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Abstract
Amplicon read sequencing has revolutionized the field of microbial diversity studies. The

technique has been developed for bacterial assemblages and has undergone rigorous test-

ing with mock communities. However, due to the great complexity of eukaryotes and the

numbers of different rDNA copies, analyzing eukaryotic diversity is more demanding than

analyzing bacterial or mock communities, so studies are needed that test the methods of

analyses on taxonomically diverse natural communities. In this study, we used 20 samples

collected from the Baltic Sea ice, slush and under-ice water to investigate three program

packages (UPARSE, mothur and QIIME) and 18 different bioinformatic strategies imple-

mented in them. Our aim was to assess the impact of the initial steps of bioinformatic strate-

gies on the results when analyzing natural eukaryotic communities. We found significant

differences among the strategies in resulting read length, number of OTUs and estimates of

diversity as well as clear differences in the taxonomic composition of communities. The dif-

ferences arose mainly because of the variable number of chimeric reads that passed the

pre-processing steps. Singleton removal and denoising substantially lowered the number of

errors. Our study showed that the initial steps of the bioinformatic amplicon read processing

strategies require careful consideration before applying them to eukaryotic communities.

Introduction
Historically, the diversity of protists has been determined with laborious morphological sur-
veys [1,2], in which taxon identification requires expertise that is acquired over years of micro-
scopic work. Planktonic protistan communities harbor a large number of species that are easily
overlooked or missed in sampling and counting due to very low cell abundance [3–5]. This ten-
dency has led to the underestimation of protistan species richness in examined environments.
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This underestimation became more evident with the construction of 18S ribosomal RNA
gene clone libraries from environmental samples [6–8]. The clone library studies have revealed
novel taxa and greater-than-expected protistan richness. Although one can study larger vol-
umes of water (up to tens of liters) with clone libraries (the sample is collected on a filter from
which DNA is extracted and further processed) than with a microscope, the clone library ap-
proach and the microscopic approach share a similar limiting factor: the number of observa-
tions per sample (sequenced clones) is low, usually only a few hundred, depending on how
many clones are picked. Rarefaction analyses show that this approach has far from thoroughly
sampled the richness [8].

The emergence of the different next-generation sequencing techniques (454, Illumina,
SOLiD, etc.), which can massively sequence 90 to 1000-bp-long DNA fragments, was a step to-
wards a more precise molecular-based assessment of protistan richness in examined environ-
ments. One can sequence tens of thousands of sequences (amplicon reads) from a single
sample, including rare taxa, and, in theory, estimate the protistan richness of an environment
more accurately [9,10].

Bacterial communities were the first subjects of clone libraries, amplicon read sequencing
and downstream analyses. The analyses evoked vivid discussion about the so-called rare bio-
sphere that later subsided when more sophisticated amplicon read quality and chimera detec-
tion methods revealed that most of the rare biosphere was due to errors in the new sequencing
technologies [11]. The errors included, for instance, chimeric reads, reads with indels, and ho-
mopolymer miscounts (e.g., TTT is read as TT or TTTT). Artificial (“mock”) community anal-
yses have shown that the number of operational taxonomic units (OTUs) often far exceeds the
number of actual species in these communities [12–14].

Several detection methods have been developed to overcome the problem of chimeric reads
produced in PCR amplification [15–22]. Of these, Chimera Slayer [20] and UCHIME [22]
have proved to be the most sensitive [22]. Chimera Slayer searches a multiple alignment of chi-
mera-free reference sequences. Alternatively, aligned sample reads can serve as a reference.
UCHIME can be run against a reference database, but it is not required. However, no method
eliminates chimeras entirely [20].

Denoising methods have also been developed to limit the ‘noise’ produced by amplicon read
sequencing techniques. These methods can precluster rarer reads (most likely erroneous) with
related more abundant reads [23] or produce a cluster consensus read [24]. Alternatively,
denoising methods can use raw sequencing data in the form of flowgrams [21,25,26]. Research
has shown that denoising eliminates actual OTUs [27,28], and can therefore
underestimate diversity.

Assessing eukaryotic diversity with molecular methods is more complicated than it is for
Bacteria and Archaea. The number of 18S rRNA gene copies per cell varies from one to tens of
thousands among different eukaryotes [29–31], resulting in values that represent not the num-
ber of cells but the number of 18S rRNA gene copies in the sample. Also, the variability in the
18S rDNA differs across eukaryotic lineages [32,33], and no universal level of sequence similar-
ity is available. For example, ciliates require a 98% level of similarity for analyzing their diversi-
ty at the species level [33], while Behnke et al. [13] showed that in pyrosequenced Rhizaria
even a 91% level of similarity will overestimate the species richness. Recently, several studies
have addressed the amplicon read overestimation of eukaryotic diversity. However, these stud-
ies have concentrated on mock communities [12,13,28,34,35] or on certain taxonomic groups
[27,36–40], and their results must be verified for different, taxonomically diverse
natural communities.

In this paper, we show that the choice of bioinformatic strategy strongly affects estimates of
diversity of Baltic Sea ice and water samples that include members of at least 28 diverse
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eukaryotic lineages [41]. We used singleton removal, quality control filtering, two different chi-
mera detection methods and two denoising methods to test 18 different strategies implemented
in mothur [42], QIIME [43] and USEARCH (or UPARSE) [34]. We also manually validated
the chimera detection methods from a subset of samples.

Material and Methods

Sampling
We collected 20 samples (15 sea-ice, 3 slush and 2 under-ice water samples) from three R/V
Aranda sea-ice cruise stations (Gulf of Finland, Baltic Sea, 8–19 March, 2010): a drift-ice sta-
tion on 9 March (59°55.67' 26° 01.082'), a heavily packed fast-ice station on 11 March (60°
14.30' 26°37.563'), and a level fast-ice station on 13 March (60°19.664' 26°51.730'). The field
work required no permits or approvals.

We collected the ice samples with a motorized CRREL-type ice-coring auger (9 cm internal
diameter, Kovacs Enterprises). We obtained five ice cores from each station and immediately
sectioned them into five pieces of approximately equal size: surface, upper intermediate, mid-
dle, lower intermediate and bottom sections. Thus, the sections varied in size, depending on
the ice thickness of (43–112 cm) each core. At each location, we placed all five surface sections
into a plastic bag, all five bottom sections into another plastic bag, and so on. The ice was then
crushed inside the bags, transferred to a bucket and left to melt in darkness at +4°C. We took
three replicate slush samples at the fast ice station, shoveled them from an approximately 50
cm x 50 cm square with a hand shovel, and left them to melt in a basket in darkness at +4°C.
We sampled the under-ice water by submersing three one-liter bottles in the corer holes at the
drift and fast ice stations.

For the DNA extraction, 550–600 mL of water, melted sea-ice and slush was sequentially fil-
tered with 47 mm diameter 180-μm pore-size nylon filters (Millipore), 20 μm Polyvinylidene
fluoride filters (Durapore, Millipore), and 0.2-μmmixed cellulose ester membrane filters
(Schleicher and Schuell). We stored the 0.2- and 20-μm filters in liquid nitrogen while on-
board and transferred them to a -80°C freezer on shore until further processing.

DNA Extraction, PCR Amplification and Sequencing
We soaked the 0.2-μm filters in DNA lysis buffer (100 mM Tris, 50 mM EDTA, 500 mMNaCl,
0.6% w/v SDS) and extracted total DNA from the filter with the phenol-chloroform method
[44].

Amplification of the approximately 480-bp long 18S rRNA gene fragment (including the
variable sites V7, V8 and V9) took place in two separate laboratories (Fig 1), using primers
18S-F1289 and 18S-R1772 [45] with attached sample-specific 6-bp-long barcode tags. Of the
20 samples, 16 were amplified with KOD-Plus- ver. 2 (TOYOBO Co. Inc., Osaka, Japan) poly-
merase under the following conditions: initial denaturation at 94°C for 2 min followed by 25
cycles at 94°C for 15 sec, at 50°C for 30 sec and at 68°C for 1 min. Each sample was amplified
once. We used a High Pure PCR Product Purification Kit (Roche Diagnostics) to purify and
concentrate the PCR reactions. We used Phusion High-Fidelity DNA Polymerase (Thermo Sci-
entific Inc., Waltham, MA, USA) to amplify the four remaining samples under the following
conditions: initial denaturation at 98°C for 30 sec followed by 30 cycles at 98°C for 10 sec, at
65°C for 30 sec, and at 72°C for 10 sec, with a final extension at 72°C for 5 min. The PCR took
place in two phases: in the first phase, in eight replicates, and in the second phase, in three rep-
licates. We pooled the replicates both between and after the amplifications. We then purified
and concentrated the PCR reactions with an AMPure XP (Beckman Coulter Inc., Brea, CA,
USA) PCR purification kit.
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We mixed the PCR products in equimolar ratio and used a GS FLX Titanium Rapid Library
Preparation Kit (Roche) to prepare a DNA library. We then amplified these pooled libraries
with beads by emulsion polymerase chain reaction and pyrosequenced the amplified fragments
in the DNA libraries on a picotiter plate with 454 GS FLX Titanium system and reagents
(Roche) at the Research Center for Aquatic Genomics (Yokohama, Japan; 16 samples) and at
the Institute of Biotechnology (Helsinki, Finland; 4 samples).

Fig 1. Experimental design. The 20 obtained samples were divided into two sets: 16 samples were amplified and sequenced in Japan, and 4 samples
(grey) were amplified and sequenced in Finland. For downstream analyses, we combined and analyzed these two sets with UPARSE, mothur and QIIME
program packages. Within the program packages, we used varying quality filtering methods: in UPARSE, maximum expected error (maxee) and quality
score (QS) filtering methods; in mothur, PyroNoise denoising and quality score window (QW) filtering; and in QIIME Denoiser denoising and QW filtering. In
addition, we tested UCHIME and Chimera Slayer chimera detection methods in mothur and QIIME.

doi:10.1371/journal.pone.0130035.g001

Bioinformatic Strategies Strongly Affect Eukaryotic Diversity

PLOS ONE | DOI:10.1371/journal.pone.0130035 June 5, 2015 4 / 18



Processing of Reads
Three amplicon read processing pipelines (mothur v.1.34.3 [42], QIIME 1.8.0 [43] and
UPARSE as implemented in USEARCH v7.0.1090 [34]) were used. The reads were grouped
into OTUs at 90, 95, 96, 97, 98, 99 and 100-% similarity levels. OTUs occurring only once (sin-
gletons) were either retained or removed from the dataset (Fig 1). In mothur (S1 Text), we fol-
lowed the Schloss SOP pipeline [14] in www.mothur.org/wiki/ (accessed 17 January 2014). We
tested both the shhh.flows quality filtering, which utilizes the PyroNoise flowgram denoising
algorithm [25], and the trim.seqs command (quality window method, QW), which cuts reads
when their average quality score over a 50-bp window drops below 25 (35 in default SOP).
With both quality filtering methods, we also eliminated reads with> 6 homopolymers (> 8 in
default), reads with ambiguous bases, reads with> zero mismatches in the barcode (> 1 in de-
fault) and the primer (> 2 in default) sequence. We aligned the unique reads against the recre-
ated SILVA SEED database v119 reference file provided in the mothur-wiki pages and filtered
the alignment so that all reads overlapped in the same region. The pre.cluster command served
to merge reads that were within 2 bp of a more abundant read, and we used UCHIME [22] and
Chimera Slayer [20] to identify the chimeric reads. Our sample reads served as a reference for
Chimera Slayer.

In QIIME (S2 Text), we followed the 454 Overview Tutorial and Analysis of 18S data avail-
able at http://qiime.org/tutorials/index.html# (accessed January–March, 2014). We tested the
Denoiser [26] and used pick_otus.py to pick OTUs in de novo mode [46]. The QW filtering
step took place under the same parameters as in mothur. For the Chimera Slayer chimera de-
tection, we aligned the reads against the SILVA 111 release reference file (eukarya only, 97%
OTUs) using PyNAST [47].

In USEARCH (S3 Text), we followed the UPARSE pipeline available at http://drive5.com/
usearch/manual/uparse_pipeline.html (accessed 12 March 2014) and tested the maximum ex-
pected error (maxee) and quality score (QS) filtering methods. For the maxee method, we de-
termined the error parameter based on the report given by the fastq_stats command (19% of
reads retained). The command discarded reads with> 0.3 expected errors. For the QS filtering
method, we used the fastq_truncqual command, which truncated reads at the first position
with a quality score 15 or less. We did not search for additional chimeric reads in UPARSE. To
obtain globally alignable reads in both the maxee and QS strategies, we truncated the reads to
260 and 200 bp in maxee and QS, respectively.

We generated taxonomic assignment of the 97% OTUs using SILVA database release 111
[48] within the QIIME program package [43] with UCLUST [46] and BLAST [49]. If UCLUST
failed to assign the OTU, we used BLAST. In the absence of a taxonomic assignment we treated
the OTU as unclassified. For details on the commands used, see S4 Text.

To further validate the results, we manually blasted OTUs affiliated with Metazoa against
the NCBI database. For this additional quality control step, we chose Metazoa because the
number of Metazoan species in the Baltic Sea is low and well known. In addition, we clustered
the chimeric reads identified with UCHIME and Chimera Slayer to 97-% OTUs and blasted
the chimeric OTUs assigned with Metazoa to confirm whether the chimeric OTU was an
actual chimera.

We used the Shannon index [50] to evaluate differences in alpha-diversity among the bioin-
formatics strategies, and Whittaker’s beta-diversity to evaluate differences in beta-diversity
[51]. We calculated the alpha-diversity values for each sample and the beta-diversity values for
the drift ice, pack ice and fast ice.

The number of OTUs and alpha-diversity measures were not normally distributed (Sha-
piro-Wilk test), so we used the nonparametric Friedman’s repeated measures analysis of
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variance (the test is used to detect differences in treatments across multiple test attempts) fol-
lowed by Bonferroni corrected Wilcoxon pairwise comparisons to test whether the different
strategies resulted in significantly different numbers of OTUs and alpha-diversity measures.

The raw reads were submitted to the Sequence Read Archive of the European Nucleotide
Archive’s (ENA) with accession number PRJEB7625.

Results
From the 20 samples we obtained 504138 reads (Table 1): 428920 reads for the KOD-Plus- po-
lymerase amplified (16 samples) and 75218 for the Phusion polymerase amplified (4 samples)
sets. The average length of the reads was 449 bp (454 bp for the KOD amplified and 423 bp for
the Phusion amplified sets). The quality of the Phusion polymerase amplified sample set was
poorer as exemplified by the Eurytemora classified reads: 45% of the Phusion amplified Euryte-
mora reads were either erroneous or chimeric while only 14% of the KOD amplified Euryte-
mora reads were erroneous or chimeric.

After the different quality filtering procedures (Filtering step in Fig 1), the average length of
the reads was 200–435 bp, depending on the procedure (Table 2). The read lengths after the
UPARSE and mothur strategies were shorter than those after the QIIME strategies because
both UPARSE and mothur operate on globally alignable reads (the shortest read in the data set
determines the length). The number of unique reads was lower after the denoising strategies
(PyroNoise and Denoiser in Fig 1) than after the QW strategies. For example, the resulting
numbers of unique reads in QIIME differed by almost two orders of magnitude, ranging from
491 reads in the Denoiser-UCHIME to 43338 reads in the QW-Chimera Slayer strategy. Simi-
larly, the number of unique reads was one third lower after PyroNoise than after QW filtering
in mothur, and one third lower after maxee than after QS filtering in UPARSE, revealing sub-
stantial differences, depending on the method.

The proportion of identified chimeric reads (the chimera removal step in Fig 1) also varied
dramatically, depending on the chimera-removal method. The proportion of identified chime-
ric reads to non-chimeric reads varied among the strategies from zero to 40% (Table 2).
UCHIME with mothur found a few hundred more chimeric reads than did Chimera Slayer
with mothur. But with QIIME, Chimera Slayer failed and found no chimeric reads. We tried
Chimera Slayer using both our reads and the SILVA 111 release as references, but without suc-
cess. UPARSE has no separate chimera detection step, but reports chimeric reads when calling
the OTUs.

Table 1. The basic statistics of the two sequencing data sets.

Phusion polymerase KOD-Plus- polymerase

Number of samples 4 16

Number of reads 75218 428920

Number of reverse reads 75218 ca. 204000

Number of forward reads n/a ca. 222000

Average read length 423.32 453.85

Average quality score 34.65 35.39

Number of reads classified as Eurytemora 420 3500

Percentage of poor quality Eurytemora reads 45 14

The two sequencing data sets were generated with Phusion High-Fidelity DNA polymerase and KOD-Plus-

ver. 2 polymerase. We classified the raw reads (> 400 bp) with QIIME and investigated the reads classified

as Eurytemora (Metazoa) in more detail. The forward reads were excluded from the downstream analyses.

doi:10.1371/journal.pone.0130035.t001
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The manual blasting of the OTUs classified as Metazoa revealed overestimated numbers of
OTUs after all bioinformatic strategies (Table 3). From the OTUs affiliated with Metazoa, 13–
93% were erroneous, depending on the strategy; singleton removal, however, improved the

Table 2. The number of reads, average length of the reads and the number of chimeras.

After initial filtering Chimeras After all quality control steps

Number of reads Average lenght Number of chimeras Chimera percentage Number of unique reads Average lenght

UPARSE maxee 44569 466.84 2691b 39.80b 4069 260.00

UPARSE QS 206969 385.53 3035b 17.99b 13822 200.00

mothur PyroNoise 197674 277.16

UCHIME 182622a 258.56a 27869 15.26 3220 258.44

mothur QW 228095 427.16

UCHIME 34043a 239.01a 13476 39.59 8861 239.01

ChimeraSlayer 34043a 239.01a 13026 38.26 9328 238.84

QIIME Denoiser 121410 439.23

UCHIME 17842 14.70 491 434.81

QIIME QW 121410 435.07

UCHIME 20480 16.87 28150 427.92

ChimeraSlayer 0 0 43338 429.68

The number of reads and average length of the reads after the initial quality filtering and after all quality control steps as well as the number of chimeras

with the different bioinformatic strategies.
aAfter alignment
bCalculated when calling OTUs at the 100% level

doi:10.1371/journal.pone.0130035.t002

Table 3. The number of authentic and chimeric Metazoa OTUs.

Manual blast UCHIME/ChimeraSlayer removed chimeras

N of Metazoa OTUs Authentic OTUs Chimeric OTUs N of Metazoa OTUs Authentic OTUs

UPARSE

maxee 11 (5) 6 (4) 5 (1) n/a n/a

QS 39 (13) 14 (9) 25 (4) n/a n/a

mothur

PyroNoise

UCHIME 43 (14) 10 (6) 33 (8) 96 4

QW

UCHIME 77 (16) 13 (8) 64 (8) 85 1

ChimeraSlayer 91 (17) 14 (9) 77 (8) 73 0

QIIME

Denoiser

UCHIME 11 (8) 8 (7) 3 (1) 22 0

No check 32 (23) 8 (7) 24 (16) n/a n/a

QW

UCHIME 36 (23) 9 (7) 27 (16) 113 2

ChimeraSlayer 139 (69) 10 (7) 129 (62) 0 0

The number of Metazoa OTUs generated with the different strategies and removed through chimera detection. We manually checked whether the OTUs

originated from actual species or whether they were chimeric or erroneous. Numbers in parentheses are from analyses without singletons.

doi:10.1371/journal.pone.0130035.t003
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quality of the data sets. The QIIME-Denoiser-UCHIME strategy passed the lowest number of
erroneous reads, but also missed some high-quality OTUs that other strategies retained. For
example, compared to the QIIME-Denoiser-UCHIME strategy, the mothur-PyroNoise-
UCHIME strategy resulted in two additional high-quality Metazoan OTUs, but the mothur
strategy passed 30 erroneous OTUs more than did the QIIME strategy. In addition, the number
of OTUs was higher in mothur than in the QIIME strategies because mothur classified identical
reads as different OTUs due to small errors in the multiple alignment mothur used to cluster
the reads into OTUs. With QIIME, the QW strategies passed substantially more erroneous
reads than did the denoised strategies. None of the strategies tested found all 15 Metazoa
OTUs present in the data set (S1 Table). Overall, all strategies passed chimeric reads, but be-
sides chimeric reads UCHIME chimera detection also flagged reads from authentic species as
chimeric (Table 3).

The number of OTUs (following all steps in Fig 1) differed by an order of magnitude, de-
pending on the strategy and quality filtering method (Fig 2). Only the UPARSE-QS strategy
yielded the same number of OTUs with singletons as did the mothur-QW-UCHIME and the
mothur-QW-Chimera Slayer strategies, and the mothur-QW-UCHIME strategy yielded the
same number of OTUs with singletons as the QIIME-Denoiser strategy according to Fried-
man’s repeated measures analysis of variance (p< 0.001, df = 8 and X2 = 945.11) followed by
Bonferroni corrected Wilcoxon pairwise comparisons. All strategies yielded significantly differ-
ent numbers of OTUs after removing singletons (Friedman’s repeated measures analysis of
variance, p< 0.001, df = 8, X2 = 967.54).

Denoiser produced a three-fold lower average number of OTUs (97%) than did quality fil-
tering: 99 OTUs with the QIIME-Denoiser-UCHIME, and 321 with the QIIME-QW-UCHIME
strategies. The effect of PyroNoise in mothur was the opposite: the average number of OTUs
(97%) after singleton removal was 119 after PyroNoise and 100 after QW filtering, although
the total number of OTUs was lower with PyroNoise (97% OTUs = 456) than QW (97%
OTUs = 740). The quality filtering did not succeed as well as PyroNoise did in identifying the
reads originating from the same species in the different samples, which yielded more rare
OTUs overall, but a smaller number of OTUs per sample with the mothur-QW strategies. The
inclusion of singletons overwhelmed this effect with their large numbers: the average number
of OTUs (97%) with the mothur-PyroNoise-UCHIME strategy was 173, and with the mothur-
QW-UCHIME strategy, 281. Thus, overall, both singleton removal and denoising significantly
reduced the number of OTUs (except with PyroNoise and singleton removal in mothur).

Alpha-diversity, measured with the Shannon index (Fig 3), grouped the strategies into four
groups with the inclusion of singletons (Friedman repeated measures test p< 0.001, df = 8 and
X2 = 144.21 followed by Bonferroni corrected Wilcoxon pairwise comparisons). With the re-
moval of singletons the strategies were grouped into five groups with equivalent Shannon indi-
ces (Friedman repeated measures test p< 0.001, df = 8 and X2 = 131.13 followed by
Bonferroni corrected Wilcoxon pairwise comparisons). Removing singletons lowered the
alpha-diversity measures when using QW strategies, but had no effect on the denoising strate-
gies (Fig 3). Overall, estimating the alpha-diversity attenuated the effect of used strategy but
still, significant differences remained among the strategies.

We found no significant difference in Whittaker’s beta-diversity values among the strategies
(Fig 3) because their calculation involved only three replicates per strategy (we calculated beta-
diversity for drift, pack and fast ice). However, the pattern was clear: singleton removal and
denoising reduced beta-diversity.

In addition to the different numbers of OTUs (Fig 4), the higher-level taxonomic composi-
tion of the community (97% OTUs) varied greatly among the different strategies. The most
striking difference was in the number of cercozoan OTUs; the number of OTUs affiliated with
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Fig 2. The average number of OTUs at different levels of similarity with different strategies. (A) The average number of OTUs at different levels of
similarity with singletons; the y axis is scaled logarithmically. (B) The average number of OTUs at different levels of similarity without singletons; the y axis is
scaled logarithmically.

doi:10.1371/journal.pone.0130035.g002
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Cercozoa, which constituted 16–27% of the community, was 78–1580 among different strate-
gies, and after singleton removal, 43–841 (S1 Table). The relative number of cercozoan OTUs
was the highest in analyses run in mothur. This was reflected in the proportions of other taxa;

Fig 3. The diversity indices at the 97%OTU level with different bioinformatic strategies. (A) Shannon
diversity indices with and without singletons; the small letter on top (with singletons) and below (without
singletons) denote similar values from Friedman’s test. (B) Whittaker’s beta-diversity with and without
singletons calculated for drift, pack and fast ice.

doi:10.1371/journal.pone.0130035.g003
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the proportion of ciliates, for example, was 10–11% with mothur, but was 12–21% with other
strategies. Another example of the variable taxonomic results is the proportion of diatoms,
which was 5–9% with UPARSE, mothur-PyroNoise-UCHIME and QIIME-Denoiser-
UCHIME strategies, but was 10–19% with the other strategies.

Discussion
The choice of pre-processing and clustering methods is crucial for the downstream analyses of
amplicon read data, as May et al. [28] showed with mock 16S rDNA data. Here, we show with
a natural eukaryotic 18S rDNA data set that analyzing the same set of reads with 18 different
strategies, can lead to significantly different conclusions.

The different amplicon-read sequencing technologies (e.g., 454 and Illumina) suffer from
slightly different issues: the 454-technology is more prone to homopolymer miscounts [25]

Fig 4. The taxonomic composition of the community revealed with different bioinformatic strategies. (A) The number of OTUs with singletons. B. The
number of OTUs without singletons. (C) The relative number of OTUs with singletons. D. The relative number of OTUs without singletons.

doi:10.1371/journal.pone.0130035.g004
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than is Illumina technology, which has its own base-calling biases [52]. Nevertheless, the results
obtained are comparable [34,53]. Thus, our conclusions apply to a broader usage of amplicon-
read analyses, although our experimental set-up, in which we used the 454-sequencing technol-
ogy and three program packages with 18 different amplicon read analysis strategies, is far from
exhaustive. Furthermore, the absence of a ground truth complicates analyses of reads derived
from natural communities.

Read Length
Regardless of the sequencing method, reads tend to have more errors towards the end of the
read. This is especially distinct in the 454-technology, in which the base quality values of the
reads tend to nosedive after approximately 250 bp. This is circumvented to some extent by the
demand for globally alignable reads in UPARSE and mothur. This excludes most of the read-
end errors [35], but the shortest read in the data set ultimately determines the overall read
length. Longer reads provide more information than shorter reads do, and identifying chimeric
reads and taxonomic classifications is more difficult with shorter reads. Choosing a longer min-
imum length in the UPARSE and mothur-QW strategies can lengthen the overall read length
of the global alignment but cannot refute the base quality parameters.

In our case, the global alignment resulted in the exclusion of the V7 and V8 regions of the
18S rDNA (in the UPARSE and mothur strategies). For example, QIIME-QW reads were al-
most twice as long as mothur-QW reads, but because either actual differences or chimeric/er-
roneous sections were in the V7 and/or V8 region of the QIIME-QW reads, the total and
average number of OTUs was higher with the QIIME-QW than with the mothur-QW strate-
gies. Based on our results (Table 3) and the results of Edgar [34], the extra OTUs in the QII-
ME-QW strategies resulted mainly from chimeric reads. Thus, longer reads do not
automatically produce more accurate results.

To Denoise or Not?
Researchers have proposed several algorithms for removing noise from reads [21,23–26]. This
noise consists of, for example, PCR single-base errors, chimeras and errors in sequence reading.
Denoising can be not only computationally demanding, but also unnecessary [34]. The main
concerns of denoising include the removal of actual species [27] and changes in taxonomic dis-
tribution [38]. However, adding a denoising step improves the OTU clustering, as most errone-
ous reads closely resemble their parental reads, and denoising alters the erroneous reads to
such extent that they are part of their parental reads [28]. Several studies recommend using
denoising, which results in more accurate numbers of OTUs in mock analyses
[14,23,25,26,28,38]. Also, using at least two runs under different emulsion PCR and sequencing
conditions is beneficial for separating noise from biological variation [39].

Gaspar and Thomas [35] thoroughly examined different denoising approaches, and found
that PyroNoise [21] implemented in AmpliconNoise substantially changed the reads. Because
it picked the longest read as the representative of each cluster, it added bases to the 3’ ends of
the shorter reads that were often dissimilar from what truncation had previously removed. The
Denoiser algorithm [26] implemented in QIIME caused even more changes than did Pyro-
Noise, and most of these changes were substitutions. The PyroNoise in mothur made markedly
fewer changes than in AmpliconNoise and Denoiser in QIIME owing to its strict filtering crite-
ria. However, due to these criteria the reads were shorter than in AmpliconNoise and QIIME.
This is why Gaspar and Thomas [35] recommend being aware of and examining how the
denoising process transforms the reads.
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None of the bioinformatic strategies tested found all 15 Metazoa OTUs present in the data
set (S1 Table). Denoised strategies missed more actual species than did QW strategies, but the
QW strategy results included substantially more chimeric reads than did the denoised strategy
results. For example, the QIIME-Denoiser-UCHIME resulted in almost an order of magnitude
fewer chimeric OTUs than did the QIIME-QW-UCHIME strategy. The PyroNoise denoising
shortened the reads substantially from 449 bp to 277 bp, while Denoiser denoising shortened
the reads by only 10 bp. The Denoiser altered reads to such that the QIIME-Denoiser-
UCHIME strategy yielded 13% fewer chimeric reads than did the QIIME-QW-UCHIME strat-
egy (Table 2). Moreover, Denoiser lost at least three actual Metazoa OTUs present in the OTUs
or UCHIME/Chimera Slayer-removed chimeric reads of the QIIME-QW strategies (Table 3,
S1 Table). PyroNoise denoising implemented in mothur lost no OTUs. In accordance with the
results of Gaspar and Thomas [35], denoising had more pronounced effect on the number of
OTUs in QIIME than in mothur because the QIIME-QW strategy passed more chimeric reads
than did the mothur-QW strategy.

Chimera Detection
A compromise exists between the sensitivity and specificity of chimera detection methods: im-
proving sensitivity decreases specificity. Although UCHIME and Chimera Slayer are the most
sensitive methods available [22], they perform far from ideally when used in default (Table 3),
consequently, one should evaluate all chimera-detection results carefully. Chimeric reads that
pass chimera detection are the main reason for inflated estimates of diversity [14], but detec-
tion methods also flag actual OTUs chimeric as well. False positives and negatives may cause
spurious inferences of differences between populations (see the discussion in the To Denoise or
Not? section).

Several authors [12,13,27,34,54,55] recommend singleton (or rare OTU) removal as the eas-
iest method for chimera removal. This approach is very effective, but can evidently be used
only when the investigator is uninterested in the rare biosphere [39]. For example, in our data
set, OTUs affiliated with Amoebozoa, Centrohelida, Hypchytriales and Peronosporomycetes
were seldom detected as a consequence of singleton removal (S1 Table).

In our case, the failure of Chimera Slayer in QIIME may be a result of our simplified ap-
proach. We did not aim to customize the strategies too much as the pipelines are intended for
non-expert end users in bioinformatics (microbiologists with ecological question settings). In
addition, we implemented chimera detection in the same phase for all strategies: between initial
quality control or denoising and OTU calling (S1 and S2 Text). The QIIME development team
suggests (http://qiime.org/scripts/identify_chimeric_seqs.html) using Chimera Slayer after
picking the representative set. However, with that approach, Chimera Slayer failed as well. May
et al. [28] recommend chimera detection before denoising in order to simplify the denoising
step, which is advantageous when computational time and power are limited. As a better way
to remove most of the chimeras, May et al. [28] also suggest running UCHIME against both
one’s own sequences and a curated reference sequence set and then combining the results.

Diversity Estimates
OTU richness among the strategies differed widely (Fig 2). Bachy et al. [37] showed with tintin-
nid ciliates that the multiple alignment needed to assign the reads into OTUs with mothur can
include small errors, which can lead to a 10- or even 100-fold overestimation of OTUs at high
levels of similarity (99%). This effect is somewhat attenuated at lower levels of similarity, but
still visible in our results. This can be corrected with an additional alignment step.
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The primary aim of most environmental sequencing studies is to compare the diversity of a
set of samples [56–58]. To that end, one can calculate several alpha- and beta-diversity mea-
sures [59]. These measures variably take into account the presence and abundance of OTUs.
For simplicity, we chose two traditional measures of diversity to compare the performance of
the bioinformatic strategies: the Shannon index [50] andWhittaker’s beta-diversity [51].

The Shannon index attenuated differences among the strategies and found clear groupings.
Shannon indices were lower with denoised strategies than with QW strategies because of the
lower number of spurious OTUs and the more even abundance of OTUs in denoised strategies.
Thus, for the purpose of estimating the eukaryotic diversity of examined environments, the
choice of bioinformatic pipeline is less about choosing the program package than about choos-
ing between denoising and no denoising and even more about choosing the diversity estimate
to use [59,60].

The huge variability in copy numbers in the 18S rDNA of the different eukaryotic lineages
[29–31] hampers ecological interpretation of abundance-based alpha-diversity measures. The
read abundance does not reflect the biomass or cell number of eukaryotes [38]. Read abun-
dance data and abundance-based estimates of diversity should therefore be used only in a strict
sense to compare different samples without further ecological interpretations.

Effects of Bioinformatic Strategies on Community Composition
We found distinctive differences among the strategies in the community composition results
(Fig 4), differences so striking that they led to contradictory conclusions about the composition
of the community. Interestingly, the effect was clearly taxon-specific, with the highest variation
occurring in Cercozoa (S1 Table). Behnke et al. [13] studied in detail the 454-sequencing errors
in V4 and V9 of ciliates, diatoms and Rhizaria (which includes Cercozoa). They found that the
GS-FLX Titanium error rates in V9 for Rhizaria were twice as high as for ciliates, and four
times higher than for diatoms. Plausible reasons for these taxon-specific differences include
varying numbers of long homopolymer stretches, variable secondary structure formation and
the presence of additional hairpins and branched structures [13,61,62]. Taxon specificity has
distinct implications for the analyses. Firstly, defining a universal OTU similarity level for all
eukaryotes is impossible. Secondly, the results gained with, for example, ciliates as models for
amplicon read analyses [27,37] may not hold for other eukaryotic taxa. Both issues are solvable
through further studies on taxon-specific differences in sequencing technologies and on struc-
tures of ribosomal RNA.
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