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Summary

Evidence is increasing that disturbances in the gut microbiome may play a significant role

in the etiology of obesity and type 2 diabetes. The short chain fatty acid butyrate, a

major end product of the bacterial fermentation of indigestible carbohydrates, is reputed

to have anti-inflammatory properties and positive effects on body weight control and

insulin sensitivity. However, whether butyrate has therapeutic potential for the treat-

ment and prevention of obesity and obesity-related complications remains to be eluci-

dated. Overall, animal studies strongly indicate that butyrate administered via various

routes (e.g., orally) positively affects adipose tissue metabolism and functioning, energy

and substrate metabolism, systemic and tissue-specific inflammation, and insulin sensi-

tivity and body weight control. A limited number of human studies demonstrated inter-

individual differences in clinical effectiveness suggesting that outcomes may depend on

the metabolic, microbial, and lifestyle-related characteristics of the target population.

Hence, despite abundant evidence from animal data, support of human data is urgently

required for the implementation of evidence-based oral and gut-derived butyrate inter-

ventions. To increase the efficacy of butyrate-focused interventions, future research

should investigate which factors impact treatment outcomes including baseline gut

microbial activity and functionality, thereby optimizing targeted-interventions and identi-

fying individuals that merit most from such interventions.
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1 | INTRODUCTION

The prevalence of obesity has been on the rise for the last 50 years

and is currently still rising at an alarming rate.1,2 Evidence is accumu-

lating that hints towards a relationship between the gut microbiome

and the development of obesity and obesity-associated complications

such as type 2 diabetes (T2DM) and nonalcoholic fatty liver disease
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(NAFLD).3,4 Consequently, therapeutic strategies to modulate the

microbiome towards a more favorable profile have gained more inter-

est in recent years.5 The short chain fatty acids (SCFA) that are pro-

duced from the microbial fermentation of indigestible carbohydrates

(e.g., dietary fibers), often referred to as saccharolytic fermentation,

can mediate diverse local as well as peripheral effects. These metabo-

lites are put forward as the gateway through which the gut micro-

biome is able to affect host physiology and metabolism.6 The main

three SCFA are butyrate, propionate, and acetate and are present in

an estimated respective molar ratio of 20:20:60 in the colon and

4:5:91 in the systemic circulation.7,8 All three SCFA have been recog-

nized for their potential beneficial effects on metabolic health.6 Ace-

tate, for instance, may have beneficial metabolic effects in context of

obesity and glucose homeostasis.9 Although acetate is present at the

highest concentration in intestine as well as systemic circulation, it is

butyrate that has been under vigorous scientific scrutiny. Despite the

extensive splanchnic extraction of butyrate, increased systemic buty-

rate concentrations in response to dietary fibers have been reported

in healthy individuals10,11 as well as individuals with metabolic syn-

drome (MetS).12 Its presumed anti-inflammatory and weight-reducing

properties coined the idea that butyrate may act as a helpful tool for

obesity control.13

However, the exact role of butyrate in the etiology of obesity

remains controversial, since individuals with obesity appear to have

higher fecal butyrate concentrations compared with their lean coun-

terparts, even when a similar diet is consumed14,15 and this differ-

ence is attenuated upon weight loss.16,17 These observations have

led some researchers to believe that butyrate may contribute to the

obesogenic phenotype, for example, because microbial energy har-

vest from fibers is more efficient or because butyrate is used for de

novo lipid synthesis.18,19 Nevertheless, fecal concentrations may not

accurately represent physiological concentrations because <10% of

the total butyrate production is excreted in the feces. Mice studies

suggest that the obese microbiota actually has a reduced capacity

to ferment fibers20 and produce butyrate.21 Moreover, cross-

sectional data indicate an inverse association between fasting

plasma butyrate and body mass index (BMI), pointing towards

reduced circulating butyrate levels in individuals with obesity.22 The

higher fecal butyrate levels observed in individuals with obesity may

therefore merely reflect a difference in absorption or microbial utili-

zation and not necessarily a higher production. Individuals with obe-

sity or a disturbed glucose homeostasis actually seem to have a

decreased abundance of butyrate-producing taxa and a decreased

expression of genes involved in butyrate production in the gut

microbiome,23–26 supporting a significant role for butyrate in energy

and glucose homeostasis.

Whether the beneficial properties of butyrate can be translated

to clinical practice and implemented to treat metabolic disturbances

in humans still needs to be elucidated. Increasing colonic butyrate

levels can be accomplished by various intervention strategies such as

prebiotic and probiotic supplementation or transplantation of the

intestinal microbiota.13,27 Butyrate can also be administered as an

end product itself either orally, intravenously, or rectally.28 These

interventions may mediate differential effects considering it may

reach different metabolically active organs. To illustrate, orally admin-

istered free butyrate is taken up almost entirely by enterocytes in the

proximal intestine and may not reach the colon.29 Recently, an excel-

lent review by Coppola et al.30 already highlighted the potential pro-

tective role of butyrate in obesity and obesity-related disorders,

predominantly by presenting animal data. Nevertheless, to exploit

butyrate as a therapeutic intervention for obesity and disturbed glu-

cose homeostasis in humans, it is crucial to characterize the condi-

tions in which butyrate is (un)able to convey beneficial metabolic

effects. Therefore, this review aims to assess the ability of butyrate

to alleviate obesity-related chronic low-grade inflammation and

impaired energy and substrate metabolism by integrating animal data

with available human data to provide a comprehensive overview of

the plethora of butyrate data that is out there. We summarize avail-

able literature on butyrate including its luminal production, absorp-

tion, and metabolism and discuss a mechanistic underpinning of its

metabolic effects via interorgan cross talk. Thereafter, we discuss

existing therapeutic strategies that aim to increase butyrate levels in

the digestive system and/or the circulation and the current evidence

regarding the putative effect of butyrate on body weight control and

insulin sensitivity in humans. Lastly, this review intends to disentangle

scientific inconsistencies and differences in the efficacy of human

intervention trials to identify the hurdles that still need to be over-

come in order to advance butyrate-focused intervention aimed at

improving metabolic health.

2 | BUTYRATE: DIETARY SOURCES,
LUMINAL PRODUCTION, AND KINETICS

2.1 | Dietary sources of butyrate

Butyrate, a four carbon SCFA, is mainly formed from microbial sac-

charolytic fermentation in the colon and, to a minor extent, can also

be produced from the fermentation of residual peptides or proteins

(also referred to as proteolytic fermentation).31 Dietary fiber intake

can lead to butyrate production in multiple ways: butyrogenic fibers

increase butyrate production by acting as a substrate for bacterial fer-

mentation, whereas bifidogenic fibers increase the abundance of bifi-

dobacteria, which cannot produce butyrate themselves but increase

butyrate production indirectly.32 Examples of dietary fibers that stim-

ulate butyrate production include resistant starch and nonstarch poly-

saccharides such as arabinoxylans, β-glucans, oligofructose, and

inulin.33–36 Resistant starch is naturally present in among others

legumes, unripe bananas, and cooled-down cooked potatoes but can

also be added or fortified into bread and cereals.34,37 Arabinoxylans

are mainly found in wheat-based products such a breakfast cereals

and bread.38 Some of these breakfast cereals such as oats and barley

may also contain β-glucans, which is also naturally present in edible

mushrooms and seaweed.39 Inulin can be found in a diverse set of

plants and vegetables including Jerusalem artichoke, onion, and chic-

ory root and is used as a fat replacer in many food products and,
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similar to oligofructose, can serve as replacement for sugar.35 Studies

have shown that specifically resistant starch is potent in stimulating

butyrate production and yields more butyrate compared with non-

starch polysaccharides.40,41

Combining various fibers may provide a more optimal substrate

or microbial environment for butyrate production than each fiber sep-

arately. To illustrate, a mixture of guar gum (propiogenic) and pectin

(acetogenic) enhanced butyrate production in the caecum of mice

after 6 weeks of supplementation.42 In general, the extent and rate of

SCFA production from fibers depends on its fermentability, which can

be influenced by numerous factors including: degree of polymeriza-

tion, variations in esterification and saccharide linkage, the prepara-

tion method e.g., cooking and cooling,37 whether it is provided as a

concentrate or in a whole-grain matrix,33 and manufacturing methods

e.g., entrapping the starch in microspheres.43,44 Next to stimulating

butyrate production, many of these fibers also influence other intesti-

nal processes including alterations in intraluminal pH, gastric empty-

ing, fecal bulking, and the production of bile acids along with systemic

effects such as the feeling of fullness and direct effects on the

immune system and glycaemic control.45 Although butyrogenic fibers

may predominantly increase butyrate levels in the intestine, it usually

also promote the production of other SCFA. Isotope tracing studies

have revealed that inulin consumption, for example, significantly

increased carbon enrichment of all three SCFA in the circulation in

healthy individuals46 as well as individuals that were overweight or

obese,47 although enrichment was highest for circulating butyrate.

Hence, it is important to bear in mind that the beneficial metabolic

effects of these fibers cannot be attributed to butyrate alone.48

Moreover, dietary intake and production of other SCFA can even

potentiate the production and effect of butyrate itself. Functional

metagenomic analysis showed an increase in butyrate production

after resistant starch type 2 intervention in humans was predomi-

nantly dictated by the presence of Ruminococcus bromii, which pro-

duces the acetate necessary for butyrate production (as described in

the following section).49 Furthermore, esterifying exogenous acetate

to resistant starch, thereby delivering acetate to the colon, increased

fecal and systemic butyrate concentrations and augmented weight

loss and insulin sensitivity in obese mice compared with resistant

starch alone.50

Butyric acid is also present in several food products that contain

bovine milk fat, such as butter and cheese, in which the SCFA is ester-

ified at the α (sn-3) position.51,52 This binding positioning in milk tria-

cylglycerols strongly influences its catabolic rate since pancreatic

lipase is able to cleave triacylglycerols at this position resulting in rapid

free fatty acids (FFA) release in the small intestine.53,54 Butyric acid

can also be found in several triglyceride mixtures belonging to the

short- and long-chain acyl triglyceride molecule family. These food

additives, also referred to as salatrims, are commonly used as a fat cal-

orie replacer. In these mixtures, butyric acid is interesterified with a

long chain fatty acid moiety such as stearic acid.55 In human clinical

studies as well as rodent models for obesity and diabetes, butyrate is

mainly supplied orally, in the form of sodium butyrate. Sodium buty-

rate is well-known for its unpalatable flavor and odor and, since it

does not require cleavage by lipase, is rapidly taken up in the upper

gastrointestinal tract.56 At present time, novel strategies exist that

improve the edibility and palatability of butyrate and/or increase the

absorption and/or release of butyrate in the digestive tract. To illus-

trate, the use of a special coating made from hydroxy propyl methyl

cellulose and Shellac on sodium butyrate tablets can delay its release

in the intestinal tract by approximately 2 to 3 h, thereby delivering the

product more distally.57 Furthermore, esterifying butyrate to a dietary

fiber such as butyrylated starch prevents digestion in the upper part

of the gastrointestinal tract and has shown to increase colonic buty-

rate concentrations in individuals with low58 and normal59 fecal buty-

rate concentrations. Tributyrin, in which butyrate is esterified to

triglycerides, and other butyric acid derivatives such as

4-phenylbutyric acid have an increased palatability and bioavailability

compared with butyrate but may induce substantial side-effects and

therefore warrant caution if used in context of improving metabolic

health.60

2.2 | Butyrate biosynthesis

Two key bacterial strains are inferred with a capacity for butyrate

production: Faecalibacterium prausnitzii (Clostridial cluster IV) and

Eubacterium rectale/Roseburia spp (Clostridial cluster XIVa), both

gram-positive anaerobic bacteria belonging to the Firmicute family.61

Nevertheless, butyrate-producing bacteria constitute a functional

group rather than a specific phylogenetic family, as many other

butyrate-producing strains have been identified among various clos-

tridial clusters.18,61 The mildly acidic intestinal milieu in the proximal

colon appears to promote butyrate-producing bacteria, which thrive

at a lower luminal pH, and thereby outcompete gram-negative

carbohydrate-utilizing bacteria from the Bacteroides species.62,63

Recently, an in vitro study using human fecal samples emphasized

how colonic acidity can affect butyrate production. A pH >7.5

reduced the abundance of butyrate-producing taxa, subsequently

decreasing butyrate production, even when pectin was provided as a

substrate.64

Butyrate can be produced in the gut from hexose sugars by the

condensation of by two acetyl coenzyme A (acetyl-CoA) molecules.

In postprandial conditions, the Embden–Meyerhof–Parnas pathway

breaks down the hexose sugars derived from complex indigestible

polysaccharides to produce phosphoenolpyruvate.6 Phosphoenolpyr-

uvate acts as a precursor for acetyl-CoA, which, by a succession of

four rapid reactions, gets converted to butyryl-CoA. The final step,

transforming butyryl-CoA into butyrate, can be performed by two

different metabolic pathways, using different terminal enzymes:

either phosphotransbutyrylase and butyrate-kinase via butyryl-

phosphate or butyryl-CoA:acetate CoA-transferase (see Figure 1).

The latter uses acetate as a cosubstrate and appears to be the most

common pathway.65,66 Metagenomic data indicate that these two

acetyl-CoA pathways together account for approximately 80% of

total butyrate production, followed by the lysine pathway (11%). Glu-

tarate and 4-aminobutyrate, although only to a minor extent, can
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also serve as substrates for butyrate synthesis.31 Some strains includ-

ing Eubacterium hallii and Anaerostipes spp have the ability to convert

lactate or acetate into butyrate. Thus, some dietary fibers induce

butyrogenic effects indirectly by increasing lactate or acetate produc-

tion which in turn can be utilized by other bacteria to synthesize

butyrate, a phenomenon referred to as cross-feeding (see

Figure 2).32,67–69 Furthermore, a study comparing two in vitro gut

models, one with both luminal and mucosal microbial niches and one

without the mucosal niche, showed that the presence of a mucosal

environment induced a shift from acetate towards butyrate produc-

tion.70 This shift may be explained by certain butyrate-producing

strains that only adhere to the mucosal layer or because mucins, via

cross-feeding pathways, can act as a substrate for mucin-converting

microbes thereby generating acetate and lactate, which thereafter

can be converted to butyrate.

2.3 | Butyrate concentration in the human gut

The SCFA concentration along the gastrointestinal tract has two gra-

dients: one from the proximal towards the distal colon and another

from the base towards the top of the colonic crypt.71 Several studies

have estimated that, on a daily basis, theoretically, 100–400 mmol

SCFA can be produced from the consumption of 10 g of fiber.72,73

Butyrate accounts for approximately 20% of the total SCFA produc-

tion.74 The proximal colon, in particular the cecum, has the highest

SCFA concentrations since the availability of substrates for saccharo-

lytic fermentation is the highest here. As the availability of carbohy-

drate based-substrates decreases towards the distal colon, SCFA

concentrations decline and the amount of SCFA obtained from pro-

teolytic fermentation increases. Proteolytic fermentation yields other

by-products besides SCFA including ammonia and branched SCFA

such as isobutyrate and isovalerate.75 Hence, even though

isobutyrate is an isoform of butyrate, it is formed from other sub-

strates, mainly valine, by different microbial pathways and therefore

may have distinct metabolic effects from butyrate. Isobutyrate is less

readily absorbed and metabolized compared with butyrate but may

act as an alternative energy source when butyrate levels are low or

when butyrate oxidation is abberant.76 Little is known about the

effect of branched SCFA on host health, but increased proteolytic

fermentation has mostly been associated with detrimental health

effects.77–79

Depending on the location in gastrointestinal tract and individual

differences in dietary intake, gut transit time, and gut microbiome

composition, colonic butyrate concentrations may vary, but it is esti-

mated to range between 10 and 20 mmol per kg intestinal con-

tent.80,81 Yet, lower estimations (1–10 mmol/L of intestinal content)

have also been reported.82 Interestingly, recent work in animals and

humans suggests that SCFA concentrations may fluctuate over the

time span of a day.83,84 Particularly later on the day, butyrate concen-

trations decreased as a result of a slight reduction in the abundance of

several butyrate-producing strains. These butyrate oscillations may be

explained by eating behavior and meal timing, but other factors, inde-

pendent of food intake, such as the level of circadian hormones may

also play a role.83,84 Interestingly, high fat diet (HFD)-fed mice did not

exhibit these diurnal butyrate fluctuation patterns, which indicates

that microbial disturbances associated with the consumption of a

westernized diet may disturb this circadian cycle of microbial butyrate

production.84

2.4 | Butyrate absorption, metabolism,
distribution, and excretion

Butyrate absorption can occur in the small and large intestine via dif-

ferent routes (see Figure 2). In lipid-soluble protonated form, butyrate

F IGURE 1 The microbial synthesis of
butyrate in the colonic lumen. First, dietary
fibers (carbohydrates) are broken down to
monosaccharides and, subsequently,
phosphoenolpyruvate through the Embden–
Meyerhof–Parnas pathway. Thereafter,
acetyl-CoA is produced via pyruvate, which
eventually gets converted to butyryl-CoA.
Butyryl-CoA can be converted to butyrate

through two pathways. The most common
one uses acetate as a cosubstrate to generate
butyrate and an acetyl-CoA molecule and the
other, less common, pathway, produces
butyrate via butyrate-phosphate. Both
pathways are regulated by different enzymes
(indicated in red in the figure). Created with
BioRender.com

4 of 27 van DEUREN ET AL.

http://BioRender.com


is able to cross the apical membrane of the lumen through passive dif-

fusion. However, since butyrate is a weak acid (pK �4.8) and the

colonic pH is between 5.5 and 6.7, >90% is present in ionized form

and needs to be absorbed via an active transporter system.85,86 Two

main proteins involved in the transportation of anionic butyrate have

been identified, both belonging to the monocarboxylate transporter

family: the sodium-coupled monocarboxylate transporter 1 (SMCT-

1)87–89 and monocarboxylate transporter 1 (MCT-1).90,91 SMCT-1 is

put forward as the primary butyrate transporter. As the name implies,

its transport depends on the sodium gradient,87–89 whereas MCT-1

transport is coupled to the proton gradient.90,91 Butyrate can also be

absorbed via a carrier-mediated counter-transport system that

exchanges butyrate for bicarbonate, but, so far, the exact proteins

responsible for this exchange remain unidentified.92,93 Butyrate

absorption may vary along the gastrointestinal tract as the expression

of both transporters appears to increase from the jejunum towards

the distal colon in the human intestine.94,95 Sodium-coupled butyrate

transport probably plays a larger role in the distal colon as the

SMCT-1 Km is considerably lower (�50 μM) than the MCT-1 Km (2.4–

2.8 mM). The latter is therefore more active in the proximal colon

where butyrate concentrations are high.85 Interestingly, evidence sug-

gests that inflammation may decrease butyrate-mediated uptake as

well as the expression of both transporters.95–97 Thus, one may spec-

ulate that the inflammatory state associated with obesity may

downregulate transporter-mediated butyrate absorption. Limited liter-

ature is available on SCFA transport on the basolateral side of the

membrane. Both SCFA-bicarbonate exchangers and SCFA-cation

symport have been reported as plausible basolateral transport mecha-

nisms. The kinetics of the SCFA-bicarbonate antiporter on the baso-

lateral and apical side differ, implying that the transport is managed by

two different proteins.93,98

After absorption, butyrate can be transported to the mitochondria

for subsequent β-oxidation. Here, butyrate is first converted back into

butyryl-CoA, which eventually yields two acetyl-CoA molecules.99 In

the initial step of the tricarboxylic acid cycle, acetyl-CoA is converted

to citrate which can by fully oxidized to generate adenosine triphos-

phate (ATP) or is shuttled out of the mitochondria and utilized for de

novo lipogenesis.71 Because butyrate is the main oxidative substrate

for colonocytes, accounting for more than 70% of their total energy

demand,100,101 concentrations in the portal vein are reduced by

approximately 1000-fold compared with colonic concentrations.8

Sudden death autopsies of six victims performed in the late 1980s

revealed that butyrate concentrations in portal vein are approximately

29 μmol/L on average and decrease even further to 12 and 4 μmol/L

in the hepatic and peripheral bloodstream, respectively.8 A more

recent study determined SCFA flux in patients undergoing abdominal

surgery and found a butyrate concentration of 30.1, 12, and

7.5 μmol/L in the portal vein, hepatic vein, and radial artery,

F IGURE 2 The production of butyrate from indigestible carbohydrates and its mechanism of action in the colon. Hexose sugars derived from
complex indigestible carbohydrates are broken by specific bacterial strains and either produce butyrate directly (e.g., Faecalibacterium prausnitzii,
Eubacterium Rectale, and Roseburia intestinalis) or via cross-feeding pathways in which lactate or acetate is converted to butyrate. Butyrate is then
absorbed into intestinal cells, predominantly by active transport systems including SMCT-1 and MCT-1. Thereafter, butyrate is either oxidized in
the TCA cycle to generate ATP or cytosolic acetyl-CoA is generated, which can be utilized for lipid synthesis or can activate HATs thereby
influencing gene expression whereas intracellular butyrate can directly inhibit HDACs. 5-HT, serotonin; acetyl-CoA, acetyl coenzyme A; ATP,
adenosine triphosphate; GLP-1, glucagon-like peptide 1; GPR109A, G protein-coupled receptor 109A; GPR41, G protein-coupled receptor 41;
GPR43, G protein-coupled receptor 43; HATs, histone acetylases; HDACs, histone deacetylases; MCT-1, monocarboxylate transporter 1; PYY,
peptide YY; SMCT-1, sodium-coupled monocarboxylate transporter 1; TCA, tricarboxylic acid cycle. Created with BioRender.com
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respectively.102 Butyrate release appears highest in the distal intestine

as butyrate concentrations were reported to be three times higher in

the inferior mesenteric vein (approximately 62 μmol/L), which drains

blood from the descending colon, sigmoid colon, and rectum, com-

pared with the veins draining from proximal intestine (approximately

22 μmol/L).103 Another study showed that systemic butyrate concen-

trations rapidly declined after intravenous infusion and returned to

initial values 1 h after administration, highlighting its short half-life.104

More than 95% of butyrate is absorbed by the intestinal tract105 and

for a large part is metabolized by enterocyte and colonocyte and thus

excreted in expired breath in the form of CO2.
106 The remaining part

(�5%) is excreted in the feces,107 and a negligible amount (<0.05%)

can be traced back in urine.104,106

2.5 | Mechanism of action: HDAC inhibition and
SCFA receptors

Many of the effects of butyrate are mediated through the activation

of two intracellular pathways18 (see Figure 2). Firstly, butyrate is a his-

tone deacetylase inhibitor (HDACi), specifically suppressing the activ-

ity of class I and II HDACs.108,109 A HDACi inhibits the removal of

acetyl groups from histones, making DNA more accessible for tran-

scription and thereby increases the expression of downstream target

genes.109 Several in vitro studies have shown that butyrate-mediated

HDAC inhibition may change T-cell polarization and effector function

including a shift from CD4+ naïve cells towards regulatory T-cells110

and a shift in gene expression of Tc17 cells towards a more CD8+

cytotoxic T-cell phenotype.110,111 In this way, butyrate may regulate

cytokine profiles, for example, by increasing the production of

interleukin-10 and interleukin-17 and thereby decreases

inflammation.110–112 Many of the tumor suppressive effects of buty-

rate, extensively reviewed elsewhere,113–116 have also been attrib-

uted to HDAC inhibition.

Secondly, butyrate can bind to receptors belonging to the G

protein-coupled receptor (GPR) family (see Figure 2). All SCFA can

bind to GPR41 and GPR43, but the receptor specificity varies per

SCFA. Butyrate mainly activates GPR41 (ligand potency

GPR41 = propionate = butyrate> acetate), whereas acetate and pro-

pionate prefer binding to GPR43 over butyrate (ligand potency

GPR43 = propionate = acetate>butyrate)117–120 albeit ligand speci-

ficity may be specie-specific and appears different for mice and

humans.121

The expression of GPR41 is widespread, most abundantly in adi-

pose tissue118 and also in peripheral blood mononuclear cells,117

enteroendocrine cells, enterocytes,122 pancreas, spleen, bone marrow,

and lymph nodes.123 Experiments conducted in knockout GPR41 mice

suggest the receptor to be involved in peptide YY (PYY) release, intes-

tinal transit rate, and energy harvest from the diet.124 GPR43 is pre-

dominantly expressed in immune tissues especially on

polymorphonuclear cells such as neutrophils118,119,125 and also in

skeletal muscle tissue, liver,126 white adipose tissue (WAT),127 and on

serotonin-containing mucosal mast cells and PYY-releasing L-

enteroendocrine cells in the intestine.128 Hence, butyrate may stimu-

late intestinal PYY and serotonin release through GRP43 signaling.

These L-enteroendocrine cells simultaneously secrete proglucagon,

which can act as a precursor for glucagon-like peptide 1 (GLP-1) pro-

duction.129 GLP-1 and PYY are gut-derived hormones that influence

insulin secretion and glucose homeostasis, therefore sometimes

referred to as incretins, and also regulate food intake and satiety as

circulating hormones and through innervation of the gut-brain neural

circuit.130 GPR43 knockout mice display weight gain, increased adi-

posity, and reduced systemic insulin sensitivity even on a normal

chow diet, whereas adipose tissue-specific GPR43 overexpression

protects mice against the development of obesity even when a HFD

is consumed.131 Both GPRs have been implicated with beneficial

effects on intestinal barrier integrity, inflammation, and immunity

thereby maintaining gut health.132,133

Besides GPR41 and GPR43, butyrate is the only SCFA that can

bind to GPR109A. This receptor is expressed in the small intestine,

colon, adipose tissue, and several immune cells including

macrophages.134–137 In vitro work has shown that butyrate-mediated

GPR109A signaling promotes interleukin-18 release from intestinal

epithelial cells,138 inhibits nuclear factor ĸB signaling pathways in

macrophages,139,140 and reinforces colonic macrophages and dendritic

cells to promote the differentiation of naïve CD4+ T cells into regula-

tory T-cells and interleukin-10 producing T-cells,110,138 which alto-

gether reduce colonic inflammation. Interestingly, diabetic mice

display increased GPR109A expression in the jejunum compared with

nondiabetic controls. An explanation for this may be that GPR109A

promotes glucose uptake, resulting in hyperglycemia.141 Recently,

studies have unveiled that butyrate also binds to the olfactory recep-

tor: Olfr558. Next to its function as olfactory sensory neurons in the

nose cavity, this receptor is enriched in renal and cardiac vasculature

and suggested to be involved in blood pressure regulation and muscle

regeneration.142,143

Thus, butyrate, as a HDACi, can directly influence gene expres-

sion and, through GPR activation, modulates appetite neurocircuitry

and anti-inflammatory immune responses. The production, absorption,

metabolism, and mechanism of action of butyrate in the gut are sum-

marized in Figure 2.

3 | MECHANISTIC UNDERPINNING:
BUTYRATE AND INTERORGAN CROSSTALK

3.1 | Local intestinal and whole-body effects

One of the primary functions of butyrate is to provide fuel to the cells

lining the intestinal epithelium. Numerous studies have demonstrated

that butyrate plays a crucial role in the energy homeostasis and mito-

chondrial functioning of colonocytes.144–147 Colonocytes of germfree

mice are energy-deprived, but butyrate administration can restore this

impaired mitochondrial respiration.144 Cytosolic acetyl-CoA derived

from butyrate via tricarboxylic acid cycle-derived citrate can be uti-

lized to form lipids or can transfer its acetyl groups to histone
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acetylases (HATs) (see Figure 2), which increase the expression of

genes involved in cell proliferation and differentiation.71 Butyrate also

appears to increase the expression of genes involved in fat and energy

metabolism in human colonic mucosa.148 Additionally, butyrate plays

an important role in maintaining gut health and gut functioning. It

facilitates colonic transit and stimulates neuronal excitability of the

colonic circular muscles,149,150 presumably by promoting serotonin

release, a well-known stimulator of peristalsis.151 Butyrate can also

promote intestinal gluconeogenesis in enterocytes through gene

expression modulation.152 This butyrate-induced gluconeogenic effect

plays a significant role in its observed beneficial metabolic effects

since butyrate administration was unable to enhance glucose toler-

ance or prevent weight gain in intestinal gluconeogenesis knockout

mice.152

Besides its role in energy homeostasis, evidence suggests that

oral butyrate supplementation modulates the composition and func-

tionality of the gut microbiome153–159 and restores intestinal barrier

integrity in diabetic as well as obese mice.153,158,160–162 Endotoxemia

may play a crucial role in the chronic low-grade inflammation

observed in individuals with T2DM and/or obesity. Mice studies have

shown an association between increased fat intake and endotoxemia,

and this endotoxemia is associated with deteriorated glucometabolic

parameters.163,164 Human data seem to corroborate a relationship

between intestinal leakage and metabolic health. People with T1DM

and T2DM have significantly higher endotoxin levels than nondiabetic

controls, which can be reduced by antidiabetic medication.165 Fur-

thermore, a study showed that dietary fat intake acutely increased

endotoxin levels in healthy individuals as well as individuals with obe-

sity, yet a more pronounced elevation was observed in individuals

with T2DM and obesity.166 A recent study reported a significant neg-

ative association between BMI and colonic permeability, and several

“leaky” gut markers including zonulin were positively associated with

metabolic health parameters in plasma.167 Butyrate may act as an

intestinal barrier-strengthening agent by regulating the expression,

localization, and assembly of tight junction proteins162,168–172 and

promoting the production of antimicrobials172 and mucin

glycoproteins173–175 and thereby could potentially counteract intesti-

nal leakage. Nevertheless, these effects are mainly derived from ani-

mal and in vitro experiments and are not substantiated by human

data yet.

Besides beneficial effects on the gastrointestinal barrier, butyrate

stimulates the production of gut-derived neuropeptides involved in

energy homeostasis and food intake behavior such as glucose-

dependent insulinotropic polypeptide (GIP), GLP-1, PYY, and seroto-

nin in obese mice models.176,177 In obese mice, acute intragastric

butyrate administration but not intravenous butyrate administration

significantly decreased 24 h food intake,155 implying that the anti-

obesity effect of butyrate is achieved by regulatory processes that

occur before reaching the periphery. Human cross-sectional data from

a cohort covering individuals with a wide range of BMI and glucome-

tabolic status demonstrated that fasting plasma butyrate concentra-

tion was significantly associated with circulating GLP-1 but not PYY.22

Nevertheless, human experimental data remain limited. In patients

with T2DM, 45 days of oral butyrate supplementation (600 mg/day)

significantly increased serum GLP-1 levels compared with placebo.178

Yet, acute rectal administration of SCFA mixtures, containing physio-

logical amounts of butyrate, in men with overweight/obesity did not

alter GLP-1 but significantly increased fasting and postprandial plasma

PYY concentrations.179 The effect of butyrate on the release of gut

hormones warrants more investigation and may depend on interven-

tion duration, mode of administration, and metabolic phenotype or

pathological state of the sample population. To illustrate, a mice study

comparing the effect of 12 weeks of supplementation with oral

sodium butyrate, resistant starch, or a combination of the two

reported that resistant starch (coincided by an increase cecal butyrate

production) supplementation increased systemic PYY and GLP-1

levels, whereas oral butyrate and the combination intervention did

not alter or significantly decreased the levels of both incretins, respec-

tively. These observations suggest that exogenous butyrate uptake in

the upper GI-tract may activate a negative feedback loop, thereby

inhibiting incretin release from endogenous colonic butyrate.180

Despite low systemic butyrate concentrations, the effects of

butyrate extend beyond the intestine. Animal work has shown that

orally administered butyrate may increase energy expenditure,181–183

change systemic inflammatory marker profiles,153,160,183–186 and alter

energy substrate metabolism, promoting a shift from carbohydrate to

fat utilization.155,182 The weight-reducing properties of butyrate

are supported by abundant evidence from animal studies in

which butyrate supplementation prevents diet-induced weight

gain.153–156,158,161,177,182,183,187–191 In addition, animal studies using

butyrate-producing probiotic strains192,193 or butyrogenic fibers42,50

showed comparable beneficial results on weight control. Butyrate is

known to act on the opioidergic system by epigenetically stimulating

the expression of μ-opioid receptor, which may be involved in

reward-related pathways that reduce food intake.194 Similarly, in

obese rodent models, oral and intragastric butyrate administration

improves insulin sensitivity and glucose tolerance.155,156,181–183,191,195

Besides the weight loss-associated beneficial effects on glucose

homeostasis, butyrate supplementation also attenuated oxidative

stress and inflammation in nonobese diabetic mice and therefore may

have additional antidiabetic properties besides weight loss.185 None-

theless, the therapeutic effect of butyrate appears cohort-dependent.

To illustrate, the effects on inflammatory processes and intestinal

homeostasis of monobutyrin (a glycerol ester of butyrate) treatment

varied between two rat cohorts from identical strains kept under

exactly the same experimental circumstances as a result of differential

microbial composition and, subsequently, microbial metabolite pro-

duction.196 Moreover, preliminary data indicate that obesity prone

rats need a higher oral butyrate dose than obesity resistant rats (rats

were categorized based on their weight gain after 8 weeks of HFD) to

elicit the same response on body weight and glucometabolic parame-

ters.187 Together, this emphasizes that microbial composition and

metabolic phenotype can profoundly impact experimental outcomes.

Human evidence supporting the beneficial metabolic effects of

butyrate remains limited. The proposed anti-inflammatory potential of

butyrate observed in animal studies is, for instance, not as evident in
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humans. A study evaluating the peripheral blood mononuclear cells of

individuals with MetS after 4 weeks of daily oral 4 g sodium butyrate

supplementation did not reveal overt effects on inflammatory cyto-

kines production when stimulated by a diverse set of pathogenic stim-

uli.197 In contrast, butyrate intervention did significantly improve anti-

inflammatory response in the context of trained innate immunity, in

which monocytes are capable of enhanced cytokine production upon

secondary stimulation with an unrelated stimulus.197 Peripheral blood

mononuclear cells of patients with T2DM that were supplemented

600 mg of sodium butyrate for 45 days displayed reduced markers for

diabetes-associated pyroptosis, a form of programmed cell death that

promotes inflammation, compared with individuals that received pla-

cebo. Butyrate intervention upregulated the expression of several

microRNAs that are known to inhibit inflammatory gene expression,

potentially explaining this effect.198 Another study demonstrated that

the incubation of monocytes, derived from patients with T2DM, with

a supraphysiological butyrate concentration decreased monocyte

migration and resulted in a more favorable tumor necrosis factor-

α/interleukin-10 production ratio.199

In summary, butyrate is a pleiotropic metabolite that can

induce a wide array of physiological functions and interorgan cross-

talk may form the basis for its beneficial effects (see Figure 3). To

compose a mechanistical framework, evidence regarding the effect

of butyrate on insulin sensitivity and weight control on the liver,

adipose tissue, skeletal muscle, pancreas, and brain will be dis-

cussed below.

3.2 | Butyrate and liver metabolism

The first organ butyrate encounters after release from the intestine is

the liver (except when butyrate is absorbed in the rectum region).

Since hepatocytes extensively extract and metabolize butyrate, it may

exert considerable effects here. Researchers have identified a

liver-specific butyrate transporter: organic anion transporter 7, which

takes up butyrate in exchange for the sulfate-conjugated steroid: oes-

trone sulfate. Consequently, hepatic butyrate transport may play a

role in liver steroid hormone metabolism and detoxification pro-

cesses.200 Additionally, an isotope tracing study revealed that buty-

rate infused in the caecum of mice can be traced back in the liver,

where its carbon is incorporated into cholesterol and palmitate.201

Similarly, incubating isolated rat hepatocytes with butyrate-induced

cholesterolgenesis and lipogenesis.202 In human adolescents with obe-

sity, plasma butyrate concentrations were associated with an increase

in hepatic de novo lipogenesis after consumption of a high carbohy-

drate load.203 Together, these observations imply that butyrate may

contribute to the accumulation of fat in the liver, also described as

hepatic steatosis. Hepatic steatosis and hepatic inflammation are

linked to the development of insulin resistance, a critical hallmark in

the pathogenesis of T2DM and NAFLD. Intriguingly, in contrast to

above indications that acute butyrate supplementation promotes

hepatic steatosis, many studies report (chronic) that butyrate inter-

ventions mediate hepatoprotective effects in obese mice

models153,155,158,181–183,188,195,204,205 (see Figure 3). These butyrate-

F IGURE 3 The putative metabolic effects of butyrate on different organs based on evidence from mainly animal and in vitro data. When
butyrate is produced from the fermentation of dietary fibers in the intestine it mediates direct local effects on the intestinal barrier. Here,
butyrate binds to G protein-coupled receptors, thereby stimulating the synthesis of several neuropeptides that can signal to the brain. Butyrate
that is not utilized by intestinal cells is transported to the liver via the portal vein. Thereafter, minor quantities of butyrate reach the circulation,
consequently affecting other organs such as the adipose tissue, skeletal muscle tissue and pancreas. 5-HT, serotonin; GIP, glucose-dependent
insulinotropic polypeptide; GLP-1, glucagon-like peptide 1; GPR109A, G protein-coupled receptor 109A; GPR41, G protein-coupled receptor 41;
GPR43, G protein-coupled receptor 43; PYY, peptide YY. Created with BioRender.com
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fed mice exhibited significant reductions in the development of diet-

induced hepatic inflammation, intrahepatic fat accumulation, and liver

injury.153,158,182,188,204,205 However, a human study that evaluated

intrahepatic triglyceride content by 1H-liver magnetic resonance spec-

troscopy in individuals with MetS after 4 weeks of oral butyrate inter-

vention did not observe any alterations in liver fat.206

A wide range of in vitro and in vivo studies have provided mecha-

nisms by which butyrate may positively affect liver function and

metabolism. First, a NAFLD mice model showed intragastric butyrate

supplementation impeded HFD-induced hepatic GLP-1 receptor

downregulation, which was independently associated with improved

hepatic steatosis.207 Since hepatic GLP-1 resistance may develop in

patients with T2DM and NAFLD,207,208 a GLP-1 synthesizer like buty-

rate may work better than exogenous GLP-1 or GLP-1 agonists.

Secondly, butyrate appears to avert diet-induced hepatic proinflam-

matory cytokine and enzyme production in obese mice.153,205 These

anti-inflammatory responses may partly be mediated by inhibiting an

important pro-inflammatory transcriptional regulator—nuclear factor-

κB.205 Thirdly, butyrate may increase the expression of nuclear factor

erythroid 2-related factor 2 and its downstream antioxidant enzymes

including glutathione and thereby prevent diet-induced hepatic oxida-

tive stress.183,195 Lastly, evidence suggests that butyrate may induce a

switch from hepatic lipogenesis to β-oxidation in obese mice, thereby

improving hepatic insulin sensitivity.182,209 This may be attributed to

an effect on peroxisome proliferator activated receptor γ and fibro-

blast growth factor 21 (FGF21) expression, as butyrate was unable to

convey beneficial hepatic effects peroxisome proliferator activated

receptor γ182 and FGF21209 knockout mice. Butyrate activates FGF21

in vitro,209 and FGF21 overexpression in transgenic mice has shown

to prevent diet-induced obesity.210 FGF21 is a hepatokine (albeit also

produced in minor amounts by other tissues such as skeletal muscle

tissue) involved in the lipolysis and β-oxidation of long-chain fatty

acids209 and may upregulate GLUT1 expression and glucose uptake in

extrahepatic tissues such as the adipose tissue.210 Nevertheless,

increased levels of serum FGF21 are reported in individuals with obe-

sity and/or T2DM,211,212 suggesting FGF21 resistance may have

developed over time. Indeed, clinical trials using FGF21 analogs in

individuals with obesity did not show any weight-reducing effects

although lipid profiles, glucose homeostasis, and whole-body insulin

sensitivity were improved.213,214

Ex vivo experiments suggest that butyrate promotes hepatic glu-

coneogenesis215,216 and has adverse effects on hepatic mitochondrial

energy homeostasis.217,218 However, these observations do not trans-

late to the in vivo situation. In diabetic mice, butyrate supplementation

reduced gluconeogenesis, glycated hemoglobin (HbA1c), and insulin

resistance219 and these restorative effects on hepatic glycolipid

metabolism and liver histology are supported by numerous other stud-

ies using diabetic mice.157,160,161,220,221 Animal studies showed that

administration of sodium butyrate improved hepatic mitochondrial

dynamics and efficiency,183 increased phosphorylation of the AMP-

activated protein kinase/acetyl-CoA carboxylase pathway,183,207 and

increased expression of glucose transporter 2183 and the insulin

receptor,207 which may explain improved hepatic insulin sensitivity.

Altogether, an intriguing amount of animal data suggests that

butyrate ameliorates diet-induced hepatic insulin resistance, fat depo-

sition, and inflammation, whereas human data are lacking. Future

studies should use ultrasound-based technology and magnetic reso-

nance imaging techniques to assess liver histology and the amount

and distribution of liver fat after butyrate-focused interventions in

humans.222

3.3 | Butyrate and adipose tissue metabolism

One key function of the adipose tissue is to store dietary fatty acids

in the postprandial state, to be released in times of increased energy

requirement. In individuals with obesity and insulin resistance, adipose

tissue functioning appears impaired. This dysfunction is characterized

by immune infiltration, a reduced storage capacity, and lipid spillover,

contributing to systemic low-grade inflammation and ectopic fat accu-

mulation, respectively, which eventually disturbs insulin signaling.223

Adipocytes may interact with macrophages and other immune cells,

and this interaction may contribute to the observed chronic low-grade

inflammation.224,225 Butyrate supplementation has shown to attenu-

ate diet-induced adiposity in obese153,155,181,226–228 as well as (pre)

diabetic rodent models161,219 and may reduce adipocyte hypertrophy

associated with a HFD.155,182,189,228,229 Moreover, protein analysis of

the adipose tissue of butyrate-fed obese mice demonstrated

increased expression of the insulin receptor189 as well as downstream

targets such as glucose transporter 4156,189 compared with HFD-

controls, suggesting improved adipose-tissue insulin sensitivity (see

Figure 3). Butyrate is proposed to influence adipose tissue function in

several ways, by affecting intracellular adipogenesis, lipolysis, and adi-

pose tissue inflammation.

In vitro and in vivo work propose that butyrate triggers adipocyte

hyperplasia by stimulating adipogenesis.189,230 This effect is sup-

ported by increased expression of adipose tissue-specific proliferating

cell nuclear antigen, an essential protein for DNA replication, in

butyrate-treated versus control-fed obese mice.189 In contrast, in lean

mice and piglets, adipogenesis appears reduced after long-term buty-

rate treatment,231,232 suggesting that butyrate-induced alterations in

adipogenesis may differ in lean and obese animal models. The effect

of butyrate on lipolysis still remains under debate as some studies

suggest it stimulates lipolysis, whereas others report antilipolytic

effects. Several in vitro studies suggest that supraphysiologi-

cal230,233,234 as well as physiological butyrate concentrations increase

basal and β-adrenergically mediated glycerol release, which is a mea-

sure for adipose tissue lipolysis.234 Butyrate may mediate lipolytic

effects through gene modification.233 Specifically increased acetyla-

tion and activation of the β3-adrenergic receptor, a key regulator in

lipolysis, have been reported after butyrate intervention in the WAT

of obese mice.228 Evidence suggests that β-adrenergic-mediated lipol-

ysis is blunted in context of obesity which may, among other things,

be explained by a reduced level and sensitivity of the β3-adrenergic

receptor.235,236 Hence, if butyrate-mediated activation of the

β3-adrenergic receptor also occurs in humans, this may potentially
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(partially) restore sensitivity. Yet, in contrast to the increased lipolysis

after incubation with butyrate alone, a SCFA mixture high in butyrate

concentration (35%) did not affect basal nor β-adrenergically mediated

glycerol release in a human adipocyte model.234 Moreover, opposed

to lipolytic effects in monoculture, butyrate appears to diminish lipoly-

sis concurrent with reduced inflammatory responses in a differenti-

ated adipocyte-macrophage co-culture.140,237 Thus, it is crucial to

evaluate adipocytes in context of macrophages. These adipocyte

interactions highlight that in vivo studies need to be conducted in

order to investigate the effects of butyrate on adipose tissue in con-

text of other tissues (as they may affect one another). In obese rodent

models, chronic butyrate treatment attenuated diet-induced eleva-

tions in systemic lipid profiles including triglycerides and choles-

terol.155,181,187,188,190,191,238 These improved lipid markers hint

towards enhanced adipose tissue storage capacity but may also be

the result of improved liver functioning (or both). Human cross-

sectional data showed that fasting plasma butyrate levels were nega-

tively associated with plasma FFA levels. Yet, no significant associa-

tions were observed with plasma triacylglycerols and glycerol.22

Rectal administration of a SCFA mixture containing high butyrate con-

centrations significantly increased lipid oxidation and reduced fasting

plasma free glycerol compared with placebo in men that were obese

or overweight.179 However, this increase in lipid oxidation was signifi-

cantly correlated to plasma acetate but not to butyrate concentra-

tions. A 4week intervention study in individuals with MetS from both

sexes showed 4 g/day of oral butyrate supplementation significantly

reduced total cholesterol and triglycerides levels compared with base-

line.206 In contrast, another comparable study with men with MetS

observed a significant increase in plasma total cholesterol and low-

density lipoprotein cholesterol and no alterations in FFA and triglycer-

ides compared with initial levels.159 In patients with T2DM receiving

600 mg/day for 6 weeks, a similar increase in plasma total and low-

density cholesterol was observed albeit only compared with baseline

levels and not compared with placebo.239

Besides adipogenesis and lipolysis, butyrate also alters the expres-

sion of proteins involved in adipose tissue inflammation, also referred

to as adipokines.240 Butyrate administration has shown to attenuate

the production of several diet-induced pro-inflammatory markers

including tumor necrosis factor-α in the adipose tissue of obese

mice153,158,162 and diabetic mice.241 Additionally, evidence from

obese mice models suggests that chronic butyrate supplementation

decreases systemic and adipose tissue-specific leptin177,183,189,227–229

and increases adiponectin183,189 concentrations, two other well-

known adipokines, towards a similar range as those of lean mice.

Leptin is associated with inflammatory processes, increasing in pro-

portion to body fat, whereas adiponectin has an inverse relationship

with adipocyte size and may contribute to anti-inflammatory pro-

cesses, adipose tissue vascularization, and insulin sensitivity.242,243

Recent work in an obesity mice model also showed that sodium

butyrate supplementation may reinforce a more anti-inflammatory

immune cell profile in the adipose tissue, shifting towards increased

levels of M2 macrophages and regulatory T-cells relative to the

population of M1 macrophages and naïve CD4+ T-cells.162

Next to effects on the WAT, butyrate treatment may stimulate

mitochondrial activity, lipid oxidation, and thermogenic capacity, evi-

denced by elevated uncoupling protein-1 protein levels, in the brown

adipose tissue (BAT) of obese155,181 and microbiota depleted mice.244

Additionally, BAT and subcutaneous WAT may metabolize butyrate

because the adipocytes of butyrate-treated mice exhibit increased

mRNA acyl-CoA medium-chain synthetase 3 expression, the enzyme

for the initial step of butyrate oxidation, and carnitine palmitoyltrans-

ferase 1α expression, suggesting elevated fatty acid oxidation.245

These effects may underpin butyrate's presumed beneficial effect on

energy expenditure in animal models. Nevertheless, 4 weeks of

4 g/day butyrate intervention did not alter metabolic BAT activity or

resting energy expenditure in lean men nor men with MetS.159

Overall, animal studies suggest that butyrate may restore adipose

tissue inflammation and activate BAT. Yet, its effect on lipogenesis

and lipolysis remains inconsistent, and human data, so far, do not

solidify the observations of animal studies.

3.4 | Butyrate and skeletal muscle metabolism

Skeletal muscle may account for approximately 80% of the insulin-

stimulated glucose clearance under hyperinsulinemic-euglycemic

clamp conditions.246,247 In postprandial conditions, this is considerably

lower, accounting for 23% of total glucose disposal248,249 but still

plays an important part in regulating energy flux. The obese insulin-

resistant phenotype is characterized by impaired mitochondrial func-

tioning and metabolic inflexibility, in which the skeletal muscles can

no longer match lipid oxidation to the increased lipid supply.223,235

Moreover, both T2DM and obesity have been associated with relative

loss of muscle mass and strength.250 Few studies have investigated

the specific effect of butyrate on muscle metabolism, but sodium

butyrate treatment has shown to reduce lipid accumulation191,227 and

improve mitochondrial functioning in the skeletal muscle of obese

rodents181,187,227 (see Figure 3). These effects might be mediated by

increased expression of antioxidant enzymes and peroxisome

proliferator-activated receptor γ isoform α and mitochondrial tran-

scription factor A, two transcriptional regulators involved in mitochon-

drial biogenesis.187,232 Additionally, chronic butyrate interventions

have shown to increase the percentage of slow-twitch type I muscle

fibers in obese mice181,226 and lean piglets.251 These fibers are oxida-

tive and contain more mitochondria than fast-switch type II muscle

fibers. Short-term butyrate supplementation may enhance mitochon-

drial lipid oxidation in the gastrocnemius muscle of obese mice, indi-

cated by increased expression of genes and proteins involved in lipid

oxidation and oxidative phosphorylation compared with con-

trol.181,227 A mice model investigating the effect of chronic butyrate

administration in aging mice supports above reported effects as

butyrate-reduced intramuscular fat accumulation and increased

markers of mitochondrial biogenesis, antioxidant activity, and oxida-

tive metabolism in the skeletal muscle.252 A human cross-sectional

study using mendelian randomization analysis has identified a causal

relationship between the production of microbial butyrate and
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appendicular lean mass in Chinese menopausal women, suggesting

that butyrate may play a role in maintaining muscle mass in humans as

well.253

Butyrate may also increase muscle-specific insulin

sensitivity,181,187 evidenced by enhanced phosphorylation of the insu-

lin receptor substrate 1181 and increased mRNA expression of insulin

receptor substrate 1 and glucose transporter 4187 in the gastrocne-

mius muscle of butyrate-treated obese rodents compared with con-

trols. Nevertheless, the insulin-sensitizing effect of butyrate is

probably also mediated indirectly, via the production of gut-derived

incretins. GLP-1 is known to alter muscle microvasculature increasing

both blood volume and blood flow in insulin sensitive healthy

humans254 and rats,255 and these responses remain preserved in

insulin-resistant rats.256 In this way, butyrate may enhance insulin

action and glucose oxidation in the muscle because insulin delivery is

increased as a result of enlarged endothelial myocyte surface. Further-

more, incubating primary myocytes derived from individuals with obe-

sity with GLP-1 increased glucose uptake and restored the activity of

enzymes involved in muscle metabolism.257 Similar effects have been

reported for PYY.258

Altogether, butyrate may counteract obesity-associated mito-

chondrial dysfunction and muscle atrophy and can indirectly increase

insulin-mediated glucose disposal in the muscle tissue. Future

butyrate-focused intervention studies in humans should evaluate

transcriptomics from muscle biopsies and changes in muscle mass, for

example, by a dual X-ray absorptiometry scan.259

3.5 | Butyrate and pancreatic insulin functioning

The pancreas is a crucial organ for energy and substrate metabolism,

responsible for among others the secretion of insulin, a key hormone

in the regulation of postprandial substrate metabolism. Butyrate might

be able to prevent pancreatic dysfunction associated with the insulin-

resistant obese phenotype. Animal data indicate that butyrate may

increase insulin secretion161,177,187 and reduce pancreatic fat deposi-

tion and β-cell damage, thereby preserving islet function-

ing161,187,190,219,238 (see Figure 3). Several studies have shown that

chronic butyrate treatment decreased fasting insulin levels in T2DM

rats260 and obese rodents156,177,183,191,238 compared with their

respective controls. One of these studies showed that acute butyrate

administration rapidly increased insulin release compared with a saline

control, whereas the same dose of other fatty acids including acetic

acid did not significantly alter insulin secretion.177 In vitro studies per-

formed a couple of decades ago suggest that butyrate induces an

acute stimulatory effect on insulin release.261,262 Nevertheless, these

studies used supraphysiological concentrations (2–10 mM), and recent

work with rat islets only demonstrated a significant effect on pancre-

atic β-cell functioning after 24-h incubation with 5 mM of sodium

butyrate, whereas an acute insulinotropic effect was not observed.263

Since pancreatic β-cells express GPR41 and GGPR43,264 butyrate may

directly regulate insulin secretion through G protein mediated signal-

ing, yet whether this occurs remains controversial.265 The observed

insulin release pattern after acute butyrate administration in HFD

mice overlapped with GLP-1, PYY, and GIP release, while other SCFA

were unable to induce gut-derived hormones (with exception of

propionate-induced GIP stimulation), pointing towards indirect regula-

tion of insulin production. GLP-1 can influence pancreatic β-cells by

accelerating the glucose-dependent closure of ATP-regulated potas-

sium channels, which provokes postprandial insulin secretion266 and

simultaneously inhibits glucagon release.267 Moreover, butyrate may

also stimulate the antioxidant defense system in the pancreas187 and

inhibit pancreatic β-cell apoptosis through gene expression modula-

tion187,190,260 thereby indirectly contributing to enhanced pancreatic

functioning.

Altogether, animal data suggest that butyrate may potentially

improve pancreatic insulin response but the acute effect of butyrate

on glycaemic control and insulin release (in dietary context) remains

to be investigated in humans. Future studies could study the effect of

different doses of butyrate on postprandial substrate metabolism by

using a cross-over design.

3.6 | Butyrate and the brain

The brain plays an important regulatory role in energy homeostasis as

a master regulator of food intake behavior and serving as a thermostat

for energy expenditure. Evidence suggests that obesity is character-

ized by vagal afferent signaling dysregulation, indicated by a dimin-

ished ability to switch off orexigenic responses in the fed state as well

as a reduced sensitivity to endocrine satiety proteins.268 Moreover,

besides the commonly known obesity-associated metabolic complica-

tions, obesity is associated with neuropathic pain, alterations in brain

structure, impaired cognitive functioning, and increased risk of devel-

oping neurogenerative diseases including Alzheimer's.269,270 Mice

studies have demonstrated that butyrate may have the ability to

counteract these obesity-associated neurological changes,188,271,272

and the pain-reducing properties of butyrate have been corroborated

by a cross-over randomized controlled trial (RCT) using rectal butyrate

enemas in healthy adults.273

As systemic butyrate levels are relatively low, it is unlikely that

note-worthy amounts of butyrate reach the brain. Positron emission

tomography in nonhuman primates confirmed that butyrate can cross

the blood barrier, but uptake is extremely low (<0.006%).274 In con-

trast, substantial increases in butyrate concentration in the brain were

reported after administration of butyrate-producing bacterial strains

in mice,275,276 and an isotope tracing study in mice suggests that buty-

rate contributes to tricarboxylic acid metabolites in the brain.244

Despite these observations, the effect butyrate may have on the brain

is probably predominantly indirect. Butyrate may act as a sensor to

provide intestinal information to the brain by signaling brain regions

involved in food intake including the nucleus tractus solitaries. A mice

study demonstrated supraphysiological intraperitoneal butyrate injec-

tion (1–6 mmol/kg) dose-dependently and time-dependently

decreased food intake and induced the strongest anorexigenic effect

out of the three major SCFA. This anorexigenic effect was completely
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abolished by capsaicin pretreatment, an inhibitor of afferent vagal

nerve innervation. Selective inhibition of the hepatic branch of the

vagus nerve resulted in a similar inhibitory effect, so a hepatic–portal–

vagal route may be at play. The authors postulated butyrate may regu-

late satiety via GPR41 or GPR109A signaling on nodose ganglion neu-

rons in the brain,277 but this remains to be investigated.

As stated previously, butyrate stimulates the production of gut-

derived neuropeptides including serotonin, GIP, GLP-1, and PYY as

well as adipose tissue-derived leptin. Similarly, monobutyrin supple-

mentation preserved the sensitivity to cholecystokinin, another well-

known vagal anorexigenic stimulator, and strengthened the response

to cholecystokinin-induced energy intake reduction in HFD-fed

mice.196 These endocrine proteins and neurotransmitters can signal

various hypothalamic nuclei in the brain resulting in an increased feel-

ing of satiety and a reduced drive to eat130,278,279 (see Figure 3).

Intriguingly, a mice study showed intragastric butyrate administration

but not intravenous administration led to a significant decrease in

24-h food intake compared with control, and this was abolished by

subdiaphragmatic vagotomy. Intragastric butyrate supplementation

reduced FOS-positive neurons, a marker for neuronal activity, in the

nucleus tractus solitaries and dorsal vagal complex in the brainstem

and reduced c-FOS expression of neuropeptide Y positive orexigenic

neurons in the hypothalamus.155 Taken together, this study suggests

that the gut–brain axis is necessary for butyrate to elicit a significant

effect on food intake behavior.

Both WAT and BAT depots interact with the brain through dis-

tinct sympathetic neuronal axon projections (and the WAT also via

leptin production). Whereas the WAT is predominantly involved with

energy storage, the BAT may modulate energy expenditure.280

Butyrate-fed mice exhibit elevated tyrosine hydroxylase expression in

the BAT, a marker for peripheral sympathetic nerve activity, compared

with control obese mice. The butyrate-induced thermogenic effect

and increased lipid oxidation observed in the BAT were diminished

after vagotomy, which also points towards (partial) regulation by the

vagus nerve.155 However, the quantification of metabolically active

BAT and its contribution to energy expenditure in humans remains

uncertain and sympathetically mediated thermogenesis is probably

predominantly generated by skeletal muscle tissue.281,282

How butyrate may affect the activity of reward-related pathways

in humans remains to be investigated. Clinical studies have demon-

strated that 4 weeks of 4 g/day sodium butyrate did not alter total

energy intake compared with the start of the intervention in lean

individuals,159 patients with T1DM,283 nor individuals with

MetS.159,206 One of these studies also evaluated if butyrate had any

satietogenic effects, by using the Visual Analog Scale for appetite and

hunger, but no changes were observed post intervention.206 Despite

these findings, the same study revealed that butyrate supplementa-

tion modulated neural pathways in the brain. Butyrate intervention

had a tendency to reduce cerebral dopamine transporters binding in

the striatum of individuals with MetS.206 This transporter has been

linked to reward processing and glucose homeostasis and appears

downregulated in people with a higher BMI. Hence, a reduced dopa-

mine transporter binding may appear counterintuitive since butyrate

is considered an anorexigenic stimulator. Heart rate variability, a

marker of autonomic nervous system activity, was also significantly

increased post butyrate intervention.206 Both observations advocate

butyrate can affect the human brain dopaminergic system and vagal

nerve innervation, respectively. However, additional research is

required to elucidate how these pathways are affected and if they

translate to actual dietary changes in humans.

Overall, animal data suggest that butyrate may provide a thera-

peutic strategy to innervate the central nervous system and combat

obesity-associated impaired sympathetic signaling. Yet, reductions in

food intake or satiety in response to chronic butyrate intervention in

humans have not been reported so far. A summary of the effects of

butyrate derived from animal studies on organ level and the mediated

crosstalk between organs is displayed in Figure 3.

4 | HUMAN BUTYRATE-FOCUSED
THERAPEUTIC INTERVENTIONS TO TREAT
OBESITY AND RELATED METABOLIC
DISORDERS

From a mechanistic perspective, abundant evidence from animal and

cell models suggests that butyrate has putative beneficial effects on

metabolic health and the function of peripheral tissues. Nevertheless,

the question remains whether this can be translated to a useful inter-

vention strategy for humans. For this purpose, this section will evalu-

ate the efficacy of butyrate-focused interventions on metabolic health

in humans. Clinical studies modulating the gut microbiome were only

included if they increased a butyrate biomarker, for example,

butyrate-producing microbial strains, fecal, and/or plasma butyrate

concentrations.

4.1 | Gut microbial modulation, body weight
control, and glucose homeostasis

A pilot study with men with MetS (n = 18) implicated that butyrate

may play a significant role in the changes in insulin sensitivity

observed after fecal microbial transplantation (FMT) (see Table 1). A

single dose of FMT from a lean donor (allogenic transplantation)

significantly increased the abundance of butyrate-producing

strains Roseburia intestinalis and Eubacterium hallii. Concurrently,

peripheral insulin sensitivity, measured by the golden standard

hyperinsulinemic-euglycemic clamp, increased slightly but signifi-

cantly and hepatic insulin sensitivity had a tendency to improve from

baseline albeit not compared with placebo (autologous transplanta-

tion). Other metabolic parameters such as BMI, fasting glucose

levels, and HbA1c remained unaltered compared with baseline.

Despite increased levels of butyrate-producing strains, fecal total

SCFA and butyrate concentrations decreased after FMT yet were

maintained after autologous transplantation.284 In line with these

results, a follow-up study performed with a larger sample size of

men with MetS (n = 44); demonstrated FMT indeed significantly
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TABLE 1 The effect of intervention strategies aimed at increasing microbial butyrate production on weight and glucose metabolic status

Participants Intervention

Design, duration,

and frequency Metabolic effects Study

Males with metabolic

syndrome (n = 18)

Allogenic FMT (from lean male

donors; n = 9) or autologous FMT

(reinfusion of own feces; n = 9)

RCT

Outcomes measured

after 6 weeks

Single dose

1. " Butyrate-producing strains in

gut microbiome

2. # All fecal SCFA concentrations

including butyrate

3. " Peripheral insulin sensitivity and

tendency to " hepatic insulin

sensitivity compared with

baseline but not placebo

Vrieze et al.

(2012)284

Males with metabolic

syndrome (n = 24)

A. soehngenii administration with low

(106 cells/ml, n = 8), medium (108

cells/ml, n = 8), high dose (1010

cells/ml, n = 8)

Randomized trial

4 weeks

1x/day

1. " Fecal butyrate-producing A.

soehngenii with greatest effect in

highest dose

2. No differences in fecal SCFA

levels

3. No significant difference in

peripheral insulin sensitivity

between groups

Gilijamse et al.

(2020)285

Individuals with T2DM

(n = 58)

WBF-010 (consisting of inulin, C.

beijerinckii, C. butyricum, B. infantis;

n = 21) or WBF-011 (consisting of

inulin, A. muciniphila, C. beijerinckii, C.

butyricum, B. infantis and A. hallii;

n = 21) or only colloidal silicon

dioxide (placebo; n = 16)

RCT

12 weeks

Dose divided in

2x/day

1. " Butyrate-producing A.halli more

frequently detected in stool

samples after 4 and 12 weeks of

WBF-011

2. No significant changes in fecal

SCFA but "fasting plasma

butyrate

3. "plasma butyrate associated with

#HbA1c in participants who were

not taking a sulfonylurea agent

4. WBF-011 significantly # AUC and

IAUC of total glucose

concentration during a meal-

tolerance test

5. WBF-011 had a tendency to "
postprandial insulin secretion

and#HbA1c

6. No changes in HOMA-IR, fasting

glucose, and body weight

Perraudeau et al.

(2020)286,287

Individuals with T1DM

(n = 18)

40 g of type 2 resistant starch

consisting of a high-amylose (70%)

maize starch with acetate and

butyrate attached to it

Single arm pilot

study

6 weeks + follow-up

at week 12

1x/day

1. " Fecal and circulating butyrate

and acetate after 6 weeks

2. No alterations in HbA1c, insulin

dosage, and mean daily average

blood glucose

3. Circulating butyrate at week 6

was negatively associated to

HbA1c, % of time below target

range (< 3.9 mmol/L), and basal

insulin dose

Bell et al.

(2022)288

Females with obesity

(n = 30)

16 g of inulin-type fructans

prebiotics (a 50/50 mix of inulin/

oligofructose; n = 15) or

maltodextrin placebo (n = 15)

RCT

3 months

Dose divided in

2x/day

1. " Butyrate-producing F. prausnitzii

in gut microbiome

2. # AUC of total glucose

concentration after oral glucose

tolerance test

3. No alterations HbA1c, HOMA,

and fasting insulin

4. No changes in BMI and hip-waist-

ratio but slight tendency to # fat

mass

Dewulf et al.

(2012)289

(Continues)
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increased peripheral insulin sensitivity.291 However, these effects

were transient, returning both microbial composition and insulin sen-

sitivity to initial state after 18 weeks, and the authors attributed the

metabolic alterations to other metabolites than butyrate including an

increase in fecal acetate. Moreover, a large variation in FMT-induced

glucometabolic response was observed depending on initial micro-

biota composition.291

Instead of transferring the entire microbiota, specific butyrate-

producing bacterial strains can be selected for probiotic supplementa-

tion. Four weeks of daily Anaerobutyricum soehngenii administration

dose-dependently increased fecal concentrations of this butyrate-

producing strain in males with MetS (n = 24).285 This effect was tran-

sient, approximately returning to baseline levels 2-week postinterven-

tion. Despite increased A. soehngenii, no significant differences in fecal

butyrate levels were observed compared with baseline as well as

among intervention groups giving a low, medium, or high dose of the

probiotic. Peripheral insulin sensitivity, evaluated by hyperinsulinemic-

euglycemic clamp, did not significantly differ between groups, yet

peripheral insulin sensitivity was significantly correlated to relative

abundance of fecal A. soehngenii. This correlation indicates that this

bacterial stain may have beneficial effects on insulin sensitivity. How-

ever, no correlation was made to the change in (delta) fecal

A. soehngenii; thus, this observed association is not necessarily related

to the intervention itself. Interestingly, exploratory post hoc analysis

showed that the ability of A. soehngenii intervention to elicit a benefi-

cial glucometabolic response depended on baseline gut microbiota

composition. A plausible explanation is that initial bacterial character-

istics may influence the engraftment of A. soehngenii in the gut micro-

biome. In another study, patients with T2DM (n = 58) were given a

mixture of probiotic bacteria along with the prebiotic fiber inulin.286

Participants, mainly on antidiabetic medication (metformin), received

either placebo WBF-010 (Bifidobacterium infantis and butyrate-

producing Clostridium Butyricum and Clostridium beijerinckii) or WBF-

011 (containing WBF-10 plus Akkermansia muciniphila and butyrate-

producing Anaerobutyricum hallii) for 12 weeks. The latter probiotic

mixture improved postprandial glucose response (see Table 1). No

effect on fasting glucose, homeostatic model assessment for insulin

resistance (HOMA-IR), or body weight was observed for either of the

probiotic mixtures. Strain-specific qPCR showed fecal that A. halli was

detected more often after 4 and 12 weeks of WBF-011 supplementa-

tion. Unfortunately, fecal C. Butyricum and C. beijerinckii were below

detection limit at all time points and it is therefore uncertain whether

these bacterial strains were engrafted in the gut microbiome.

Intervention-induced changes in fecal SCFA concentrations were

highly variable between participants and not significantly different

between groups. Cross-feeding pathways may partially explain why

WBF-011 mediates stronger metabolic effects. A. muciniphila may

provide acetate which C. beijerinckii, C. butyricum, and A. hallii can uti-

lize to form butyrate. Besides this cross-feeding pathway, A. halli is

also able to convert the lactate produced by B. infantis to butyrate.

Remarkably, participants taking a sulfonylurea agent along with met-

formin appeared to respond less to WBF-011 intervention compared

with metformin use alone.286 These individuals are usually character-

ized by a longer duration or severity of T2DM. Additionally, metfor-

min is known to modulate the gut microbiome resulting in increased

butyrate production and researchers suggest a synergistic relationship

between the two.292 Hence, one could speculate that WBF-011 may

be more effective in the initial stage of T2DM or that the dose of met-

formin in these patients was lower, resulting in less synergism.

Recently published work revealed that fasting plasma butyrate levels

were significantly increased after WBF-011 intervention compared

with placebo, and this was associated with a decrease in HbA1c in

individuals that were not using a sulfonylurea agent.287 Evidence sug-

gests that some sulfonylurea agents may inhibit the growth of specific

bacterial strains present in the WBF-011 formulation,287,293 which

may also partially explain the observed reduced treatment outcome in

these participants.

Increased fecal and circulating butyrate levels have also been

observed in individuals with T1DM after a 6-week intervention with

40 g of type 2 resistant starch consisting of a high-amylose (70%)

maize starch with acetate and butyrate attached to the dietary

fiber.288 This increase persisted in week 12, after 6 weeks of follow-

up without intervention, albeit only in the feces and not in the circula-

tion. Although intervention with this modified resistant starch did not

alter glucometabolic parameters such as HbA1c, circulating butyrate

(but not acetate), at week 6, was inversely associated to HbA1c,

TABLE 1 (Continued)

Participants Intervention

Design, duration,

and frequency Metabolic effects Study

Healthy individuals

(n = 35)

16 g of FOS (n = 34) or GOS

(n = 35) prebiotics

Cross-over

randomized trial

14 days

Dose divided in

2x/day

1. # Butyrate-producing strains in

gut microbiome

2. FOS significantly # (46.1%) fecal

butyrate and worsened

postprandial glucose response

3. GOS had a tendency to # (31.2%)

fecal butyrate and significantly

decreased fasting glucose levels

Liu et al.

(2017)290

Abbreviations: AUC, area under the curve; BMI, body mass index; FMT, fecal microbial transplantation; FOS, fructo-oligosaccharides; GOS, galacto-

oligosaccharides; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment for insulin resistance; IAUC, incremental area under the curve;

RCT, randomized controlled trial; SCFA, short chain fatty acids.
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percentage of time that blood glucose concentration was below target

range (<3.9 mmol/L), and daily basal insulin requirements. These

results suggest that participants who had high butyrate levels at the

end of the intervention exhibited better glycaemic control. Next to

resistant starch, inulin-type fructans are also well-known for their

butyrogenic and bifidogenic effects.69 Indeed, 3 months of 16 g/day

of inulin-type fructans supplementation increased the abundance of

butyrate-producing F. prausnitzii in women with obesity compared

with participants receiving placebo (maltodextrin).289 Although this

indicates a butyrate-inducing effect, the study did not determine

actual markers for butyrate production. The glycaemic response after

an oral glucose tolerance test was significantly improved compared

with placebo, but all other markers of glucometabolic health remained

unaffected, except a tendency for inulin-type fructans to reduce fat

TABLE 2 Effect of oral butyrate supplementation on weight and glucose metabolic status

Participants Type + concentration

Design, duration,

frequency, and timing Metabolic effects Study

Healthy lean males (n = 9)

and males with metabolic

syndrome (n = 10)

4 g sodium butyrate/day Clinical trial

4 weeks

Dose divided in 2x/day

(no timing specified)

1. " Peripheral and hepatic

insulin sensitivity; but only

in lean individuals, not

individuals with metabolic

syndrome

2. No change in BMI

3. # Fecal total SCFA and fecal

butyrate concentration

Bouter et al.

(2018)159

Adults with metabolic

syndrome (n = 24)

Autologous fecal

transplantation (placebo) and

4 g/day sodium butyrate

(n = 12) or a single allogenic

FMT (from post- Roux-en-Y

gastric bypass donors) and

placebo tablets (n = 12)

Randomized clinical trial

4 weeks

1x/day

(no timing specified)

1. Butyrate supplementation #
HbA1c compared with

baseline

2. No changes in peripheral

nor hepatic insulin

sensitivity, fasting insulin or

fasting glucose

3. No alterations in BMI

4. No changes in fecal SCFA

profiles

Hartstra et al.

(2020)206

Individuals with T1DM

(n = 30)

4 g sodium butyrate/day or

placebo

Cross-over RCT

4 weeks

Dose divided in 2x/day

(no timing specified)

5. No effect on weight, BMI,

residual β-cell function,
HbA1c, fasting glucose or

daily insulin dose

6. # Abundance of butyrate-

producing strains

7. # Fecal total SCFA and

butyrate level

De Groot

et al.

(2020)269

Overweight individuals with

T2DM

(n = 59)

600 mg/day sodium butyrate

(n = 15), 10 g/day inulin

(n = 14), combining both

sodium butyrate and inulin

(n = 15), placebo (n = 15)

RCT

45 days

Dose divided in 6x/day

(after and before each

meal)

8. No changes between

intervention groups in BMI,

HbA1c, HOMA-IR, fasting

blood glucose, and insulin

9. # fasting blood glucose and

#waist-to-hip ratio for

combination intervention

compared with baseline

but not placebo

10. Did not assess actual

biomarkers for butyrate

production

Roshanravan

et al.

(2017)178

Overweight individuals with

T2DM (n = 39)

600 mg/day sodium butyrate

(n = 20) or placebo (n = 19)

RCT

6 weeks

Dose divided in 6x/day

(after and before each

meal)

11. No changes in HbA1c,

fasting blood glucose, and

insulin

12. " HOMA-IR but not after

correction for potential

confounding variables

13. Did not assess actual

biomarkers for butyrate

production

Khosravie

et al.

(2022)283

Abbreviations: BMI, body mass index; FMT, fecal microbial transplantation; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment for

insulin resistance; IAUC, incremental area under the curve; RCT, randomized controlled trial; SCFA, short chain fatty acids.
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mass289 (see Table 1). Remarkably, a high dose of fructo-

oligosaccharides (FOS) or galacto-oligosaccharides (GOS), which are

also bifidogenic prebiotics, had detrimental effects on glucose homeo-

stasis in healthy adults.290 FOS increased area under the curve for

total glucose concentration and GOS significantly increased fasting

glucose levels postintervention. Both GOS and FOS supplementation

decreased the abundance of several butyrate-producing bacterial

strains, coincided by substantial reduction in fecal butyrate concentra-

tions. Again, considerable heterogeneity in response was identified.

Some participants showed improved glycaemic response after GOS

intervention yet unfavorable responses after FOS intervention and

others vice versa.

4.2 | Butyrate administration, body weight control,
and insulin sensitivity

Instead of elevating colonic microbial butyrate production, butyrate

can also be provided orally as an end product itself. Interestingly,

4 weeks of daily oral sodium butyrate supplementation did not affect

peripheral nor hepatic insulin sensitivity, measured using the golden

standard measurement, in males with MetS (n = 10). In contrast, both

parameters were significantly increased in healthy males (n = 9)159

(see Table 2). The provided dose may have been insufficient for indi-

viduals with MetS, potentially explaining this discrepancy. After

4 weeks, individuals with MetS exhibit significant reductions in all

fecal SCFA, whereas in the plasma, these reductions were limited to

propionate only. In line with these results, another clinical trial per-

formed with the same butyrate concentration and intervention dura-

tion but including both males and females with MetS (n = 12) showed

no effects on insulin sensitivity parameters while in this study the

fecal SCFA levels remained unchanged. Despite unaltered insulin sen-

sitivity, HbA1c concentration was significantly reduced compared with

baseline suggesting that butyrate may mediate minor changes in glu-

cometabolic state.206 Nevertheless, the researchers compared the

study outcomes of oral butyrate supplementation to a single FMT

from a donor that underwent gastric bypass surgery and did not

include an additional control group. Two other clinical trials performed

with patients with T1DM (45 days of supplementation) and T2DM

(4 week of supplementation), respectively, also do not report overt

changes in glucose metabolism upon oral sodium butyrate supplemen-

tation (see Table 2).178,283 Remarkably, butyrate supplementation in

patients with T1DM decreased the abundance of butyrate-producing

bacteria and fecal SCFA concentrations.283 In patients with T2DM,

within-group analysis revealed the combination of inulin and oral

sodium butyrate administration was able to significantly reduce fast-

ing blood sugar and hip-to-waist ratio compared with baseline albeit

not compared with placebo intervention. Since the use of first-line

medication for T2DM, which could include metformin, prior and dur-

ing the study was allowed, a synergistic effect with butyrate may have

occurred.178 Another RCT including patients with T2DM showed that

6 weeks of sodium butyrate supplementation increased fasting plasma

insulin compared with baseline albeit not compared with placebo.

Remarkably, HOMA-IR increased significantly compared with initial

levels as well as placebo, yet this was no longer significant after

adjusting for potential confounding factors including a significant dif-

ference in T2DM duration and concentration of antidiabetic medica-

tion between the two intervention groups.239 Unfortunately, the

latter two studies performed with individuals with T2DM did not eval-

uate a biomarker for butyrate production. None of the above

described clinical studies indicate changes in body weight after buty-

rate intervention, but it remains uncertain whether this may be attrib-

uted to the short intervention period (<8 weeks).

In conclusion, the efficacy of butyrate-focused human interven-

tions appears modest and is only apparent in within-group analyses.

Nonetheless, the efficacy may depend on the target population and

baseline characteristics such as microbiome composition and further

investigations are warranted.

5 | CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Butyrate supplementation studies consistently demonstrate promising

beneficial effects on body weight control and insulin sensitivity in ani-

mal models. However, whether the experimental design in rodent

models is translational to the human situation is questionable. Most of

the rodent studies mentioned above provided butyrate in combination

with a HFD, before obesity is established, and the time course of

development of obesity is not comparable with those in humans. Such

an experimental set-up provides important information about the

prevention of obesity but does not give indications on the effect of

butyrate when obesity is already present. Moreover, the results

of animal studies are not always consistent as some did not find

significant alterations in body weight,204,294 food/energy

intake,152–154,158,182,204,226 or energy expenditure209,226 after buty-

rate intervention. In humans, Mendelian randomization analysis has

inferred a causal relationship between the abundance of several

butyrate-producing microbial strains and an improved postprandial

insulin response in normoglycemic individuals.295 Nevertheless, so far,

human butyrate-focused intervention studies are scarce and have only

demonstrated modest improvements in insulin sensitivity in lean, met-

abolically healthy, individuals but not in individuals that are metaboli-

cally compromised.159 The limited available human data are derived

from studies with a relatively small sample size and short intervention

period (e.g., 4 weeks)159,206,283,285,290 and some studies are not

placebo-controlled.159,206,285,286,288,290 Additionally, several clinical

studies evaluated butyrate status by fecal butyrate concentration,

which is not a good proxy for luminal production. The fact that

plasma, but not fecal, SCFA levels have been associated with meta-

bolic parameters suggests that plasma SCFA may function as a more

adequate biomarker for the metabolic health effects of butyrate.22

Besides assessing butyrate levels directly in the circulation, future

studies should focus on bacterial activity to study changes in butyrate

production and pathways involved in more detail, for example, by

using multi-omics approaches such as metagenomics and
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metabolomics.296 Noninvasive ingestible capsules that enable direct

sampling of luminal content may be used to acquire important bioin-

formation on microbial butyrate production in different regions of the

gastrointestinal tract.297,298

Numerous studies have reported heterogeneity in the production

and kinetics of butyrate after probiotic and prebiotic

supplementation,299–304 which may depend on microbial phenotype

and absorption capacity of the host, and this may partially explain

interindividual variation in metabolic response towards these inter-

ventions. To illustrate, after probiotic intervention, fecal butyrate con-

centrations were substantially increased in individuals with a low

butyrate production at baseline.301 However, this increase was signifi-

cantly less301 or even led to reduced fecal butyrate concentration300

if initial butyrate levels were already high. These results suggest that

initial microbial composition and fecal or plasma butyrate levels could

act as a biomarker to preselect individuals that would benefit the most

from butyrate-focused interventions. In addition, the pathological sta-

tus of the individual, for example, obesity and T2DM as well pheno-

typic variations and differences in etiology, duration and severity

within these pathological states may influence the sensitivity towards

butyrate. Consequently, the therapeutic dose of butyrate that is able

to elicit beneficial metabolic effects may vary among individuals.

Although knowledge on the stability and resilience of the gut micro-

biome in response to dietary intervention is still largely unknown,305

one can hypothesize that the therapeutic window may be more pro-

found at an earlier stage of metabolic dysfunction whereas increased

resilience challenges change at a later stage. Nevertheless, the

previously reported reduced therapeutic effect of butyrate in

individuals and mice with obesity159,187 could also be a direct conse-

quence of increased body volume, resulting in a decreased concentra-

tion of butyrate per kilogram of fat free mass. Hence, clinical oral

butyrate concentrations may need to be changed accordingly

(e.g., concentration/kg lean mass), while keeping in mind the preserva-

tion of microbial endogenous butyrate production.82

Besides the microbial and metabolic phenotype of the partici-

pants, other factors that need to be considered are as follows: age,

medication use, exercise, sex, stress, genetics, sleep quality, and life-

style factors including alcohol consumption and smoking. An 8-week

butyrate intervention in obese mice demonstrated a significant reduc-

tion in body weight in late-adult but not mid-adult mice,188,229 sug-

gesting that oral butyrate interventions may be more advantageous at

an older age. Since SCFA production and butyrate-producing bacterial

strains appear to be reduced in elderly,306 SCFA interventions may be

more desired at an older age. Furthermore, several T2DM medications

are proposed to have synergistic effects with butyrate including dapa-

gliflozin157 and metformin,292 suggesting that butyrate has potential

to serve as an adjunct to T2DM therapy. Few butyrate-focused inter-

ventions have investigated the effect of sex and ethnicity on study

outcomes. Nonetheless, sex and ethnicity-specific differences in the

butyrate producing gut microbiome as well as the response to prebi-

otic and probiotic interventions have been reported.307–310

Next to interindividual differences, several other components

may influence clinical efficacy including intervention duration,

concentration and type/form of butyrate or fiber supplied, mode and

frequency of administration, and whether butyrate is provided fasted

or in the postprandial state (see Table 2). For prebiotic interventions,

the level of butyrate production depends, among other factors, on the

degree of polymerization and saccharide linkage of the fiber and the

intestinal milieu including the abundance of specific microbial strains,

for example, R. bromii,49 the availability of certain B vitamins311 and

the level and quality of fat.312 Recent evidence suggests that different

types of dietary fat and the presence of cholesterol (e.g., present in

lard but absent in palm oil) may affect gut microbial composition and

metabolite profile.312,313 This difference may explain why significant

reductions in food intake after butyrate intervention have been

reported in mice receiving a HFD containing lard as a main dietary fat

source155,177 but not in mice receiving the same concentration of

butyrate but incorporating palm oil as a main dietary fat source.182

Other diets that have been associated with a reduced abundance of

butyrate-producing strains or butyrate production include diets high

in salt314,315 and (animal-derived) proteins.316,317 Lastly, combining

exogenous butyrate supplementation with β-hydroxybutyrate, a

ketone body, may induce synergistic metabolic effects for weight

loss.318 Overall, food-microbe crosstalk may explain inconsistencies

among animal studies and may interact with the outcome of human

butyrate interventions. To optimize butyrate-focused prebiotic inter-

ventions, substrate supply and initial presence of specific bacterial

communities need to be considered.

Next to the dose of butyrate and dietary context, the level of

butyrate that reaches the circulation may depend on where butyrate

is absorbed along the gastrointestinal tract. In the colon, butyrate

maintains energy homeostasis as a result of a mutualistic relationship

between host and butyrate-producing microbes.100,101,144,145 How-

ever, in the upper part of the intestine, microbes (including butyrate-

producing bacteria) are present in sustainably lower amounts.69 Since

enterocytes prefer other energy sources such as glucose over buty-

rate, oral butyrate supplementation may increase the amount of buty-

rate reaching the liver and circulation compared with colonically

derived butyrate. Interestingly, butyrate can partly bypass the liver via

the internal iliac vein in the distal part of the colon.319 Supplementing

dietary fibers that ferment more distally or administering butyrate

enemas in the rectum could potentially increase circulating butyrate

levels. A study investigating acetate administration along the gastroin-

testinal tract in men with obesity already demonstrated profound

beneficial metabolic alterations after distal but not proximal adminis-

tration.320 Whether such differences also exist for butyrate still needs

to be investigated. Yet, a recent study demonstrated that combining

long-chain inulin with resistant starch increased fasting plasma buty-

rate, coincided by beneficial metabolic effects including an increased

energy expenditure, compared with inulin alone in healthy men.321

This fiber combination may potentially reach the colon more distally,

explaining the observed increased systemic butyrate levels.

Overall, solid statements about the potential metabolic benefits of

butyrate-focused interventions in humans remain premature and are

likely highly context specific. In order to tilt microbial disturbances and

impaired metabolic processes, interventions may require a
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personalized approach and a longer intervention period. Future studies

should specify whether the optimal dose of butyrate differs for specific

target populations, for example, individuals with obesity and individ-

uals using metformin and elucidate the optimal mode, frequency, and

(dietary) context of butyrate intake. Lastly, the controversy on the role

of butyrate in individuals with metabolic disturbances needs to be dis-

entangled. Future research should elucidate whether butyrate is an

important etiological factor in the prevention and management of obe-

sity and obesity-related complication and determine which processes

in carbohydrate fermentation and SCFA handling are altered. Whether

obesity and T2DM dysregulates butyrate production, absorption,

clearance, and/or alters the sensitivity towards butyrate provides cru-

cial information that can be fundamental for improving the efficacy of

butyrate-focused clinical trials.
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