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Comprehensive genomic analysis of dietary habits
in UK Biobank identifies hundreds of genetic
associations
Joanne B. Cole 1,2,3, Jose C. Florez1,2,4 & Joel N. Hirschhorn1,3,5✉

Unhealthful dietary habits are leading risk factors for life-altering diseases and mortality.

Large-scale biobanks now enable genetic analysis of traits with modest heritability, such as

diet. We perform a genomewide association on 85 single food intake and 85 principal

component-derived dietary patterns from food frequency questionnaires in UK Biobank. We

identify 814 associated loci, including olfactory receptor associations with fruit and tea intake;

136 associations are only identified using dietary patterns. Mendelian randomization suggests

our top healthful dietary pattern driven by wholemeal vs. white bread consumption is causally

influenced by factors correlated with education but is not strongly causal for coronary artery

disease or type 2 diabetes. Overall, we demonstrate the value in complementary phenotyping

approaches to complex dietary datasets, and the utility of genomic analysis to understand the

relationships between diet and human health.
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Unhealthful dietary habits are thought to be the leading risk
factor for mortality both globally1 and in the United
States2. Overall, incidence rates of these dietary risk fac-

tors and their related diseases, like obesity and type 2 diabetes
(T2D), are rising in parallel worldwide3,4, causing global epi-
demics that require our urgent attention. Describing a biological
basis for unhealthful dietary preferences could guide more
effective dietary recommendations.

There is a clear, albeit modest, genetic component to diet, such
as traditional measures of macronutrient intake (i.e., proportion
of carbohydrate, fat, and protein to total energy intake), as
demonstrated by significant heritability and individual genetic
associations5–9. Five genome-wide association studies (GWAS) of
macronutrient intake have been conducted to date; the most
recent multi-trait analysis identified 96 independent genetic loci
by combining summary statistics of individual macronutrient
GWAS from 24-h diet recall questionnaires in 283K individuals
in UK Biobank (UKB)6–9. In addition, the Neale Lab conducted
GWAS (http://www.nealelab.is/uk-biobank/) across thousands of
mostly binary traits analyzed primarily as dichotomous outcomes
(i.e., wholemeal bread vs. all others) in 361K unrelated individuals
in UKB. The recent GeneAtlas10 improved power by using linear
mixed models in 450K individuals in UKB, but analyzed a smaller
set of dietary variables.

Additional measures of dietary intake, including both curated
measures of single food intake (FI) and multivariate dietary
patterns (DPs), such as those described by principal component
(PC) analysis, have also shown significant associations with health
outcomes in both epidemiological studies11,12 and clinical trials13.
Thus, with the recent advent of large biobank-sized population
cohorts with dietary data, we can now perform GWAS with
multiple complementary phenotyping approaches to examine a
wide array of dietary habits, including previously unstudied single
food comparisons (i.e., wholemeal vs. white bread) and DPs.
Here, we report heritability and GWAS analysis (using linear
mixed models) of both single FI, analyzed as curated single FI
quantitative traits (FI-QTs), and of PC-derived DPs (PC-DPs)
using Food Frequency Questionnaire (FFQ) data in up to 449,210
Europeans from UKB; we highlight association at biologically
interesting loci (olfactory receptor loci associated with tea and

fruit consumption) and use Mendelian randomization (MR)
analyses to elucidate potentially causal relationships pertaining to
specific dietary habits.

Results
Most dietary habits are correlated and heritable. We derived 85
curated single FI-QTs from FFQ administered in UKB, using 35
nested and complementary questions (Supplementary Data 1; see
Methods). As expected, given the nested nature of these ques-
tions, many pairs of the 85 FI-QTs were significantly correlated
(P < 0.05/85= 5.88 × 10−4; Supplementary Fig. 1 and Supple-
mentary Data 2). We therefore also conducted PC analysis of
these FI-QTs to generate 85 PC-DPs that capture correlation
structure among intake of single foods and represent independent
components of real-world dietary habits. The top 20 PC-DPs
have eigenvalues >1, and explain 66.6% of the total variance in the
85 FI-QTs (Supplementary Fig. 2). While the inclusion of highly
correlated FI-QTs in the PCA will affect the structure of the
resulting PCs, it will not substantially affect the heritability
(beyond additional noise when including multiple correlated
variables) nor will it exclude FI-QTs that contribute significantly
to the variance in the total FFQ dataset. Therefore, we used
heritability of all 85 FI-QTs and 85 PC-DPs as a filter for
downstream genomic analysis.

Overall, 84.1% of dietary habits analyzed (83/85 FI-QTs and
60/85 PC-DPs) were significantly heritable (as assessed by h2g P <
0.05/170= 2.9 × 10−4; see Methods, Table 1, Supplementary
Data 1, and Supplementary Fig. 3), displayed extensive genetic
correlation (rg; Supplementary Data 3), and were included in
downstream genomic analysis. Phenotypic and genetic correla-
tion between the 60 PC-DPs and their significantly contributing
FI-QTs are illustrated in Supplementary Fig. 4. The most
heritable FI-QTs fall into a handful of dietary food groups
related to milk consumption, alcohol intake, and butter/spread
consumption. The first PC-DP (hereafter referred to as PC1) is
among the most heritable DPs (PC1 h2g = 13.6%, Table 1), and is
more heritable than all of its individual contributing FI-QTs
(all h2g comparisons have P < 5.0 × 10−45, see Methods), including

bread type (max h2g = 9.5%, Supplementary Data 1).

Table 1 SNP heritability estimates h2g

� �
and number of significant GWAS loci for the most heritable 20 dietary habits.

Dietary habit N h2g SE P value Number of
significant loci

Milk type: soy milk vs. never 31,889 0.282 0.010 5.8 × 10−175 1
Milk type: full cream vs. never 43,995 0.243 0.007 4.8 × 10−264 1
Spread type: tub margarine vs. never 77,738 0.182 0.004 <1.00 × 10−300 5
Among current drinkers, drinks usually with meals: yes vs. no 235,312 0.160 0.001 <1.00 × 10−300 30
PC1 449,210 0.136 0.001 <1.00 × 10−300 140
Spread type: flora+ benecol vs. never 86,823 0.133 0.004 2 × 10−242 2
Milk type: other milk vs. never 20,557 0.128 0.015 1.42 × 10−17 0
Overall alcohol intake 448,623 0.121 0.001 <1.00 × 10−300 98
PC3 449,210 0.118 0.001 <1.00 × 10−300 82
Glasses of water per day 445,965 0.116 0.001 <1.00 × 10−300 78
Total drinks of alcohol per month 449,210 0.113 0.001 <1.00 × 10−300 104
Spread type: low fat spread vs. never 72,017 0.110 0.004 1.8 × 10−166 0
Coffee type: decaffeinated vs. any other 353,710 0.108 0.001 <1.00 × 10−300 36
Pieces of fresh fruit per day 447,401 0.108 0.001 <1.00 × 10−300 99
Overall cheese intake 438,453 0.108 0.001 <1.00 × 10−300 60
Spread type: butter vs. never 213,549 0.102 0.001 <1.00 × 10−300 15
Frequency of adding salt to food 448,890 0.102 0.001 <1.00 × 10−300 82
Among current drinkers, drinks usually with meals: yes/, it varies, no 357,136 0.101 0.001 <1.00 × 10−300 29
Bread type: white vs. wholemeal/wholegrain+ brown 416,312 0.100 0.001 <1.00 × 10−300 46
Milk type: skimmed vs. never 108,035 0.098 0.003 <1.00 × 10−300 1
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PC1, which explains 8.63% (Supplementary Fig. 2) of the total
phenotypic variance in FI-QTs, contains foods similar to those
that make up previously described Western and prudent dietary
factors14, although our PC1 is primarily defined by the type of
bread consumed (wholegrain/wholemeal vs. white bread). Over-
all, the FI-QTs that have significant positive loadings for PC1
include wholemeal/wholegrain bread consumption (two corre-
lated FI-QTs contributing 15.4–15.8%), increased fruit and
vegetable intake (four correlated FI-QTs contributing 1.2–2.6%),
increased oily fish intake (1.8%), and increased water intake
(1.2%). The FI-QTs that have significant negative loadings
include white bread consumption (two correlated FI-QTs
contributing 12.7–12.8%), butter and oil spread consumption
(seven correlated FI-QTs contributing 1.5–2.2%), increased
processed meat intake (1.9%), and consumption of milk with
higher fat content (1.8%; Fig. 1).

Dietary habit GWAS in UKB identifies 814 independent loci.
GWAS on the 143 significantly heritable dietary habits, using
linear mixed models in up to 449,210 individuals, identified 814
independent loci (defined as >500 kb apart) surpassing genome-
wide significance (P < 5.0 × 10−8). Of these, 309 also surpass a
more conservative Bonferroni-corrected study-wide significance
threshold (P < 5.0 × 10−8/143 traits= 2.9 × 10−10; Supplementary
Data 4). Across the 143 dietary traits, there was a clear positive
correlation of heritability estimates (h2g) with the number of

significant loci and the variance explained by these loci (Fig. 2),
a pattern that persisted when limited to phenotypically inde-
pendent DP-PCs, with outliers often explained by smaller
sample size (Supplementary Fig. 5). We also found evidence
that the more heritable phenotypes have led to single-
nucleotide polymorphisms (SNPs) with larger effect sizes
rather than simply a greater number of significant loci (Fig. 2
and Supplementary Fig. 5). Notably, there is a mix of FI-QTs
and PC-DPs among the most successful GWAS traits, with the
PC1 GWAS identifying the most significant loci (M= 140) that
together explain the largest amount of variance of any dietary
habit analyzed (6.65%).

Recent work in a non-mixed model setting has demonstrated the
presence of latent structure in UKB co-incident with outcomes such
as educational attainment, which is also associated with dietary
intake15,16. We found that our linear mixed model dietary habit
GWAS had little to no residual confounding as estimated by linkage
disequilibrium (LD) score regression (LDSC) intercepts (median=
1.018, inter-quartile range (IQR): 1.011–1.030) and ratios (median
= 0.087, IQR: 0.059–0.0123; Supplementary Data 1). Furthermore,
large-scale sensitivity analysis re-conducting all 143 significantly
heritable dietary habit GWAS additionally adjusting for assessment
center in the genetic model only found slight attenuation of
heritability (median from 4.6% to 4.2%, IQR from 2.4–7.9% to
2.2–7.4%). We report the results in this paper without additional
adjustment for assessment center.
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Fig. 1 Relationships between PC1 and its 19 significantly contributing single food intake QT. The heat map depicts the phenotypic (upper triangle) and
genetic (lower triangle) correlation between the 19 significantly contributing single FI-QTs with each other and PC1. All correlations with nonsignificant
P values (P > 0.05/85) were set to 0. Percent contribution of each of the 19 traits to PC1 is depicted in the correlation matrix bar plot annotation on the
right, colored by loading direction.
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Of the 814 index SNPs, 767 (94%) are common with minor
allele frequencies ≥5%; similar to previous GWAS findings17, the
vast majority are either intronic or intergenic (82.2%). Credible
set analysis found that more than one-third of our lead signals
(289/814) were driven by 10 or fewer SNPs, 124 had 2–5 credible
set SNPs and 54 had a single 95% credible set SNP (see Methods).
Of the credible sets with single SNPs, 65.2% are intronic or
intergenic, while 13.0% are missense variants and the remainder
largely regulatory (by comparison, only 1.9% of index SNPs from
multi-SNP credible sets are missense). We investigated whether
any of our loci were previously reported at genome-wide
significance for any trait in either the GWAS catalog18 or the
comprehensive Neale Lab GWAS (http://www.nealelab.is/uk-
biobank/) of 4358 traits in 361,194 unrelated individuals in
UKB. Of the 814 dietary habit GWAS loci, 205 have never been
previously reported. This can largely be explained by our use of
previously unstudied curated FI-QTs and PC-DPs and/or
statistical power gained from linear mixed models in nearly
450K individuals.

Olfactory receptor loci are associated with specific foods.
Among the lead loci are several regions containing clusters of
olfactory receptor genes. Although our dietary habit GWAS loci
are not enriched for olfactory receptor genes (Fisher’s test P=
0.419), the association of olfactory receptors with specific FI-QTs
supports the well-known link between smell and taste. The
top signal associated with “pieces of fresh fruit eaten per day” is a
region on chromosome 7q35 (lead SNP rs10249294 P= 5.7 ×
10−65; Supplementary Fig. 6). All 44 SNPs within the 95%
credible set cover a 27 kb region containing olfactory receptor
gene OR6B1 (Supplementary Fig. 7). Another locus specific to
fruit intake, on chromosome 14q (Supplementary Fig. 6), is
associated with both “pieces of fresh fruit per day” (rs34162196
P= 5.1 × 10−24) and “pieces of dried fruit per day” (rs35260863
P= 6.4 × 10−18). The only two SNPs contained in both 95%
credible sets cover a 5.8 kb region (chr14:22,038,125–22,043,949)

containing olfactory receptor gene OR10G3 (Supplementary
Fig. 7).

Five additional loci have 95% credible sets that overlap olfactory
receptor genes and are strongly associated with a single FFQ
question. Notably, “cups of tea per day” is associated with a region
on chr11q12 (lead SNP rs1453548 P= 3.1 × 10−9) that contains
six different olfactory receptor genes, including OR5AN1, OR5A2,
OR5A1, OR4D6, OR4D10, and OR4D11 (Supplementary Fig. 7).
The 95% credible set contains SNP rs7943953 (chr11:59,224,144)
previously reported for being associated with odor perception, and
specifically that of β-ionone (floral) sensitivity, an aroma
compound found in high quantities in tea19–21. By contrast,
“cups of coffee per day” is associated with a nearby yet distinct
region on chr11q12 (lead SNP rs643017 P= 1.1 × 10−8) in a dense
cluster of olfactory receptor genes containing OR8U8 and OR5M3
(Supplementary Fig. 7). Other associations with olfactory receptor
gene regions include regions containing OR52J3 and OR52E2 with
three dietary habits measuring butter consumption (rs2445249
with “spread type: butter vs. any other” P= 9.1 × 10−15), OR4K17
with “tablespoons of raw vegetables per day” (rs9323534, P=
4.1 × 10−10), and OR10A3 and OR10A6 with “overall cheese
intake” (rs757969034, P= 2.4 × 10−8; Supplementary Fig. 7).

GWAS of dietary pattern PC1. Of the PC-DPs, the PC1 DP has
the highest heritability and most genome-wide significant loci,
and previously identified DPs with similar food make-ups
(although with different factor loadings) have been associated
with disease22,23. Although PC1 is both phenotypically and
genetically correlated with its 19 contributing FI-QTs (absolute
rp= 0.25–0.81; absolute rg= 0.29–0.93), the GWAS results pro-
vide distinct sets of significant associations. Together, PC1 and its
19 contributing traits are associated with a total of 387 inde-
pendent genome-wide significant loci, falling into one of four
categories (Fig. 3): 55 loci significant for PC1 only (dark blue),
282 loci significant for one or more of the 19 contributing FI-QTs
only (dark red), 37 loci more significant for PC1 (light blue), and
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13 loci more significant for one or more of the 19 QTs (light red).
The 55 loci significantly associated with PC1 but not FI-QTs still
trend toward association with one or more of the 19 contributing
FI-QTs, whereas the reciprocal is not always the case: some FI-
QT-associated SNPs display no association with PC1 at all. This
observation indicates that the use of PCs can increase power to
detect some associations, while others are only detectable through
association with specific foods, supporting the use of both of these
complementary phenotyping approaches to more effectively
define the genetic architecture of dietary intake.

In addition to being correlated with its contributing FI-QTs,
PC1 displays significant genetic correlation with 248 non-diet-
related traits, including traits relating to physical activity,
educational attainment, socioeconomic status, smoking status,
medication codes, and urine biomarkers (Supplementary Data 5).
The lead PC1 SNP, rs66495454, is a common indel (minor
allele frequency (MAF)= 38%) located at chr1:72,748,567 in the
promoter of neuronal growth factor 1 (NEGR1; Supplementary
Fig. 7). SNP rs66495454’s deletion allele (−/TCCT) is associated
with a decrease in PC1, indicating a shift towards white bread
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consumption and other unhealthful foods (β=−0.017, P=
2.80 × 10−48) and has been previously reported as associated with
a decrease in intelligence, educational attainment, and, perhaps
surprisingly, body mass index (BMI)24–26. We were struck by the
observation that 122 PC1-associated loci were already present in
the GWAS catalog18 or Neale Lab GWAS (http://www.nealelab.
is/uk-biobank/), and of these, 83 were associated with intelligence
or cognitive ability, educational attainment, or obesity-related
anthropometric traits, including rs1421085 in FTO and rs429358
in APOE (Supplementary Data 4). Of these 83, 24 were associated
with intelligence or educational attainment and not obesity-
related traits; 38 were associated with obesity-related traits and
not intelligence or educational attainment, indicating PC1 may be
responsive to distinct sets of heritable factors related separately to
educational attainment and to BMI. DEPICT (Data-driven
Expression Prioritized Integration for Complex Traits) pathway
analysis of PC1 identified enrichment of two gene sets, including
axonogenesis, and 22 tissues, of which 21 were brain related (false
discovery rate <0.05; Supplementary Data 6). The large and broad
overlap in both the significant loci and the overall genetic make-
up of our dietary habits with other traits, many of which do not
have well-established biological links with diet, emphasizes a need
for exploring correlation vs. causation.

Therefore, we sought to understand the cause-and-effect
relationships and degree of pleiotropy between PC1 and
educational attainment, fluid intelligence scores, and BMI using
bidirectional MR27. We performed additional GWAS of educa-
tional attainment, fluid intelligence scores, and BMI in UKB and
applied bidirectional MR with these phenotypes and PC1 (see
Methods). Both inverse variance weighted (IVW) random-effects
and weighted median (WM) MR provided significant evidence of
causal effects of educational attainment and fluid intelligence on
PC1 (educational attainment WM β= 0.823, 95% confidence
intervals [CI]: 0.751–0.894, P= 6.59 × 10−113; intelligence WM
β= 0.261, 95% CI: 0.190–0.332, P= 7.71 × 10−13; Table 2 and
Supplementary Fig. 8). Egger regression intercepts for both
intelligence and educational attainment were not significantly
different than 0 (Table 2) and causal effect estimates were
essentially unchanged after different approaches to variant
filtering (see Methods and Supplementary Table 1). For each
1 standard deviation increase in educational attainment and
intelligence, these data estimate that PC1 shifts from white bread
consumption and foods often described as unhealthful to
wholemeal bread consumption and foods often described as
healthful by 0.823 and 0.261 standard deviations, respectively. To
rule out weak instrument bias in overlapping samples, we
validated our educational attainment results in two ways with
high congruence. An externally derived educational attainment
genetic instrument26 had an effect estimate on PC1 equal to 0.708
(95% CI: 0.576–0.840, P= 6.23 × 10−26), and splitting UKB into
training and testing datasets also yielded similar and significant
effect estimates (Supplementary Table 2). Results were also in
high agreement with a repeated MR analysis using our sensitivity
analysis PC1 GWAS results adjusted for assessment center
(Supplementary Table 2). While PC1 is largely driven by bread
type, MR of educational attainment on PC1’s 19 contributing FI-
QTs demonstrates significant causal effects on both bread and
non-bread FI-QTs, suggesting that while smaller, the other foods
contributing to PC1 have a significant impact (Supplementary
Table 3).

The reverse analysis shows significant but smaller estimates
of causal influences of PC1 on educational attainment and
fluid intelligence (educational attainment WM β= 0.199, 95%
CI: 0.175–0.224, P= 7.44 × 10−56; intelligence WM β= 0.074,
95% CI: 0.045–0.104, P= 8.04 × 10−7). The smaller effects
suggest that while there could be pleiotropy undetected by the T
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Egger and WM approaches, or true bidirectional effects, the
causal influences are more likely to be in the direction of
educational attainment to wholemeal bread consumption and
other healthful foods. Importantly, because the instrumental
variables used for educational attainment are not mechanistically
linked directly to educational attainment/intelligence, it remains
possible that causal influences on PC1 could be due to
unmeasured heritable factor(s) that are themselves causal for
educational attainment/intelligence. Furthermore, because PC1 is
highly correlated with hundreds of additional outcomes, educa-
tional attainment (or traits correlated with educational attain-
ment) could be influencing a larger complex phenotype made of
many lifestyle factors that is captured here by PC1 dietary
preferences. In contrast to the educational attainment analyses,
we were unable to provide robust evidence of a causal relationship
in either direction between BMI and PC1 due to significant
heterogeneous pleiotropic effects leading to inconsistent causal
effect estimates (Table 2 and Supplementary Fig. 8). Taken
together with an overlap between genome-wide significant
variants and small overall genetic correlation (rg=−0.056, P=
0.024), we postulate that BMI and our non-isocaloric PC1 have a
highly complex multi-pathway relationship for which there may
be overlapping genetic etiology, but a mostly distinct underlying
genetic architecture.

Causal relationships with disease and related risk factors. To
test whether the PC1 DP, driven largely by bread type, is cap-
turing a lifestyle that is likely to causally influence disease risk, we
repeated bidirectional MR analysis between PC1 with coronary
artery disease (CAD) from the mostly European CARDIo-
GRAMplusC4D GWAS and T2D from the DIAGRAM con-
sortium 2017 GWAS28,29. The only association that provides
robust evidence of a causal relationship was an increased risk in
CAD leading to an increase in PC1, indicating wholemeal over
white bread consumption, with a significant, albeit small effect
(WM β= 0.0458, 95% CI: 0.016–0.076, P= 0.003, Supplementary
Table 4), suggesting reverse causation of CAD on diet. Although
we found that higher educational attainment increases PC1
wholemeal vs. white bread consumption and other healthful
foods, using our genetic instruments we did not identify causal
evidence that PC1, driven by bread type, causes a decreased risk
for CAD or T2D. Again, similar results were found when using
our sensitivity analysis PC1 GWAS results adjusted for assess-
ment center (Supplementary Table 4).

In contrast to the associations with PC1, a single SNP,
rs1453548, strongly influences “cups of tea per day” and has a
plausible biological mechanism (it is located in an olfactory
receptor-dense region and explains >96% of the observed
phenotypic variance of β-ionone sensitivity30). We therefore
performed an MR analysis using rs1453548 on the complete set of
traits in UKB using the Neale Lab GWAS (http://www.nealelab.is/
uk-biobank/). Using a strict Bonferroni-corrected significance
threshold (P < 0.05/4358 traits= 1.15 × 10−5), we identified a
significant causal effect of “cups of tea per day” on smoking
status, for which increases in the minor allele T (MAF= 34%)
that cause an increase in “cups of tea per day” cause a decrease in
smoking status (Neale 20160:ever smoked Wald ratio estimate=
−0.51, 95% CI: −0.69 to −0.32, P= 4.326 × 10−8; Supplementary
Data 7). However, rs1453548 is directly associated with “ever
smoked” smoking status in the Neale Lab GWAS at genome-wide
significance (P= 4.329 × 10−8), the 51-SNP “cups of tea per day”
genetic instrument excluding rs1453548 has no significant causal
effect on smoking status (IVW P= 0.20), and β-ionone is also
found in tobacco31, suggesting the effects of rs1453548 on odor
perception of β-ionone may have pleiotropic effects on both

smoking status and tea drinking. Together with a lack of
additional significant causal relationships between rs1453548 and
health outcomes in UKB, our results indicate that drinking more
tea does not have clear effects on health outcomes in UKB, and it
is possible that some previous reports on the health benefits of
drinking more tea are a result of confounding with smoking
status.

Discussion
Understanding the genetic architecture of dietary habits has
immense implications for human health, but has been a difficult
task, in part due to the low heritability of many dietary traits. The
recent advent of large-scale datasets such as UKB, with deep
phenotyping on hundreds of thousands of individuals, has now
made genetic discovery of traits with relatively low heritability
possible. Expansion of phenotyping to include both curated FI-
QTs and PC-DPs together with GWAS in nearly 450K individuals
allowed our study to make hundreds of new genetic discoveries
relating to diet. Our work advances the elucidation of the genetic
architecture of multiple correlated dietary habits and helps lay the
groundwork for future research on nutrigenomic and other
complex multifactorial multivariable datasets.

Our work emphasizes the importance of interrogating the
genetics of complementary phenotypes to glean a more complete
picture of the genetic architecture of diet. One of the strongest
associations we observed was between SNP rs1229984 and the FI-
QT “total drinks of alcohol per month” (P= 3.8 × 10−248; Sup-
plementary Fig. 6). This SNP has been previously associated with
alcohol consumption10,32–35; consistent with a recent meta-
analysis35, our use of a curated and quantitative FI-QT improved
power compared with the more categorical “overall alcohol
intake” phenotype and individual alcohol subtypes (i.e., “red wine
glasses per month”; Supplementary Figs. 6 and 9). This increase
in power is consistent with the high genetic correlation but low
phenotypic correlation between individual questions related to
alcohol, indicating that a composite alcohol question is more
suitable for genetic discovery (Supplementary Fig. 10). Further-
more, using PC1 as an example, we demonstrate that the genetic
architecture of FI-QTs and PC-DPs are distinct, with hundreds of
genetic associations more strongly associated with either PC1 or
with its contributing FI-QTs. Overall, by using complementary
phenotyping approaches, we identified 814 independent genetic
associations, of which 205 were completely novel, 311 were
uniquely associated with curated FI-QTs, and 136 were uniquely
associated with PC-DPs.

Of note, PC-DPs described throughout our manuscript were
derived from a data-driven and unbiased PCA that included all
FI-QTs, including those that were highly correlated and based
upon the same FFQ question. Although this approach will shift
each PC towards any of its overrepresented correlated measures,
as is seen with bread type, which makes up 56.7% of PC1, it will
not substantially inflate heritability (other than by diminishing
noise introduced by repeated measures of correlated phenotypes)
nor will it exclude questions that significantly contribute to the
variance in the total FFQ dataset. This also suggests that some
PC-DPs will simply capture correlation between FI-QTs from the
same FFQ question. For example, PC2 is made up of 11 sig-
nificant FI-QTs based on a single FFQ question relating to the use
of butter- and oil-based spreads (Supplementary Fig. 4). On the
other hand, some PC-DPs capture the correlation between a
variety of FI-QTs and FFQ questions fairly equally, such as PC7
whose lead contributors –3 to 7% each) include fish and meat
intake, alcohol intake, tea and coffee consumption, cereal intake,
fruit and vegetable intake, cheese intake, and never eating sugar
(Supplementary Fig. 4). Not surprisingly, SNP heritability, the
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proportion of phenotypic variance explained by common genetic
variation, and number of GWAS loci is larger for PC7, a much
more diverse DP, than for PC2 (Supplementary Fig. 3B). Nota-
bly, future work with DPs derived from non-overlapping FFQ
questions could uncover new biology not discovered in our data-
driven approach.

Of note, the interpretation of the genetic component of pre-
dominantly environmental traits, such as dietary intake, can be
complicated. As we have shown, dietary habits are highly corre-
lated both with each other and with non-dietary traits, suggesting
that any single dietary phenotype may represent a broader diet
and lifestyle. For instance, DP PC1 with both high genetic cor-
relation with educational attainment and large overlap in
genome-wide significant loci with BMI, is capturing variance in
both obesity-related traits and measures of socioeconomic status.
Additionally, similar to most nutritional epidemiology studies,
measures of dietary intake in UKB are based on self-reported
questionnaire data, which intrinsically suffers biases based on
memory and favorable reporting36,37, further complicating the
interpretation of genomic results. As an initial exploration of the
implications of genetically influenced composite DPs, we focused
on the strong genetic overlap between PC1 DP and phenotypes
related to educational attainment38. While bidirectional MR
demonstrates some pleiotropic effects between educational
attainment and PC1, indicating either shared biology or upstream
common cause(s), the relative strengths of these causal estimates
suggests that higher educational attainment and/or correlated
phenotypes (such as socioeconomic status [income rg= 0.77] or
factors related to school performance, such as fluid intelligence
test scores [rg= 0.68]) either directly or indirectly shift towards
wholemeal bread vs. white bread consumption, and to a much
lesser extent other foods described as healthful. While previous
observational studies have shown that Western and prudent DPs
are associated with CAD and T2D11,23, our MR analysis of PC1,
driven by bread type, on CAD or T2D did not demonstrate a
causal effect from diet to disease, but rather a small suggestion of
a reverse causal relationship between CAD and diet (CAD diag-
nosis leads to more wholemeal vs. white bread consumption and
higher intake of other healthfully described foods).

The conclusion that our PC1 DP does not appear to be a causal
risk factor for disease must be viewed in the context of several
potential limitations of our study. Genetic instruments derived
from genome-wide significant variants tend to explain a small
fraction of phenotypic variance, which can lead to lack of power
to detect potentially true causal effects of diet on outcomes,
although this is mitigated by the large sample size of the UKB
cohort. Additionally, while the use of overlapping samples in MR
could in theory lead to inflated causal estimates39, UKB’s large
sample size provides robust genetic instruments, and the strength
of our causal associations, combined with our validation analysis
with an independently ascertained set of instruments for educa-
tional attainment, suggesting that our results are likely not
influenced by weak instrument bias. Furthermore, although we
did not detect evidence of pleiotropy, it remains possible that
pleiotropic effects of some of the variants associated with PC1
masked a causal effect on cardiometabolic disease risk. Finally,
PC1 may not capture the causal protective features of a prudent
DP as it is largely driven by bread type. However, it remains
possible that there is a stronger correlative than causal relation-
ship between PC1 or the previously described Western DP and
increased risk of cardiometabolic disease.

We also find several interesting associations between specific
FI-QTs (fruit, tea, coffee, vegetables, cheese, and butter) and
olfactory receptors. The chr11p15 locus controlling odor percep-
tion of β-ionone30, described as smelling of cedar wood but upon
dilution (e.g., in tea) a more floral aroma40, has pleiotropic effects

that both reduce the chances of ever smoking and increase tea
intake. While SNPs at chr11p15 have already been shown to be
associated with food choice with and without added β-ionone30,
we highlight here for the first time a link between β-ionone odor
perception with smoking status, with potential significant impli-
cations for smoking-related health problems. This result also
highlights the importance of understanding the pleiotropic con-
sequences of variants used as genetic instruments in MR.

Of note, our dietary habits derived from a shortened FFQ were
not adjusted for total energy intake, a measure highly correlated
with physical activity and body weight41; as such, our dietary
habits represent potentially non-isocaloric variations in dietary
intake. However, we found minimal phenotypic correlation
between any of our FFQ-derived phenotypes and 24-h recall
questionnaire-derived total energy intake (maximum correlation
r= 0.037). Furthermore, none of our lead 814 SNPs were nom-
inally significant in the Neale Lab total energy intake GWAS (P >
0.05/814). Nine of our phenotypes, including “slices of bread per
week,” “overall cheese intake,” and “glasses of water per day” did
show significant genetic correlations with total energy intake,
suggesting that the genetic architecture of these traits could be
shared with traits that reflect more global lifestyle and DPs
(Supplementary Data 5).

Overall, we present the genetic analysis of two complementary
phenotypic approaches for dietary habits in a well-powered
sample. Our results expand the understanding of the genetic
contributors to dietary preferences and highlight the advantages
of using complementary and novel approaches to derive carefully
curated phenotypes, both for diet and for polygenic traits more
generally. Our results also empower investigations of how our
eating habits causally relate to disease risk. Comprehensive and
rigorous investigation into the causal consequences of different
modifiable aspects of diet and lifestyle can potentially have
enormous implications for public health.

Methods
UKB genetic data. UKB is a large prospective cohort with both deep phenotyping
and molecular data, including genome-wide genotyping, on over 500,000 indivi-
duals aged 40–69 years living throughout the UK between 2006 and 201042.
Genotyping, imputation, and initial quality control on the genetic dataset has been
described previously43,44. Additionally, we removed individuals flagged for failing
UKBiLEVE genotype quality control, heterozygosity or missingness outliers,
individuals with putative sex chromosome aneuploidy, individuals with self-
reported vs. genetically inferred sex mismatches, and individuals whom withdrew
consent at the time of analysis. Work within was conducted on genetic data release
version 3, with imputation to both Haplotype Reference Consortium and 1000
Genomes Project (1KGP)45, under UKB application 11898. We have complied with
all relevant ethical regulations for work with UKB and all participants provided
informed consent.

UKB phenotype derivation. All phenotype derivation and genomic analysis was
conducted on a homogenous population of individuals of European (EUR)
ancestry (N= 455,146), as determined by: (1) projection on to 1KGP phase 3 PCA
space, (2) outlier detection to identify the largest cluster of individuals using
Aberrant R package46, selecting the λ in which all clustered individuals fell within
1KGP EUR PC1 and PC2 limits (λ= 4.5), (3) removed individuals who did not
self-report as “British,” “Irish,” “Any other white background,” “White,” “Do not
know,” or “Prefer not to answer,” as self-identified non-EUR ancestry could con-
found dietary habits.

Prior to phenotype derivation, we removed individuals who were pregnant, had
kidney disease as defined by ICD10 codes, or a cancer diagnosis within the last year
(field 40005). The UKB FFQ consists of quantitative continuous variables (i.e., field
1289, tablespoons of cooked vegetables per day), ordinal non-quantitative variables
depending on overall daily/weekly frequency (i.e., field 1329, overall oily fish intake),
food types (i.e., milk, spread, bread, cereal, or coffee), or foods never eaten (field
6144, dairy, eggs, sugar, and wheat). Supplementary Data 1 provides a list of UKB
fields relating to the corresponding FFQ question for each dietary habit, which can
be looked up in the UKB Data Showcase (http://biobank.ndph.ox.ac.uk/showcase/).
Ordinal variables were ranked and set to quantitative values, while food types or
foods never eaten were converted into a series of binary variables. Variables relating
to alcoholic drinks per month were derived from a conglomeration of drinks per
month and drinks per week questions answered by different individuals depending
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on their response to overall alcohol frequency (field 1558). All 85 single FI dietary
phenotypes were then adjusted for age in months and sex, followed by inverse rank
normal transformation on continuous FI-QTs. For individuals with repeated FFQ
responses, both the dietary variable and the age in months covariate were averaged
over all repeated measures. PCs were then derived from all 85 FI-QTs after filling in
missing data with the median using the prcomp base function in R. FI-QTs with
percent contribution (squared coordinates) greater than expected under a uniform
distribution [1/85 × 100= 1.18%] were included in Fig. 1 and Supplementary Fig. 4,
created using ComplexHeatmap package in R47. Phenotype correlation between all
170 dietary habits was estimated using Pearson’s pair-wise correlation on complete
observations in R. All correlations (phenotypic and genetic) with P > 0.05/85 were
set to 0. The significance threshold here was selected based on a Bonferroni
correction for 85 total FI-QTs to maintain stringency for multiple testing and
consistency across phenotype and genetic correlation analyses, while allowing for
the nested and non-independent nature of the FFQ questions and derived FI-QTs.

Heritability, GWAS, and genetic correlation analyses. Measures of heritability
were obtained from BOLT-lmm software (v.2.3.2)48,49 pseudo-heritability measure-
ment representing the fraction of phenotypic variance explained by the estimated
relatedness matrix48–50. These estimates were highly correlated with h2g estimates
using LDSC51 (r= 0.988; Supplementary Fig. 11). BOLT-lmm was unable to cal-
culate h2g for “spread type: block margarine vs. never” yielding an “invalid estimate”

error, likely indicating no genetic component as BOLT-lmm reported h2g = 0 for the
highly related “spread type: block margarine vs. any other” dietary habit with ten
times the sample size. Z-score calculations were used to test for significant differences
in heritability between PC1 and its 19 contributing QTs (Eq. 1):

Z ¼
h2gPC1 � h2gQT

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE� PC12 þ SE� QT2

p
0
@

1
A: ð1Þ

GWAS of all variables was conducted using the BOLT-lmm software (v.2.3.2)48,49

linear mixed model association testing to account for relatedness. Additional cov-
ariates included in BOLT-lmm analysis for both heritability and GWAS included
genotyping array and the first 10 genetic PCs derived on the subset of unrelated
EUR individuals using FlashPCA252, followed by projection of related individuals on
to the PC space. The number of associated loci was determined by clumping of
signals within 500 kb windows. Variance explained for each SNP was calculated from
the effect size (β) and effect allele frequency (f) as follows: β2 × (1− f) × 2f. Pair-wise
rg of all significantly heritable dietary habits were estimated using LDSC53. Again, all
correlations (phenotypic and genetic) with P > 0.05/85 were set to 0. Index SNP
annotations were evaluated using Neale Lab UKB GWAS consequence annotations
based on Ensembl’s Variant Effect Predictor54. We performed DEPICT gene set and
tissue enrichment analysis, which relies on reconstituted gene sets from publicly
available gene sets and pathways and gene expression data to evaluate enrichment in
PC1 GWAS loci55.

Ninety-five percent credible sets were estimated for all 2515 genome-wide
significant associations using posterior probabilities as calculated by FINEMAP
v1.356 using shotgun stochastic search in 500 kb windows. We then used LDstore
v1.157 to calculate LD and identify SNPs in high LD (r2 ≥ 0.80) with any of the
77,229 95% credible set SNPs. The GWAS catalog18 (downloaded on 13 November
2018) and Neale Lab GWAS v2 conducted in up to 361,194 unrelated individuals
(August 2018 release; http://www.nealelab.is/uk-biobank/) was then searched for
this list of 339,832 unique SNPs in either any of the 95% credible sets or in high LD
with any SNP in the 95% credible sets for any of the 2515 significant GWAS signals
in 814 independent loci. We considered any locus as being previously reported if
any SNP in its 95% credible set or in high LD (r2 ≥ 0.80) with any SNP in the 95%
credible SNP was associated with any trait at genome-wide significance (P < 5.0 ×
10−8). LocusZoom plots were made using the stand-alone package58 to include LD
information from UKB as determined by LDstore and 95% credible sets from
FINEMAP56,57.

LDSC rg was again performed on 143 significantly heritable dietary habits
with 4336 Neale Lab UKB GWAS traits, 3219 of which had at least one non-
missing rg estimate from LDSC. Using a strict Bonferroni correction threshold
for all pair-wise tests between 143 dietary habits and 3219 highly correlated and
even overlapping Neale Lab GWAS traits (P < 0.05/460,317= 1.09 × 10−7), we
set all nonsignificant rg to 0. Supplementary Data 5 represents a complete pair-wise
rg matrix.

Enrichment for olfactory receptor genes among dietary habits was evaluated
using 1000 sets of null matched SNPs based on MAF, number of SNPs in LD at
various LD thresholds, distance to nearest gene, and gene density using the
SNPsnap webtool59. We used Fisher’s test for enrichment of olfactory receptor
genes using SNPsnap’s nearest gene annotation for 647 dietary habit GWAS index
SNPs and for 1000 sets of null matched SNPs (167 of our index SNPs were
excluded for being in the human leukocyte antigen region or had insufficient
matches). We based the enrichment analysis contingency table on 842 annotated
olfactory receptor genes among 48,903 genes in SNPsnap. Of the 1000 null
enrichment analyses, 419 had a Fisher’s test estimate equal to or greater than our
real data’s enrichment estimate.

Mendelian randomization. Bidirectional MR was conducted using genome-wide
significant index SNPs clumped by 500 kb windows from GWAS in UKB on PC1
(M= 140), fluid intelligence scores (M= 184), educational attainment (M= 309),
and BMI (M= 1165). Fluid intelligence scores for GWAS in EUR (N= 232,601)
was derived from both in person and online cognitive tests. Assessment center fluid
intelligence scores (field 20016) were averaged for up to three visits and adjusted
for average age in months, sex, and assessment center. Online fluid intelligence
scores (field 20191) were adjusted for age in months, sex, and townsend depriva-
tion index. The final fluid intelligence score was first set to average assessment
center fluid intelligence score, and when missing was filled in with the online fluid
intelligence score, for which the combination of these scores were then adjusted for
collection method, followed by inverse normal transformation. Educational
attainment for GWAS in EUR (N= 450,884) was derived using a previously
published method based on mapping UKB qualifications field 6138 to US years of
schooling60, followed by adjusted for age in months, sex, and assessment center,
and inverse normal transformation. BMI was calculated from weight (field 21002)
and standing height (field 50) and averaged from up to three assessment center
visits. Average BMI was adjusted for average age in months, average age in months
squared, assessment center, and average measurement year, followed by inverse
normal transformation conducted in males and females separately. The combined
male and female BMI Z-scores were then used together for genetic association
testing. All GWAS were run in BOLT-lmm adjusted for 10 genetic PCs (calculation
described above) and genotyping array.

Genetic instruments for each of the three traits consisted of the complete set of
index SNPs for each independent genome-wide significant GWAS locus defined by
clumping signals in 500 kb windows. In addition to IVW MR, we also conducted
MR Egger to detect pleiotropic effects and WM MR to allow for the inclusion of up
to 50% invalid genetic instruments. To test the robustness of any causal association,
we repeated MR with filtered genetic instruments using Steiger filtering to remove
variants likely influenced by reverse causation and Cook’s distance filtering to
remove outlying heterogeneous variants61. First-pass bidirectional MR included all
genome-wide significant SNPs using IVW, MR Egger, and WM using the
MendelianRandomization R package62. MR sensitivity analysis was conducted by
first Steiger filtering to remove variants that explained more variance in the
outcome than the exposure as determined by the get_r_from_pn command in
TwoSampleMR R package61,63 and then by filtering out Cook’s distance outliers
using base R functions. IVW, MR Egger, and WM were then repeated on the
filtered genetic instruments. Validation of educational attainment MR results were
conducted in two ways. First, a completely external GWAS dataset was used for
which 74 discovery stage (not including UKB) genome-wide significant index SNP
summary statistics were published online26. After removing missing and
ambiguous SNPs, the external genetic instrument contained 66 variants. Second,
we split the UKB sample into two subsets and conducted GWAS for PC1 and
educational attainment as described above in each subset: 1/3 (Npc1= 149,212 and
Ned= 150,884) of the EUR sample was used for genetic instrument variable
identification and 2/3 (N= 300,000) of the EUR sample was used for testing. MR of
the tea intake SNP rs1453548 was conducted using the Wald ratio estimate as
calculated by the MendelianRandomization R package62 using effect size and
standard errors from our “cups of tea per day” GWAS and effect size and standard
errors from 4358 traits in the Neale Lab GWAS.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All 170 derived dietary habits will be returned and shared through UK Biobank (http://
biobank.ndph.ox.ac.uk/showcase/) and all GWAS results for the 143 significantly
heritable dietary habits are publically available on the Type 2 Diabetes Knowledge Portal
(http://www.kp4cd.org/dataset_downloads/t2d).
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