification rate of 97%.

In this paper, a pre-trained deep convolutional neural network system is used for auto-

mated skin lesion classification. The last fully connected layer has been dropped out and

replaced by a softmax with random weights to be appropriate for the task of classification in

this paper. The contributions of the proposed system can be summarized as follows:

1. We utilized Alex-Net which outperformed the other deep architectures based on the follow-

ing attractive characteristics:

• Each layer has much more filters.

• In addition to the stacked convolutional layers, each convolution layer is followed by a

pooling layer.

• Instead of Tanh, logistic, arctan or Sigmoid as activation function it uses RelU function

which reduce likelihood of vanishing gradient and it is more biological inspired.

• Its training is 5 times faster comparing with others deeper architecture speed.

• Alex-Net does not require a specific hardware. It could work-well with limited GPU which

is an additional characteristic.

These characteristics motivated the authors to utilize a modified Alex-Net in skin lesions

classification. The proposed method outperformed the existing deep learning-based skin

lesions classification methods in terms of the classification rate, the sensitivity and the

specificity.
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2. Second, significantly improved the classification rate of skin lesions which outperformed

the rates obtained by existing similar methods.

3. Third, since we work for binary and multi-class classification, the softmax works well. The

output of using softmax is the probabilities range, from 0 to 1 while the summation of all

the probabilities will be equal to one. In multi-class classification model, each class proba-

bility is returned but the high probability will be to the target class. Based on this character-

istic and its simplicity, we replaced the classification layer of the Alex-Net by the softmax.

4. Finally, Utilization of random and fixed rotation augmentation approaches increased the

number of skin images which enabled a well-training of the Alex-Net and led to the highly

classification rate.

The rest of this work is organized as follows: A brief description of the utilized DCNN is

presented in section 2. The proposed method for color skin images classification is described

in section 3. Description of the performed experiments and the obtained results are presented

in section 4. A discussion for the proposed method and literature methods are discussed in

section 5. The conclusion is presented in section 6.

Background

DCNN consist of neural networks, which have a number of convolutional layers to extract fea-

tures from images and classify these images [28]. The difference between the original data used

to train DCNN and the data used for testing will be minimized in the training phase with dif-

ferent scale or size but with the same feature. The feature can be extracted and classified using

deep network well [29]. So DCNN can be used in the task of skin lesion detection and classifi-

cation. The reasons behind that is noise, aberrations, and artefacts in addition to limitation of

labeled images. Another reason is that dermoscopic images may have large variation for same

features plus the visual similarity of different type of lesions. So, a large dataset must be used

with DCNN for training to overcome these challenge [30,31].

CNN has been used to improve the performance in many applications like natural language

processing [32]. There are many DCNN architecture like LeNet, AlexNet, ZFNet, GoogLeNet,

and VGGNet [33–34] that are available to be used in many different applications. In this work,

AlexNet has been used and evaluated.

AlexNet CNN model

Krizhevsky et al. [35] has developed AlexNet to use ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) [36]. The first layer of AlexNet is used to filter the input image. The input

image must have width (W), height (H), and depth (D); 227×227×3 in which D = 3 refers to

red, green, and blue. As mentioned above, the first convolutional layer used to filter the input

color image which has a number of kernels (K) equals to 96 with a filter (F) of size 11x11 in

addition to 4 pixels is called stride (s). The distance between responsive field centers of neigh-

boring neurons in the kernel map is called stride. The mathematical formula, ((W−F+2P)/S)

+1, is used to compute the output size of the convolution layer where P refers to number of

padded pixels, which equals here to zero. By using this formula, the volume size of the convo-

lution layer output is ((227−11+0)/4)+1 = 55. The second convolutional layer input will be

(55×55×no of filters) and the number of filters in this layer is 256. Since the work of this layer is

distributed over 2 GPUs, the load for each one is divided by 2 for the two GPUs.

The following is the convolutional layer followed by the pooling layer. The pooling layer

tries to reduce the dimensionality of each feature map while keeping important features, where

pooling may be Sum, Max, Average, etc. AlexNet uses a max pooling layer. The input of this
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layer is 256 filters. Each filter is 5×5×256 in addition to 2 pixels as a stride. By using two GPUs,

the work will be divided to 55/2×55/2×256/2�27×27×128 for each GPU.

The pooled and normalized output of the second convolutional layer is connected to third

layer with 384 kernels, each of size 3×3. There are 384 kernels of size 3×3 for the fourth convo-

lutional layer and they will be divided over 2 GPU so each GPU load will be 3×3×192. fifth

convolutional layer have 256 kernels each kernel of size 3×3 and they will be divided over 2

GPU so each GPU load will be 3×3×128. It must be noted that the third, fourth and fifth con-

volutional layers are created without any normalization and pooling layers. The output of

these three convolutional layers are passed as input to number of 2 fully connected layers

where each layer contains 4096 neurons. Fig 1 illustrates the overall architecture of Alex-Net to

classify different classes using imageNet [36] as a training dataset.

The proposed method

In this section, the proposed method to classify the colored images for skin lesions is described.

This section is divided into two subsections. The augmentation process for the colored images

is presented in the first subsection. The process of transfer learning which is applied to the

deep network is described in the second subsection.

The augmentation process

To gain good performance with DCNN, a huge number of training images are needed. Gener-

ally, the small number of labeled medical images is a big challenge. The available datasets of

color skin images, such as 2017 ISIC Challenge data set [37], MED-NODE [17], Dermatology

information system [38] and DermQuest [39] contain small numbers of labeled images where

ISIC dataset consists of 2000 divided to 374, 254, and 1372 samples for Melanoma, Seborrheic

Keratosis, and Nevus respectively.

The second dataset, MED-NODE, contains 170 images divided to 70 and 100 images for

melanoma and nevus images respectively. This dataset comes from the digital image archive of

the department of Dermatology, University Medical Center Groningen (UMCG) in Nether-

lands. It is used for the development and testing of the system for skin cancer detection from

macroscopic images.

The third one has collected from the publicly databases by [14] which is available online

from Dermatology Information System [38], and The DermQuest [39]. Third dataset consists

of 206 images of skin lesion divided to 119 and 87 images for melanoma and nevus. These

images are obtained by using standard consumer-grade cameras in varying and unconstrained

environmental conditions.

In order to increase the number of trained images, we have followed some of the augmenta-

tion techniques that have been discussed in [40]. the labelled data melanoma, seborrheic kera-

tosis and nevus images are rotated with different rotation angles in two ways. The first way is

the random rotation, while the second one is the rotation with fixed step angle equal to 50.

Each image rotated 72 times with random different angels in the range from 00 to 3550. The

same number of rotations,72, was carried out with rotation angles 00 to 3550 with a fixed step

50. The number of images in the first dataset becomes (355/5+1)×374 = 26928 melanoma

images, (355/5+1)×254 = 18288 Seborrheic Keratosis images, and (355/5+1)×1372 = 98784

nevus images. Similarly, the second and the third dataset will be (355/5+1)×70 = 5040, (355/5

+1)×119 = 8568 melanoma images and (355/5+1)×100 = 7200, (355/5+1)×87 = 6264 nevus

images respectively. The augmentation process is done only to increase the number of the

images in the dataset without any medical reason.
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Transfer learning

Despite the large increase in the number of trained images, the available size of the dataset is

insufficient to train a new deep model from scratch. To overcome this problem, the theory of

transfer learning is applied to the pre-trained AlexNet architecture in three different ways.

First, the classification layer is replaced to softmax layer with two or three classes. Second, the

weights have been fine-tuned and the back-propagation is run to train the new weights. A

small learning rate is used where the weights of the convolutional layer are not changed dra-

matically, while weights of the fully connected layers are randomly initialized. The stochastic

Fig 1. Architecture of Alex-Net: W refers to width, H refers to height, D refers to depth, and K refers to number of

filters.

https://doi.org/10.1371/journal.pone.0217293.g001
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gradient descent (SGD) algorithm used to update the weights on the network is based on the

used datasets of skin cancer. Finally, the datasets are augmented to increase the number of

images that are available to train the deep network. This process resulted in the optimal

weights and achieved a good classification rate with the new replaced softmax layer.

As mentioned above, melanomas have huge intraclass variation, and there is a high degree

of visual similarity between melanoma and non-melanoma lesions, which severely influences

the recognition performance especially when performing skin lesion classification using the

original limited dermoscopy images.

Experiments and results

Experiments are performed using an IBM computer equipped with a core i5 processor, 8 GB

DDRAM and a NVIDIA GeForce 920M graphic card. The MATLAB 2017 x64-bit is used to

execute the coded program. Three datasets, ISIC, MED-NODE, and DermIS—DermQuest, of

RGB colored skin images are used in these experiments. The first dataset consists of three

labeled data/classes, melanoma, seborrheic keratosis, and nevus. The second and the third

datasets consist of only two labeled data/classes, melanoma and nevus. The code is converted

from MATLAB 2017 to CUDA to be run over GPU. Using GPU enables us to use a huge num-

ber of training data with low error rate of models. In many works, like that with DCNN, the

classification layer may be dropped out and replaced with other classification methods like

multi-class SVM. In this work, the classification layer called softmax is replaced with a new

softmax layer to be appropriate for skin lesion where three classes are used. Fig 2 illustrates the

modified pre-trained AlexNet with the new softmax layer.

There are two kinds of performed experiments with the three datasets. The first one is to

evaluate the proposed method using original datasets without image augmentation. The sec-

ond one is to evaluate the proposed method with augmented datasets. All experiments are per-

formed with fixed values of the batch size, 10, the number of training epochs, 32, and the

initial learning rate, 0.001. All color images are segmented using the segmentation methodol-

ogy [41].

Four evaluation measures are used to evaluate the performance of proposed method. These

measures are accuracy, sensitivity, specificity, and precision [42]. These measures are

Fig 2. Modified Alex-Net.

https://doi.org/10.1371/journal.pone.0217293.g002
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computed using the following equations:

Accuracy ¼
tp þ tn

tp þ fp þ fn þ tn

Sensitivity TPRð Þ ¼
tp

tp þ fn

Specif icity TNRð Þ ¼
tn

fp þ tn

Precision PPVð Þ ¼
tp

tp þ fp

Where tp, fp, fn, and tn refer to true positive, false positive, false negative, and true negative

respectively. The acronyms, TPR, TNR, and PPV refer to true positive rate, true negative rate,

and positive prediction value. The rates of true negative and false positive should be large and

small, which makes most of the points fall in the left part of the receiver operating characteris-

tic (ROC) curve [43].

All experiments start by loading the color images form the data source, then by passing it to

the segmentation step. According to the pre-trained AlexNet, the size of the input image can-

not exceed 227×227, and the depth-limit of the image is 3. Therefore, after segmentation, a

check step is performed to ensure the suitability of the image’s size. If the size of the image

exceeds the size limit, a resizing process to 227×227×3 for width, height, and depth is

imperative.

In the first type of experiment, the 10-fold cross validation have been used to divided MED-

NODE and DermIs–DermQuest dataset into groups for training and testing without any aug-

mentation. Each group have been used at least once as training and once as testing but not in

the same run. Then the modified AlexNet after applying transfer learning theory have been

used. This process was repeated 10 time and the average accuracy for the 10 runs times was

computed to be the overall accuracy of the proposed model. In the first type of experiment,

runs are performed using the original datasets of color images without any augmentation. The

is applied where the is pre-trained. The classification layer, softmax, is modified to work with 2

classes instead of the ImageNet classes.

The first run was done with the DermIS—DermQuest dataset which contains low quality

images of two classes, melanoma and nevus. To evaluate the performance of the proposed

method, the values of the four measures are computed for each class separately. Therefore, the

average value for these measures are computed. The average of the computed measures is

88.24%, 86.79%, 86.79%, and 89.01% for accuracy, sensitivity, specificity, and precision respec-

tively. The confusion matrix of this experiment is shown in Fig 3.

The second run is performed using the same conditions and architecture with the second

dataset, MED-NODE. The MED-NODE dataset consists of high quality dermoscopy images.

This dataset is divided into two classes, melanoma and nevus. The pre-trained AlexNet that

has transferred learning with modified softmax layer to be appropriate with two classes of skin

lesions. The average values of measures are computed where these values are 91.18% for aver-

age accuracy of the two classes, 91.43% for average accuracy of sensitivity and specificity, and

90.70% for average precision. The confusion matrix of this experiment is shown in Fig 4.

The ISIC dataset is used in the third run where this dataset consists of three classes, mela-

noma, seborrheic keratosis, and nevus. The ISIC dataset is relatively big and originally divided
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into training and test groups; so, we ignore 10-fold cross validation. Similarly, the transfer

learning is applied to the pre-trained AlexNet where the softmax layer is modified to be

worked with three classes. The values of batch size, the number of training epochs and initial

learning rate were fixed for all runs as 10, 32, and 0.001 respectively. The average computed for

all measures, accuracy sensitivity, specificity, and precision were 87.31%, 62.02%, 79.07%, and

73.07% respectively. The confusion matrix of this experiment is shown in Fig 5.

The second kind of experiments is performed with the same datasets, DermIS- DermQuest,

MED-NODE, and ISIC. DermIS _dermQuest, and MED-MODE dataset have been splitting

into training and testing groups using 10-fold cross validation. These groups in addition to the

ISIC training and testing dataset groups are augmented by rotating each image with 55 differ-

ent rotation angles ranging from 00 to 3550 with a constant step 50.

The DermIS- DermQuest is used in the first run of this experiment. The original colored

images of this datasets are segmented to reduce the size and remove unwanted complicated

background. The segmentation step is performed before the augmentation process, which is

applied to all segmented color images. As a result of augmentation, the number of color images

becomes 4620 and 4785 for melanoma and nevus respectively. A size-check constraint,

227×227×3, is applied to all input images as done in the first experiment. The same values of

batch size,10, the number of training epochs, 32, and initial learning rate, 0.001 are applied. The

classification layer softmax is modified to two classes, melanoma and nevus. The same four

measures are used to evaluate the performance of the modified pre-trained AlexNet. The com-

puted average values of these measures are 96.86% for accuracy, 96.90% for sensitivity and spec-

ificity and 96.92% for precision. The confusion matrix of this experiment is shown in Fig 3.

The second run is performed with the MED-NODE dataset. Like previous runs, the original

color images are segmented and then the augmentation process is performed where the num-

ber of images becomes 3850 and 5500 for melanoma and nevus respectively. The size of all

Fig 3. Confusion matrix for original and augmented derma dataset.

https://doi.org/10.1371/journal.pone.0217293.g003

Fig 4. Confusion matrix for original and augmented Mednod dataset.

https://doi.org/10.1371/journal.pone.0217293.g004
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images is determined where images with exceeded size are resized to 227×227×3 for width,

height, and depth. The performance measures are computed where the average values of these

measures are 97.70%, 97.34%, 97.34%, and 97.93% for accuracy, sensitivity, specificity, and

precision respectively. The confusion matrix of this experiment is shown in Fig 4.

The third experiment is performed with the ISIC dataset. This dataset consists of three clas-

ses, melanoma, seborrheic keratosis, and nevus. Therefore, the modified softmax layer will be

modified to work with these three classes. After segmentation process, the dataset is aug-

mented where the number of images becomes 20570, 13970 and 75460 images for melanoma,

seborrheic keratosis, and nevus respectively. The size of all input images must not exceed the

size 227×227×3. The average values of the performance measures are 95.91%, 88.47%, 93.00%,

and 92.34% for accuracy, sensitivity, specificity, precision, and negative predication value

respectively. The confusion matrix of this experiment is shown in Fig 5.

Table 1 gives an overview of the obtained results for the performed experiments. It is clear

that the augmentation processes significantly improve the classification rates. The proposed

method achieved a very high classification rates with different datasets.

Discussion

The performance of the proposed method is compared with the performance of the existing

skin cancer classification methods [14–18,22–27]. The three datasets, DermIS- DermQuest,

MED-NODE, and ISIC are used in this comparison. The comparative study has been done

using the results as they appear in the corresponding papers. The accuracy measure and ROC

curves are used as a quantative and qualitative measures to compare the performance of the

different methods. The comparative study is divided into three groups based on the used data-

set. In the first group, the performance of the proposed method is compared using the Der-

mIS- DermQuest dataset. In the second group, the performance of the proposed method is

compared with the performance of the existing methods [17, 18, 22, 23 and 24] using the

Fig 5. Confusion matrix for original and augmented ISIC dataset.

https://doi.org/10.1371/journal.pone.0217293.g005

Table 1. The proposed model accuracy.

Dataset Original dataset Augmented dataset

Average

accuracy

Average

sensitivity

Average

specificity

Average

Precision

Average

accuracy

Average

sensitivity

Average

specificity

Average

Precision

DermIS-

DermQuest

88.24 86.79 86.79 89.01 96.86 96.90 96.90 96.92

MED-NODE 91.18 91.43 91.43 90.70 97.70 97.34 97.34 97.93

ISIC 87.31 62.02 79.07 73.07 95.91 88.47 93.00 92.34

https://doi.org/10.1371/journal.pone.0217293.t001
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MED-NODE dataset. The dataset, ISIC, is used in the last group where the performance of the

proposed method is compared with the performance of the existing methods [25,26 and 27].

The obtained results of the first group using the DermIS- DermQuest dataset are shown in

Table 2. The obtained results are visualized and displayed in Fig 6. The ROC for the proposed

method and the existing classification methods [14–16] are displayed in Fig 7.

The performance of the proposed method is compared with the performance of the existing

methods [17, 18, 22, 23, and 24] using the MED-NODE dataset where the obtained results are

shown in Table 3. The achieved accuracies are visualized and displayed in Fig 8 while the dif-

ferent ROC curves are plotted in Fig 9.

The ISIC dataset is used in the last comparative group. In these existing methods [24, 25,

26], the input images are enhanced and segmented. The obtained results for the proposed

method and the existing classification methods [25, 26, 27] are shown in Table 4 and displayed

in a visual form in Fig 10. The ROC curves which represent the relation between sensitivity

and specificity for the proposed and the existing methods are plotted and displayed in Fig 11.

For DermIS- DermQuest dataset; Amelard et al. [14] gained 87.38% for accuracy when

using SVM for classification after enhancing the skin images and extracting the region of inter-

est by segmentation. This method works with the RGB color images. In [15], Karabulut, and

Ibrikci reduced the noise by enhancing the images and then applied the segmentation process

Table 2. DermIS- DermQuest dataset comparative study.

Preprocessing

(Enhancement)

Segmentation Image

Type

Classification

Method

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

Karabulut &

Ibrikci [15]

Yes Yes Gray-scale CNN 71.4 71.9 70.8

Almaraz et al.

[16]

Yes Yes RGB SVM 75.1 94.94 100

Amelard et al.

[14]

Yes Yes RGB SVM 87.38 90.76 82.76

Proposed

Method

No Yes RGB DCNN 96.86 96.90 96.90

https://doi.org/10.1371/journal.pone.0217293.t002

Fig 6. Comparative study bars for DermIS- DermQuest.

https://doi.org/10.1371/journal.pone.0217293.g006
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to get the ROI regions. They used the CNN and the SVM for classification where the achieved

accuracy was 71.4%. This method works with grayscale images. Almaraz et al. [16] utilized

similar steps where the achieved accuracy was 75.1%. On the other side, the proposed method

achieved an accuracy of 96.86% without any kind of enhancement.

All of the existing methods [17, 18, 22, 23, and 24] used the MED-NODE dataset. In these

methods, two pre-processing steps were applied and kept the input images in R, G, and B color

space except the method in [24] in which the input image converted to grayscale. The input

RGB color images are enhanced and then the segmentation process was performed. Different

classification methods such as probabilistic neural network, SVM, majority vote, and DLNN

were used. The highest accuracy was 92.89% achieved by the method [24]. Our proposed

method achieved an accuracy 95.91% with the segmentation step without any enhancement of

the input image in the R, G, and B space.

Fig 7. The ROC curves for the different methods with the DermIS- DermQuest dataset.

https://doi.org/10.1371/journal.pone.0217293.g007

Table 3. MED-NODE dataset comparative study.

Preprocessing

(enhancement)

Segmentation Image Type Classifier Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

Kostopoulos et al.

[23]

Yes Yes RGB Probabilistic

Neural Network

76.2 73.9 77.8

Jafari et al. [18] Yes Yes RGB SVM 79 90 72

Giotis et al. [17] Yes Yes RGB Majority vote 81 80 81

Esfahan et al. [22] Yes Yes RGB CNN 81 81 80

Premaladha, and Ravichandran [24] Yes Yes Gray-scale DLNN 92.89 94.83 90.46

Proposed Method No Yes RGB DCNN 97.70 97.34 97.34

https://doi.org/10.1371/journal.pone.0217293.t003
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For the ISIC dataset, Esteva et al. [26] achieved an accuracy 72.1% by using the SVM classi-

fier with enhanced color skin images and a segmentation process to extract the region of inter-

est. Yu et al. [27] enhanced the image to reduce the noise and segmented the input image to

extract the region of interest where Yu and his co-authors converted the input images to

Fig 8. MedNode comparative study bars.

https://doi.org/10.1371/journal.pone.0217293.g008

Fig 9. The ROC curves for the different methods with the MED-NODE dataset.

https://doi.org/10.1371/journal.pone.0217293.g009
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grayscale. The achieved accuracy of their model was 85.5% by using the CNN for classification.

Pham et al. [25] enhanced the input images and extracted the region of interest. Then, used

the SVM to classify the pre-processed color images where their model achieved the accuracy

87.2%. On the other side, our proposed model achieved high accuracy rate 95.91%.

The performed comparisons clearly show that the performance of the proposed method

outperforming all existing skin lesions classification methods.

Conclusion

To build a new deep neural network with high performance, a huge number of labeled images

is needed. The proposed method applies the transfer learning in three different ways to pre-

trained architecture. The classification layer of AlexNet is replaced by softmax layer to classify

the skin lesion into two or three classes. Based on its flexible architecture, it can be used to

Table 4. Comparative study for ISIC dataset.

Preprocessing

(Enhancement)

Segmentation Image

Type

Classification

Method

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

Esteva et al. [26] Yes Yes RGB SVM 72.1 - -

Yu et al. [27] Yes Yes Gray-scale CNN 85.5 50.7 94.1

Pham et al. [25] Yes Yes RGB SVM 89 55.6 97.1

Proposed Method No Yes RGB DCNN 95.91 88.47 93.00

https://doi.org/10.1371/journal.pone.0217293.t004

Fig 10. ISIC comparative study bars.

https://doi.org/10.1371/journal.pone.0217293.g010
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classify skin lesions into more classes. The weights are fine-tuned and the datasets are aug-

mented by different rotation angles to overcome the problem of overfitting. The performance

of the proposed method is tested using three datasets, DermIS- DermQuest, MED-NODE, and

ISIC using GPU. The average accuracy, average sensitivity, average specificity, and average

precision for the proposed method with the DermIS- DermQuest are 96.86%, 96.90%, 96.90%,

and 96.92% respectively. For the MED-NODE dataset the average values of the performance

measures are 97.70%, 97.34%, 97.34%, and 97.93%, respectively. The average performance

measures with the ISIC dataset are 95.91%, 88.47%, 93.00%, and 92.34%. The experimental

results show that the proposed skin lesion classification method outperforms several state-of-

the-art classification methods.
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