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Abstract: Macrophages emerge in the milieu around innervated neurons after nerve injuries. Follow-
ing nerve injury, autophagy is induced in macrophages and affects the regulation of inflammatory
responses. It is closely linked to neuroinflammation, while the immunosuppressive drug tacrolimus
(FK506) enhances nerve regeneration following nerve crush injury and nerve allotransplantation with
additional neuroprotective and neurotrophic functions. The combined use of FK506 and adipose-
derived stem cells (ADSCs) was employed in cell therapy for organ transplantation and vascularized
composite allotransplantation. This study aimed to investigate the topical application of exosomes
secreted by ADSCs following FK506 treatment (ADSC-F-exo) to the injured nerve in a mouse model
of sciatic nerve crush injury. Furthermore, isobaric tags for relative and absolute quantitation (iTRAQ)
were used to profile the potential exosomal proteins involved in autophagy. Immunohistochemi-
cal analysis revealed that nerve crush injuries significantly induced autophagy in the dorsal root
ganglia and dorsal horn of the spinal segments. Locally applied ADSC-F-exo significantly reduced
autophagy of macrophages in the spinal segments after nerve crush injury. Proteomic analysis
showed that of the 22 abundant exosomal proteins detected in ADSC-F-exo, heat shock protein family
A member 8 (HSPA8) and eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) are involved
in exosome-mediated autophagy reduction.

Keywords: autophagy; sciatic nerve crush injury; exosome; adipose-derived stem cells (ADSC);
tacrolimus (FK506); proteomic analysis; isobaric tags for relative and absolute quantitation (iTRAQ)

1. Introduction

A remote cell body response in axotomized neurons is induced following a sciatic
nerve injury [1]. This strong response indicates the neuronal release of cytokines and
chemokines, the induction of neuron-intrinsic growth programs, the activation of resident
macrophages [2–4], and invasion of macrophages from the peripheral circulation [5,6]. The
proliferation of resident and invasive macrophages is abundant and peaks three days after
injury [7], with an increased (proportional) influx of hematogenous macrophages after
day 4 [7]. The secreted molecules and phagocytosis activity of these macrophages can
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magnify immune and inflammatory responses in the local milieu, influence the surrounding
neurons [8], and further contribute to secondary damage and the further loss of neurons [9].

Autophagy is known to specifically remove and recycle damaged cellular organelles
and aggregated proteins to maintain cellular homeostasis [10]. Cells that undergo au-
tophagy exhibit the expression of autophagy markers, such as the microtubule-associated
protein 1A/1B-light chain 3 (LC3), the autophagy receptor sequestosome 1 (p62), and
lysosomal associated membrane protein 1 (LAMP-1) [11]. For instance, after an optic nerve
injury, autophagy is associated with the death of retinal ganglion cells [12,13]. Within a
few hours following the optic nerve injury, the optic nerve showed a rapid increase in
autophagic vesicles, which spread back to the retinal ganglion cells with LC3 levels being
increased as early as 24 h after the injury [14]. Autophagy-related genes such as autophagy-
related 5 and autophagy-related 7 are increased in retinal ganglion cells between 3 and
10 days after injury [15]. In addition, insufficient autophagic flux and parallel upregulation
of p62 lead to a substantial increase in p62 levels in the optic nerve [16,17]. High levels of
autophagy lead to the death of retinal ganglion cells in vivo [14]. Autophagy activation
in macrophages of the nervous system is closely linked to neuroinflammation [18,19].
During injury to the central nervous system, autophagy contributes to the regulation of
inflammatory responses in resident and invaded macrophages [9]. During injury to the
peripheral nervous system, such as spinal nerve ligation, autophagy is also initiated in the
macrophages of the spinal segment [20] and participates in the regulation of inflammasome
activation and the process of neuropathic pain [18].

Cell-based therapy is currently considered promising for the treatment of peripheral
nerve injury [21,22]. Several studies have demonstrated that adipose-derived stem cells
(ADSCs) [23–25] and even their conditioned medium can promote peripheral nerve re-
generation [26,27]. The exosomes might be responsible for the effect of the secretome of
the medium by transporting proteins, nucleic acids, and lipids into target cells for inter-
cellular communication [28,29]. It has been reported that exosomes secreted by ADSCs
(ADSC-exo) enhance nerve regeneration by stimulating Schwann cell proliferation [30], in-
creasing remyelination [31], and reducing neuronal death [32]. Although the pathogenesis
of autophagy in nerve injury is still unclear, autophagy has been proposed as a potential
therapeutic target for suppressing cell and tissue injury [18].

The calcineurin inhibitor FK506 was approved by the Food and Drug Administra-
tion of United States in 1997 to be used in kidney transplantation to prevent acute rejec-
tion [33,34]. FK506 binds to FK506-binding proteins, inhibits the calcineurin/the nuclear
factor of activated T cells pathway (NFAT) pathways, and thus suppresses IL-2 gene tran-
scription in T lymphocytes, which is required for T-cell proliferation [33,34]. In addition
to the immunosuppressive effect, FK506 had been found to improve nerve regeneration
following a nerve crush injury and/or nerve allotransplantation in clinical settings [35,36]
and exhibits additional neuroprotective and neurotrophic activities [37]. The combined
use of FK506 and ADSCs has been used in cell therapy for organ transplantation [38]
or vascularized composite allotransplantation [39,40]. In a mouse model of sciatic nerve
crush injury, we showed that the topically sprayed exosomes, which were secreted by
ADSCs under the condition of FK506 stimulation (ADSC-F-exo), exhibit similar effects
to those of ADSC-exo on enhancing nerve regeneration [41]. Under the hypothesis that
the topically sprayed ADSC-F-exo around the crush nerve segment can also rescue the
autophagy of macrophages in the milieu surrounding the innervated neurons, this study
was performed with the aim to assess the effect of ADSC-F-exo treatment on the autophagy
of macrophages in the spinal segments following nerve crush injury, with the additional
goal of exploring the potential effective proteins inside the exosomes. In this study, CSF-1R–
GFP+ macrophage Fas-induced apoptosis (MaFIA) transgenic mice, in which macrophages
express enhanced green fluorescent protein (eGFP) were used; this facilitated the detection
of macrophages in the DRG and spinal segments. Furthermore, isobaric tags for rela-
tive and absolute quantitation (iTRAQ) of exosomal protein content were performed to
determine potential proteins that can be involved in the autophagy pathway.
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2. Results
2.1. Characterization of Isolated Exosomes

Western blotting revealed the expression of the positive exosomal surface markers,
including CD9, CD81, flotillin-1, and TSG101 in the isolated exosomes than the control
sample as cell lysates, and the expression of the negative control protein calnexin was not
observed (Figure 1A). Transition electron microscopy (TEM) showed a round exosome with
lipid bilayers and acceptable quality in terms of morphology and size range (Figure 1B).
The NTA measurements of exosome size distribution revealed a single peak, with an
average size of 90.8 nm ± 38.3 nm (Figure 1C). The quality of the isolated exosomes was
good, with a relatively uniform size distribution.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 18 
 

 

2. Results 
2.1. Characterization of Isolated Exosomes 

Western blotting revealed the expression of the positive exosomal surface markers, 
including CD9, CD81, flotillin-1, and TSG101 in the isolated exosomes than the control 
sample as cell lysates, and the expression of the negative control protein calnexin was not 
observed (Figure 1A). Transition electron microscopy (TEM) showed a round exosome 
with lipid bilayers and acceptable quality in terms of morphology and size range (Figure 
1B). The NTA measurements of exosome size distribution revealed a single peak, with an 
average size of 90.8 nm ± 38.3 nm (Figure 1C). The quality of the isolated exosomes was 
good, with a relatively uniform size distribution. 

 
Figure 1. Characterization of isolated exosomes using (A) Western blotting for exosomal surface 
markers of the isolated exosomes (Exo) with cell lysate as the control (Contrl), (B) transmission elec-
tron microscope analyses, and (C) distribution of exosomes secreted by ADSCs and measurement 
of particle diameter by nanoparticle tracking analysis. 

2.2. Autophagy Activation in the DRG and Spinal Segments 
According to immunohistomorphometric analysis of the DRG (n = 6 for each group 

of mice), the nerve crush injuries have significantly induced autophagy in macrophages 
following the nerve crush injury when compared with those in the naive control (Figure 
2). Quantification of the number of cells with co-localization of DAPI and eGFP with those 
autophagy-related markers showed the following patter. Compared with the naive con-
trol, the average number of LC3-positive or LAMP-1-positive autophagic cells per field 
was significantly induced 1 d and 3 d after the crush injury. The average number of p62-
positive autophagic cells per field was significantly induced 3 d after crush injury. The 
number of LC3-, p62-, or LAMP-1-positive autophagic cells was significantly decreased 7 
d after the crush injury. 

Figure 1. Characterization of isolated exosomes using (A) Western blotting for exosomal surface
markers of the isolated exosomes (Exo) with cell lysate as the control (Contrl), (B) transmission
electron microscope analyses, and (C) distribution of exosomes secreted by ADSCs and measurement
of particle diameter by nanoparticle tracking analysis.

2.2. Autophagy Activation in the DRG and Spinal Segments

According to immunohistomorphometric analysis of the DRG (n = 6 for each group
of mice), the nerve crush injuries have significantly induced autophagy in macrophages
following the nerve crush injury when compared with those in the naive control (Figure 2).
Quantification of the number of cells with co-localization of DAPI and eGFP with those
autophagy-related markers showed the following patter. Compared with the naive control,
the average number of LC3-positive or LAMP-1-positive autophagic cells per field was
significantly induced 1 d and 3 d after the crush injury. The average number of p62-positive
autophagic cells per field was significantly induced 3 d after crush injury. The number of
LC3-, p62-, or LAMP-1-positive autophagic cells was significantly decreased 7 d after the
crush injury.
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3 d, and 7 d following sciatic nerve crush injury. * Indicates a significant change (p < 0.05) when compared to those in the
naïve control (n = 6). The error bar represents the standard error of mean.
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For the spinal segments (n = 6 for each group of mice), nerve crush injuries significantly
induced autophagy in macrophages following the nerve crush injury when compared
with those in the naive control (Figure 3). Quantification of the number of cells with
co-localization of DAPI and eGFP with those autophagy-related markers indicates that,
compared to the naive control, the average number of LC3-positive and p62-positive
autophagic cells per field was significantly increased at 3 d and persisted at 7 d after the
crush injury. The average number of LAMP-1-positive autophagic cells per field was
significantly increased at 1 d and persisted at 3 d and 7 d after the crush injury.
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2.3. ADSC-F-Exo Reduced Autophagy in the Spinal Segments

As shown in Figure 4, immunohistomorphometric analysis (n = 6 for each group of
mice) revealed that the treatment of nerve crush injuries with ADSC-F-exo significantly
reduced the degree of macrophage autophagy 3 d following the nerve crush injury, com-
pared with that observed in the crush control mice. Quantification of the number of cells
exhibiting the co-localization of DAPI and eGFP with the autophagy-related markers indi-
cates that, compared to the nerve crush control, the average number of autophagic cells
per field was reduced after ADSC-F-exo treatment (LC3, 6. 7 ± 1.1 vs. 0.8 ± 0.4, p < 0.001;
p62, 10.7 ± 1. 7 vs. 5.5 ± 1.1, p = 0.026; LAMP-1, 5.3 ± 0.8 vs. 3.3 ± 0.2, p = 0.002).
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Figure 4. Immunohistochemistry depicting the co-localization of DAPI, eGFP, and the autophagy-related markers (LC3,
p62, or LAMP-1) in the spinal segment of L4–6 of MaFIA mice in the absence (crush control) and presence of ADSC-F-exo
treatment. * Indicates a significant change (p < 0.05) when compared to those in the crush control (n = 6). The error bar
represents the standard error of mean.

2.4. Exosomal Protein Content

An iTRAQ-based quantitative proteomic analysis was applied to analyze the expres-
sion of exosomal proteins in the ADSC-F-exo samples (n = 4). Of the 1306 identified
proteins, there were 22 abundant exosomal proteins that had at least 1.5-fold upregulation
of cytoplasmic actin protein in all samples (Table 1). Gene annotation and enrichment anal-
ysis using Metascape showed that the upregulated genes were considerably enriched in the
top 15 pathways (Table 2), with the top five pathways involved in protein methylation, dis-
eases associated with growth factor receptors- and second messengers-mediated signaling,
supramolecular fiber organization, platelet degranulation, and glycolysis in senescence.
Only one activated transcription factor, i.e., hypoxia-inducible factor 1 alpha (HIF1-α)
was detected by transcriptional regulatory relationships unraveled by sentence-based text-
mining (TRRUST, http://www.grnpedia.org/trrust, accessed on 30 May 2021) [42] to be
involved in these identified proteins. According to the biological function of GO terms, two
exosomal proteins, including heat shock protein family A member 8 (HSPA8, GO:1904764
chaperone-mediated autophagy translocation complex disassembly) and eukaryotic trans-
lation elongation factor 1 alpha 1 (EEF1A1, GO:1904714 regulation of chaperone-mediated
autophagy; GO:0061684 chaperone-mediated autophagy) (Supplemental File S1), are in-
volved in autophagy pathways. The PPI network and MCODE components indicate

http://www.grnpedia.org/trrust
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that the exosomal proteins mainly involved two networks for its functions, whereas one
network included PGK1, EEF1A1, EEF2, VCP, PLEC, ENO1, FLNB, FLNA, VIM, TPM4,
TLN1, and ACTN1. Meanwhile, the other network included HSPA5, SERPINH1, VCL, and
SPTBN1 (Figure 5).

Table 1. The abundant exosomal proteins that exhibited at least 1.5-fold upregulation than the cytoplasmic actin protein in
the exosomes secreted by ADSCs following in FK506 treatment.

Accession Description Gene Name Unique Peptides Fold of Abundances

P20152 Vimentin Vim 36 5.10
Q01853 Transitional endoplasmic reticulum ATPase Vcp 48 5.69
Q9QXS1 Plectin Plec 176 4.89
Q7TPR4 Alpha-actinin-1 Actn1 36 3.52
P52480 Pyruvate kinase PKM Pkm 37 3.83

Q8BTM8 Filamin-A Flna 95 3.75
P16546 Spectrin alpha chain, non-erythrocytic 1 Sptan1 111 3.19
Q64727 Vinculin Vcl 59 2.41
Q62261 Spectrin beta chain, non-erythrocytic 1 Sptbn1 82 2.97
P20029 78 kDa glucose-regulated protein Hspa5 35 3.38
P26039 Talin-1 Tln1 90 2.58
P17182 Alpha-enolase Eno1 16 2.45
Q80X90 Filamin-B Flnb 92 2.26
P63017 Heat shock cognate 71 kDa protein Hspa8 26 2.01
P10126 Elongation factor 1-alpha 1 Eef1a1 20 2.22
Q99PL5 Ribosome-binding protein 1 Rrbp1 63 2.13
Q6IRU2 Tropomyosin alpha-4 chain Tpm4 16 2.07
P58252 Elongation factor 2 Eef2 44 1.93
P48678 Prelamin-A/C Lmna 34 2.00
P15331 Peripherin Prph 4 1.57
P09411 Phosphoglycerate kinase 1 Pgk1 24 1.87
P19324 Serpin H1 Serpinh1 25 1.67
P60710 Actin, cytoplasmic 1 Actb 9 1.00

Table 2. Top 15 clusters with their representative enriched terms (one per cluster).

GO Description Count % Log10(p) Log10(q)

R-HSA-8876725 Protein methylation 4 20 −9.15 −4.79

R-HSA-5663202 Diseases of signal transduction by growth factor receptors and
second messengers 7 35 −7.90 −3.84

GO:0097435 Supramolecular fiber organization 8 40 −7.65 −3.82
R-HSA-114608 Platelet degranulation 5 25 −7.56 −3.82

WP5049 Glycolysis in senescence 3 15 −7.30 −3.81
GO:0002064 Epithelial cell development 5 25 −6.36 −3.26

R-HSA-111465 Apoptotic cleavage of cellular proteins 3 15 −5.59 −2.74
R-HSA-445355 Smooth Muscle Contraction 3 15 −5.53 −2.68

GO:0051129 Negative regulation of cellular component organization 6 30 −5.01 −2.37
GO:0003012 Muscle system process 5 25 −4.88 −2.29
GO:0045727 Positive regulation of translation 3 15 −3.93 −1.55
GO:0031667 Response to nutrient levels 4 20 −3.52 −1.23
GO:1903827 Regulation of cellular protein localization 4 20 −3.33 −1.07
GO:0071417 Cellular response to organonitrogen compound 4 20 −3.03 −0.79

R-HSA-1474244 Extracellular matrix organization 3 15 −2.92 −0.71

“Count” is the number of genes in the identified protein lists with membership in the given ontology term. “%” is the percentage of all of
the identified protein that are found in the given ontology term (only input genes with at least one ontology term annotation are included
in the calculation). “Log10(p)” is the p-value in log base 10. “Log10(q)” is the multi-test adjusted p-value in log base 10.
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3. Discussion

Overall, our findings indicate that nerve crush injuries significantly induce autophagy
in the dorsal root ganglia and dorsal horn of the spinal segments. Furthermore, topically
sprayed ADSC-F-exo at the crush site significantly reduces the extent of macrophage
autophagy in the spine following nerve crush injury. Proteomic analysis of the content of
ADSC-F-exo reveals that the transcription factor HIF1-α, along with the abundant exosomal
proteins HSPA8 and EEF1A1, may be involved in mediating the autophagy pathway.

The effects of HIF-1α are associated with the activation of autophagy [43]. Previous
studies have shown that HIF-1α leads to the transcription of BCL2 interacting protein 3
(BNIP3), which competes with Bcl-2 and Bcl-XL for interaction with Beclin to induce au-
tophagy [43]. HIF-1α-induced autophagy plays an important role in eliminating damaged
mitochondria and recruiting normal mitochondria [44]. Cells with a lack of HIF expres-
sion exhibit a weakened autophagic response under hypoxic conditions [45]. Importantly,
HIF-1α is a critical transcriptional regulator in regenerating neurons [46]. The expression
of HIF-1α is increased to exhibit a protective effect after a traumatic spinal cord injury [44]
and a traumatic brain injury [47–49]. Following nerve axotomy and compression, ATG5
or NAD+-dependent deacetylase sirtuin-1 (SIRT1) overexpression in spinal motoneurons
stimulates mTOR-independent autophagy to improve motor axonal regeneration [50].

HSPA8 protein (or 70-kDa heat shock cognate, hsc70) is a constitutively expressed
protein that belongs to the heat shock protein 70 (hsp70) chaperone family [51]. HSPA8
is constitutively expressed at high levels in neuronal cell bodies and is enriched in the
mammalian nervous system compared to non-neural tissues [52]. It has been reported
that HSPA8 acted as an intrinsic protector of neural precursor cells and neuroepithelial
cells [53]. It also preserves synaptic function during stress [52], and plays an important
role in combating neurodegenerative diseases [54,55]. HSPA8 interacts with Tau, an intrin-
sically disordered protein that is involved in the stabilization of the axonal microtubules
in an aggregated form and drives its clearance by the chaperone-mediated autophagy
pathway [55]. An exogenous supply of HSPA8 can reduce the subsequent loss of neurons
by apoptosis following a nerve injury [56] and protect the motoneurons from stress [57].

As one of the most abundant translational factors, EEF1A is a GTP-binding protein
that is responsible for the delivery of aminoacylated tRNAs to the ribosome to increase
the size of nascent polypeptide chains [58]. EEF1A1 is also known to directly bind both
pre-existing and newly synthesized defective polypeptides released from ribosomes to
generate a signal that induces aggresome formation [59,60], which is initiated upon pro-
teasome failure, and facilitates autophagic clearance of protein aggregates to protect cells
from proteotoxicity [59]. EEF1A1 plays a critical role in maintaining long-term synaptic
plasticity. Dysregulation of EEF1A1 is involved in the molecular mechanisms behind neu-
rodegenerative diseases, which feature the presence of misfolded polypeptide-containing
intracellular inclusion bodies [61,62]. The decreased protein level of EEF1A1 distinguishes
autophagy from cell senescence [63]. Moreover, it has been proven that exogenous EEF1A1
expression inhibits caspase-independent cell death [64].

In this study, the PPI network and MCODE components of the 22 identified abundant
exosomal proteins of ADSC-F-exo disclosed that mainly two networks were involved in the
functions of exosomes, including PGK1, EEF1A1, EEF2, VCP, PLEC, ENO1, FLNB, FLNA,
VIM, TPM4, TLN1, and ACTN1; the other network included HSPA5, SERPINH1, VCL, and
SPTBN1. Notably, HSPA8 was not included in either network. It is, therefore, reasonable to
suggest that the ADSC-F-exo would exhibit some currently under-explored functions other
than the autophagy pathways in the treatment of a nerve crush injury. As not all functions
of the ADSC-F-exo could be detected in this study, an important limitation should be noted.
From this perspective, the exosomal contents may synergistically affect the target cells [65].

The results of this study provide evidence supporting that the exosomes secreted
by ADSCs following FK506 treatment reduced autophagy in the spinal segments after
nerve crush injury, thus shedding light on the new potential therapeutic application in
the regulation of inflammation and neuropathic pain after nerve crush injury. However,
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before the clinical trial, more studies should be performed to elucidate the mechanism
behind. Other limitations of this study should also be acknowledged. First, the autophagy
is upregulated to limit the effects of homeostasis perturbation and often plays a protective
function in response to cell injury [66]. Despite this, the induction of autophagy may not
only generate a hostile microenvironment [67] but also be beneficial in coping with the stress
in some neurodegenerative diseases [68]. The role of induced autophagy in macrophages
in the milieu surrounding the innervated neurons during peripheral nerve injury remains
unexplored in great detail. Second, this study did not discriminate the occurrence of
autophagy in a resident or invaded macrophages following a nerve crush injury. As these
two types of macrophages have distinct functions in the spine, the detailed information on
autophagy for these two types of macrophages has to be further explored. Third, in this
study, the autophagy of macrophages was mainly assessed by immunohistochemistry study
of the tissue section. However, further studies using mice lacking the specific ligand or
receptor of the autophagy pathway may help in providing a more solid conclusion. Fourth,
the effect of exosomes secreted from the ADSCs following FK506-induced autophagy may
rely on factors other than the protein cargo inside exosomes, such as microRNAs [69] or
long noncoding RNAs [70] and should be considered accordingly. Finally, one can expect
that the eGFP in the MaFIA mice can be expressed not only in macrophages but also in
a small proportion of mice dendritic cells [71]. In turn, it can result in biased outcome
measurements. Due to this, a deep exploration of the mechanisms underlying the functions
of exosomes secreted by ADSCs under various milieu remains unexplored and urgent.

4. Materials and Methods
4.1. Cultured Mouse ADSCs

ADSCs were purchased from iXCells Biotechnologies (MADSC-bf, San Diego, CA,
USA). The ADSCs were isolated from the interscapular brown fat tissues of C57BL/6
mice. At the beginning of the experiments, 1 × 104 ADSCs were expanded for subsequent
passages using ADSC basal medium (Cat # MD-0003) according to the manufacturer’s
instructions provided by iXcells Biotechnologies. The cells previously tested positive for
stem cell markers CD105, CD73, CD90, and CD44, and negative for CD3, CD11b, CD25,
CD45, and CD106 by flow cytometric analysis.

4.2. Exosome Isolation

The exosomes (defined as ADSC-F-exo) secreted by ADSCs following treatment with
100 µg/mL FK506 (InvivoGen, Hong Kong, China) in dimethyl sulfoxide (DMSO) for
24 h were isolated using ExoQuick-TCTM exosome precipitation solution (EXOTC50A-1,
System Biosciences), according to the manufacturer’s instructions. With the concentration
of 1 × 109 to 1 × 1010 exosomes in 100 uL of the culture media, the media were centrifuged
at 3000× g for 15 min, and the supernatant was transferred into a new tube, followed by
the addition of equal volumes of the ExoQuick-TCTM solution. After mixing, supernatants
were refrigerated at 4 ◦C overnight for at least 12 h and then centrifuged at 1500× g for
30 min. The supernatant was discarded, and the pellet was resuspended in PBS and used
for further experiments.

4.3. Characterization of Exosomes

Characterization of isolated exosomes was based on the Guidelines of the Minimal
Information for Studies of Extracellular Vesicles (MISEV2018) [72]. Expression of exosomal
surface markers on isolated 30 ug exosomes was detected by Western blotting in triplicate,
with the culture medium used as a control. For exosomes, total protein was separated
by polyacrylamide gel electrophoresis and electrotransferred to polyvinylidene fluoride
(PVDF) membranes (Millipore, Billerica, MA, USA). The membranes were blocked with
5% skim milk in PBS/Tween-20 and incubated with primary antibodies against CD9 (cat #
ab92726, 1:1000; Abcam, Cambridge, MA, USA), CD81 (cat # ab109201, 1:1000; Abcam),
Flotillin-1 (cat # 18634, 1:1000; Cell Signaling Technology, Danvers, MA, USA), TSG101 (cat
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# ab30871, 1:1000; Abcam), and the negative control protein calnexin (cat # ab22595, 1:1000;
Abcam) at 4 ◦C overnight. Then, membranes were washed with 0.1% TBS/Tween 20 for
10 min, three times at room temperature, and incubated with horseradish peroxidase (HRP)-
conjugated secondary antibodies (cat # NA931; GE Healthcare Amersham, Piscataway,
NJ, USA) for 2 h at 37 ◦C, and quantified using a FluorChem SP imaging system (Alpha
Innotech, San Leandro, CA, USA).

For TEM analyses, exosomes (10 µL) were fixed with 2.5% glutaraldehyde for 2 h
and added to a 200 mesh Formvar stabilized with carbon. The grids were stained with 2%
uranyl acetate for 1 h. The samples were analyzed using a transmission electron microscope
(HT-7700; Hitachi, Tokyo, Japan) at 100 kV.

The size and concentration of exosomes were analyzed using a Malvern NanoSight
NS300 nano tracking analyzer (NanoSight, Amesbury, UK), and the samples were injected
into the sample chamber with sterile syringes (BD Discardit II, Franklin Lakes, NJ, USA)
until the liquid reached the tip of the nozzle. The size distribution and concentration of
exosomes in the liquid suspension were measured according to the properties of both
light scattering and Brownian motion. All measurements of particle movement were
detected by a 488 nm laser at 20–100 particles/frame and 30 frames per second for 1 min at
room temperature. The software used for capturing and analyzing the data was NTA 3.1
Build 3.1.54.

4.4. Animal Nerve Crush Surgery

CSF-1R–GFP+ macrophage Fas-induced apoptosis (MaFIA) transgenic mice were
purchased from The Jackson Laboratory (stock #005070, JAX, Bar Harbor, ME, USA). The
MaFIA transgenic mouse model was developed by placing genes encoding enhanced
eGFP and mutant human FK506-binding protein (FKBP)–Fas suicide construct under the
macrophage-specific mouse colony stimulating factor 1 receptor promoter (Csf1r) [73].
Macrophages expressing eGFP can be efficiently detected by fluorescence microscopy [71].
The nerve crush injury model was established in 8–12-week-old male mice, weighing
between 20 and 30 g, and performed as in our previous reports [74,75]. Anesthesia was
induced by intramuscular injection of 25 mg/kg ketamine and 50 mg/kg xylazine. Then,
the right sciatic nerve of the mouse was exposed at the mid-thigh level and crushed with
No. 5 Jeweler forceps, using consistent pressure for 30 s.

The DRG and spinal segments of L4–6 of MaFIA transgenic mice receiving the right
sciatic nerve were harvested at 1 d, 3 d, and 7 d (n = 6 for each group of mice) for immuno-
histochemical analysis to detect autophagy in macrophages. DRG and spinal segments
from additional MaFIA transgenic mice that received surgery were harvested as naïve
controls (n = 6).

For the ADSC-F-exo treatment groups, exosomes (100 µg) resuspended in 100 µL
PBS were sprayed around the crushed nerve segment using a 30-gauge syringe needle
(Becton-Dickinson & Co, Franklin Lakes, NJ, USA). Mice with crushed nerve segments
sprayed with 100 µL PBS were used as the crush control. Three days after the crush injury
(the day was decided according to the expression data in the DRG and spinal segments
from the MaFIA mouse model with nerve crush injury), the spinal segment of L4–6 from
the right side of mice of the ADSC-F-exo treatment groups and crush control group were
dissected. The harvested spinal segments were used for immunohistochemistry and for
the detection of neurotrophins. All housing conditions, surgical procedures, analgesia,
and assessments were performed in an AAALAC-accredited specific pathogen-free facility,
following national and institutional guidelines. The animal protocols were approved by
the IACUC of Kaohsiung Chang Gung Memorial Hospital, Taiwan.

4.5. Immunohistochemistry of Autophagy-Related Markers in Spinal Segment

For immunohistochemistry, sections of DRG and spinal segment of L4–6 at 8 microm-
eter thickness were used. The frozen sections were washed with PBS-Tween 20. The slices
were blocked with PBS containing 1% Triton X-100 and 5% bovine serum albumin. The cells



Int. J. Mol. Sci. 2021, 22, 9628 13 of 17

were, then, incubated with the indicated primary antibodies, including LC3A/B (Abcam-
ab128025), p62 (Abcam-ab91526), and LAMP-1 (Abcam-ab25245), in a moisture chamber
at 4 ◦C overnight. After washing, the sections were incubated with a secondary antibody
(Biolegend, San Diego, CA, USA) for 1 h at room temperature. In combination with the
staining with 4′,6-diamidino-2-phenylindole (DAPI mounting medium, VECTOR-H1200),
we analyzed the localization of these autophagy-related markers in cells expressing eGFP
using a confocal microscope (FLUOVIEW FV10i, Olympus, Tokyo, Japan). Quantification
of the number of cells that showed co-localization of DAPI, eGFP, and the autophagy-
related markers (LC3, p62, or LAMP-1) was performed based on 20 randomly selected
fields of the DRG or dorsal horn of spinal segments at 60× magnification and expressed as
an average number of cells per field.

4.6. Extraction of Exosomal Protein and iTRAQ Labeling

Exosomal proteins of ADSC-F-exo were purified using T-PER Tissue Protein Extrac-
tion Reagent (78510, Thermo Fisher Scientific, Waltham, MA, USA). Protein samples were
desalted using Amicon® Ultra-15 (Millipore, Burlington, MA, USA) and quantified us-
ing the BCA protein assay (23,225, Thermo Fisher Scientific, Waltham, MA, USA). For
iTRAQ labeling, 25 µg of the protein samples were dried using SpeedVac and resuspended
in the iTRAQ dissolution buffer, which included 0.5 M triethylammonium bicarbonate
(TEAB; pH 8.5). Protein samples were reduced using the iTRAQ reduction buffer (tris-2-
carboxyethyl phosphine, TCEP) at 60 ◦C for 30 min and then alkylated in the dark using
iodoacetamide at 37 ◦C for 30 min. After protein digestion using sequencing-grade modi-
fied trypsin (V511A, Promega, Madison, WI, USA), the samples were dried using SpeedVac.
Next, the peptides were reconstituted in the iTRAQ dissolution buffer and labeled using
iTRAQ labeling reagents, according to the manufacturer’s instructions (Applied Biosystems
Inc., Foster City, CA, USA).

4.7. Two-Dimensional Liquid Chromatography with Tandem Mass Spectrometry (2D LC-MS/MS)

The iTRAQ-labeled samples were analyzed using a Q ExactiveTM HF mass spectrome-
ter (Thermo Fisher Scientific) coupled with an UltiMate™ 3000 RSLCnano HPLC System
(Thermo Fisher Scientific). The iTRAQ-labeled peptides were pooled and desalted using
Sep-Pak C18 cartridges (Waters, Milford, MA, USA). The desalted peptides were dried
using SpeedVac and resuspended in 0.5% trifluoroacetic acid. The peptide mixtures were
loaded onto an EASY-Spray™ C18 column (Thermo Fisher Scientific) and separated using
a 0.1% formic acid solution with varying amounts of acetonitrile (5–80%). The top 15 most
abundant precursor ions within the 375–1400 m/z scan range were dynamically selected
for further fragmentation in high collision dissociation (HCD) mode, with the normalized
collision energy set to 33 ± 1%. In the full MS scan, the resolution was set to 60,000 at m/z
200, AGC target to 3 × 10-6, and maximum injection time to 50 ms. For the MS/MS scan,
the resolution was set to 15,000, AGC target to 5 × 10-4, and the maximum injection time
was set to 100 ms. The release of the dynamic exclusion of selected precursor ions was set
to 20 s.

4.8. Database Search and Protein Quantification

Raw MS data were examined using the Mascot search algorithm (version 2.5, Matrix
Science, Chicago, IL, USA) against the Swiss-Prot human protein database using Proteome
Discoverer (version 2.1, Thermo Fisher Scientific) software. For protein identification,
the search parameters were set as follows: carbamidomethylation at cysteine as the fixed
modification, oxidation at methionine, acetylation at protein N-terminus, iTRAQ-labeled
at peptide N-terminus, lysine residue as dynamic modifications, 10 ppm and 0.02 Da for
MS/MS tolerance, and maximum missing cleavage sites with two. These exosomal proteins
with at least 1.5-fold upregulation of the actin protein inside the exosome in quadruplicate
samples were identified as abundant exosomal proteins.
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4.9. Gene Annotation, Pathway and Process Enrichment Analysis, and Protein-Protein Interaction
Enrichment Analysis

Gene annotation and enrichment analysis of the pathway, process, and protein-protein
interaction (PPI) were carried out using Metascape (http://metascape.org, accessed on
30 May 2021) [76], an integrated website of a broad set of current biological databases,
and the application of a robust analytical pipeline to produce readily interpretable results.
In Metascape, the analytical conditions were as follows: minimal overlap = 3, minimal
enrichment = 1.5, and threshold of p = 0.01. In Metascape, enrichment analysis of PPI was
carried out using the following databases: STRING [77], BioGrid [78], OmniPath [79], and
InWeb_IM [80], using the Molecular Complex Detection (MCODE) algorithm [81], which is
applied to find clusters with highly interconnected regions in a network. In Metascape, the
major trans-acting factors in transcriptional regulation of these identified exosomal proteins
were detected by TRRUST [42], containing 6552 transcription factor target interactions for
828 mouse transcription factors, were used for identification.

4.10. Statistical Analysis

All results are provided as a mean ± standard error. An overall analysis of the
differences between group means was performed using one-way analysis of variance
(ANOVA), followed by a post hoc Fisher’s least significant difference test. Statistical
significance was set at p < 0.05.

5. Conclusions

This study reported that locally applied ADSC-F-exo significantly reduced autophagy
of macrophages in the spinal segments after nerve crush injury. Proteomic analysis of
ADSC-exo showed that HSPA8 and EEF1A1 are potential candidates involved in the
exosome-mediated reduction in autophagy.
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