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Abstract: Docosahexaenoic acid (C22:6n-3, DHA) is the precursor of specialized pro-resolving lipid
mediators (SPMs), such as resolvin, protectin, and maresin families which have been considered
therapeutic bioactive compounds for human health. Growing evidence indicates that DHA and
SPMs are beneficial strategies in the amelioration, regulation, and duration of inflammatory processes
through different biological actions. The present review discusses the reported therapeutic benefits of
SPMs on various diseases and their potential clinical applications.
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1. Introduction

Docosahexaenoic acid (C22:6n-3; DHA) is a long-chain polyunsaturated fatty acid
(LCPUFA) of the n-3 series [1]. Human beings have a limited capacity for DHA synthesis
from its essential precursor; therefore, it is necessary to provide a DHA supply through
diet [2]. The main dietary sources of DHA include marine foods, such as fish (mackerel,
salmon, herring, tuna, sardine, among others) and a variety of seafoods and microalgae [3].
The Food and Agriculture Organization (FAO-2010) advises a dosage of 250 mg/day of
eicosapentaenoic acid (C20:51-3; EPA) plus DHA for adult men and not pregnant or not
lactating women [4], and the recommendation of the World Health Organization (WHO-
2003) amounts to 200-500 mg/day of EPA + DHA for adults [5].

DHA is synthesized from dietary «-linolenic acid (C18.3n-3; ALA) by a complex
enzymatic process of desaturation and elongation reactions predominantly occurring in
the endoplasmic reticulum of the liver, excluding the last oxidation step taking place in the
peroxisomes (Figure 1) [6]. The first reaction, catalyzed by delta-6 desaturase (A6-D) and
producing stearidonic acid (C18:4n-3; SDA), is considered as the rate-limiting step in DHA
formation [7]. SDA is transformed into eicosatetraenoic acid (C20:4n-3; ETA) by the action
of elongase-5, followed by the desaturation of ETA into EPA by A5-D, and the successive
elongations via elongases-5,2 that convert EPA into docosapentaenoic acid (C22:51-3; DPA)
and then to tetracosapentaenoic acid (C24:51-3; TPA) [8], which is desaturated by A6-D
forming tetracosahexaenoic acid (C24:6n-3; THA) (Figure 1). Finally, THA is subjected
to peroxisomal oxidation leading to DHA production (Figure 1) [8]. Interestingly, the
conversion of EPA to produce DHA is slower than that of ALA into EPA [9].

Current information supports the contention that DHA is an important bioactive
compound for human health at the different periods of life. Related research has linked
DHA with premature birth [10], cognitive function in early childhood [11,12], prevention
of cardiovascular diseases [13,14], cognitive performance improvement in healthy young
adults [15], and a significantly decreased risk of incident of age-related macular degen-
eration in women [16]. Among DHA's actions, the diminution of inflammation and its
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resolution stands out, having a beneficial role in various acute and chronic diseases [17]. All
these effects are performed by DHA itself or by its bioactive metabolites, namely the spe-
cialized pro-resolving mediators (SPMs) [18], including D-series resolvins, protectins and
maresins, the cysteinyl-conjugated SPMs, and the recently identified SPMs from DPA [19].
This review addresses only the resolvins, protectins, and maresins, due to the definitive
information on these mediators available at the present time.
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Figure 1. Metabolic pathway of the synthesis of 11-3 polyunsaturated fatty acids from «-Linolenic acid.

The SPMs are formed through enzymatic or non-enzymatic pathways. The enzymatic
routes involve (i) cyclooxygenases (COXs), (ii) lipoxygenases (LOXs), and (iii) cytochrome
P450 mixed-function oxidase [20]. The non-enzymatic synthesis is mediated by free radical-
related peroxidation processes [21], leading to the formation of different pro-resolving
derivates of EPA including hydroxyeicosapentaenoic acids (HEPEs), such as 11-HEPE and
18-HEPE, among others [21,22].

SPM biosynthesis is altered in different diseases, suggesting that derangement of the
endogenous pathways may be considered as an etiologic factor [23], since a diminished
SPM synthesis can lead to uncontrolled inflammation with noxious results [24]. In this
context, SPMs attenuate inflammatory processes in numerous diseases, including the post-
stroke cognitive impairment [25], Alzheimer’s disease [26], sepsis [27], localized aggressive
periodontitis [28], among others.
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2. Methods

The search was carried out using the following key words: pro-resolving lipid media-
tors, maresin, resolvin, and protectin, by means of the PubMed, Science Direct, and Web
of Science. Additional articles were identified in original publications from 2010 onwards,
including in vitro, animal, and human trials analyzing the possible clinical applications of
the DHA-derived mediators.

3. Synthesis and Metabolism of DHA-Derived Lipid Mediators

DHA is the precursor of several families of molecules that favor inflammation resolu-
tion, like D-series resolvins, protectins and maresins, each one of them exhibiting unique
structures (Figure 2), receptors, and actions [29]. The enzymatic synthesis of SPMs in-
volves complex processes that begin with the desesterification of membrane phospholipids,
mainly by the action of phospholipase A; [20]. This process can be potentiated by specific
physiological stimuli or by non-specific pathological conditions, and the resulting SPM
precursor is integrated into different metabolic pathways [30].
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Figure 2. Structure and biosynthesis of the SPMs: maresins, protectins, and D-series resolvins, which
are metabolites derived from DHA.

The conversion of DHA into D-series resolvins (RvD1-RvD6) requires the sequential
activity of several enzymes. The transformation of DHA into RvD1 is initiated by an oxy-
genation reaction catalyzed by 15-lipoxygenase (15-LOX) and producing 17S-hydroperoxi-
docosahexaenoic acid (17S-HpDHA), which is further subjected to (i) a peroxidase to form
175-hydroxy-docosahexenoic acid (17S-HDHA); (ii) 5-lipoxygenase (5-LOX) producing
7-hydroperoxy-17S-HDHA (7Hp-17S-HDHA); (iii) a dehydratase leading to 7S,85-epoxide
derivative formation; (iv) finally, a hydrolase to form RvD1 and RvD2 [31]. From the path-
way above, (i) 5-LOX acting on ARA or EPA with the accessory proteins 5-LOX-activating
protein (FLAP) and coactosin-like protein (CLP) can produce leukotriene derivates that
are conjugated with reduced glutathione (GSH) by GSH S-transferases, to form cysteinyl-
containing SPMs, after the removal of the glutamate and glycine moieties by y-glutamyl
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transpeptidase and dipeptidase, respectively [32]; (ii) epoxide hydrolases (EHs) are en-
zymes that convert epoxide containing compounds into diol products, including the sol-
uble EH (sHE or EH?2) that functions in the synthesis of resolvins shown overhead, the
microsomal EH (mEH or EH1) bound to the endoplasmic reticulum catalyzing the biotrans-
formation of xenobiotic epoxides usually formed by cytochrome P450 enzymes, which may
underlie toxicity, and the recently discovered EH3 and EH4 isozymes that await further
characterization [33]; (iii) a peroxidase-dependent reaction converts 7Hp-17S-HDHA in
RvD5, and DHA, as a substrate for aspirin-acetylated COX-2 or P450-mixed function oxi-
dase, can be transformed into the R isomers of AT-RvD1-AT-RvD4 [31,33,34]. Moreover,
the cyclooxygenases (COXs) are heme-containing enzymes that convert arachidonic acid
to prostaglandin H (PGH), which are transformed in thromboxane A, and prostacyclin.
There are two major isoforms of COX, namely (i) COX-1 that is a constitutive enzyme
widely distributed throughout the body and believed to play a maintenance or protective
role, and (ii) COX-2 that is an inducible enzyme, whose levels and activity can increase
rapidly and significantly in response to stimuli, such as inflammatory mediators, thus,
being associated with inflammatory processes [35]. In this context, human eosinophiles
are rich in 15-LOX and convert DHA in 17-HpDHA, which can be taken up by polymor-
phonuclear leukocytes (PMNs) to generate RvDs [34]. Also, 17-HpDHA via 15-LOX leads
to the synthesis of protectins including PD1 or its isomer PDX [36,37]. An alternative
route for DHA oxygenation is catalyzed by 12-lipoxigenase (12-LOX), but also 15-LOX, to
form 14-hydroxy-docosahexaenoic derivative (14-HDHA) that gives rise to the family of
the maresins, namely, MaR1 and MaR2 [38]. These maresins are mainly synthesized by
M2 macrophages and directly act on phagocytes [38]. The biological effects of the SPMs
generated as described above are mediated by interactions with either specific receptors
and intracellular effectors, or they can be re-esterified in lipid moieties [39].

The anti-inflammatory functions of SPMs are attained through binding to special-
ized G protein-coupled receptors (GPCRs). These include ALX/FPR2, DRV1/GPR32 and
DRV2/GPR18 for resolvins, RORo and ALX/FPR2 for maresins or GPR84 and GPR120 for
protectins [40-42]. The activation of ALX/FPR?2 inhibits the phosphorylation of mitogen-
activated protein kinase (MAPQ), diminishing the capacity of neutrophils and macrophages
for migration and the production of proinflammatory mediators [43]. DRV1/GPR32 sig-
naling promotes not only the macrophage polarization towards M2 and their phagocytic
capacity, but also the adaptive immunological responses, whereas the DRV2/GPR18 axis
regulates microglial functions [44]. Additionally, ROR« controls M1 to M2 polarization in
macrophages derived from infiltrated monocytes [45], while GPR38M inhibits the release
of proinflammatory cytokines from macrophages and PMNs [46,47]. These receptors are
expressed in several cell types and exhibit specific affinities for a given SPM [48]. Al-
though the overexpression and knockout investigations support the receptor-mediated
signaling processes to achieve anti-inflammatory effects, the signaling mechanisms are not
completely understood [33].

4. SPMs and Regulation of Inflammatory Processes

Acute inflammation is upregulated against the aggression of microbes, lesions, and
internal injuries, like those induced by surgeries [49]. Initially, the granulocytes are rapidly
recruited into the infection sites, to achieve pathogen elimination through coordination
with several families of pro-inflammatory cytokines and chemokines [50], an event that is
unnoticed because are self-limited and naturally resolved without progressing to chronic
inflammation [49]. In contrast, chronic inflammation is developed due to the inability of the
host to limit the production of inflammatory factors [51]. When this condition becomes ex-
cessive and prolonged, several pathologies can appear, including rheumatoid arthritis [52]
and multiple sclerosis [53], among others; consequently, it is considered an important public
health problem [54]. Currently, medical research aims to describe how to control inflam-
mation and elucidate the resolving mechanisms in order to come across the most effective
treatments [55]. Inflammation resolution is an active process that is controlled by various
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molecular factors, such as SPMs derived from n-3 LCPUFAs, since they are fundamental in
stopping inflammation [56]. This is achieved by controlling the magnitude and duration of
resolution through (i) downregulation of the production of pro-inflammatory mediators;
(ii) limitation of the traffic of leukocytes to the inflamed site; (iii) upregulation of the elim-
ination of apoptotic cells and cellular debris by macrophages [57-59]; (iv) stimulation of
macrophage M1 to M2 polarization; (v) enhancement in LOX activity and in the expression
of SPM receptors [60-62]. Therefore, cells downregulate the enzymes responsible for the
formation of pro-inflammatory lipids, such as prostaglandins and leukotrienes, while they
upregulate those in charge of SPM production [48]. The findings acquired in experimental
studies, as in human trials, show that the interruptions in the synthesis and activity of
SPMs contribute to the exacerbation of inflammation [51]. Importantly, although the tradi-
tional therapeutic approaches have effectively been focused on suppressing, blocking, or
inhibiting the pro-inflammatory mediators, these methodologies can provoke immunologic
suppression and infections [33]. Consequently, the SPMs could be considered as an optimal
therapeutic alternative, since they are not immunosuppressors compared to the prolonged
use of anti-inflammatory agents, such as glucocorticoids, and they lack the toxicity of non-
steroidal anti-inflammatory drugs or that of the standard procedures, e.g., chemotherapy
and radiation [63,64]. Thus, experimental and clinical research on SPMs is critical, even
though the quantification of SPMs has been recently questioned in terms of the analytical
methods used to quantify these pro-resolving mediators in the context of their instability
and their low concentrations [65]. This is particularly important regarding (i) the studies
under in vitro conditions in which the storage of these compounds is crucial for the results
obtained, and (ii) human studies that were not supplemented with SPMs that could lead to
underestimated results [65].

5. Neurodegenerative Diseases

Lipids represent up to 50% of the brain dry weight and they are the main structural
components of the cellular membranes, which were found to be de-regulated in neu-
rodegenerative diseases [24]. These neurological disorders are characterized by a chronic
inflammatory process, wherein the resolution mechanism is altered [66].

5.1. Alzheimer Disease (AD)

AD is considered the most common type of dementia that is characterized by the
accumulation of the 3-amyloid protein in the human brain and by the formation of the
neurofibrillary tangles as the main histopathologic markers [67]. When brain 3-amyloid
levels are high, the innate immune cells are activated, thus, triggering the pro-inflammatory
signaling pathways that may alter the neuronal functions [68]. In this respect, it has
been shown that SPMs induce a significant increase in the resolution of the inflammation
routes in AD, strongly suggesting that these mediators may be promising therapeutic
strategies [69]. In a recent study, the analysis of the lipidome of the cerebrospinal fluid
revealed that the SPMs were diminished in AD, in correlation with the subjective cogni-
tive impairment and with the significant enhancement in the levels of pro-inflammatory
mediators [70]. Mizwicki et al. reported that the microglial phagocytosis of 3-amyloid
was enhanced by RvD1, an effect that was concentration-dependent and promoted cell
survival [71]. In agreement with these findings, in vitro studies in neuronal models indi-
cate that cellular survival improvement by RvD1 [26] is accompanied by a diminution in
-amyloid production [72], while those in vivo showed an attenuation of cognitive decline,
reduction in neuroinflammation, and amendment of memory [73-75].

5.2. Parkinson Disease (PD)

PD is the second most common degenerative disease of the central nervous system [76].
This disease is characterized by motor and non-motor symptoms, including tremor at rest,
rigidity, bradykinesia, postural instability, constipation, and depression [77]. The main
pathological features of PD are the progressive degeneration of dopaminergic neurons
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located in the dense part of the substantia nigra, leading to a diminution in dopamine
concentrations in the striatum [78] and an accumulation of the protein x-synuclein, which
forms Lewy bodies [79]. Lewy bodies are composed of protein aggregates of a-synuclein
with a minor contribution of neurofilament protein, ubiquitin, and «-B-crystallin, leading
to mitochondrial dysfunction triggering oxidative stress, further protein misfolding and
stimulating the fibrillar pathway, events that determine neurodegeneration [77-79]. Al-
though the knowledge of the pathogeny of PD has experienced important progress, few
advances have been achieved on the effects of the stimulation of inflammation resolu-
tion [80]. According to Xu et al., RvD1 inhibits the synthesis of inflammatory mediators in
microglia and the expression of tumor necrosis factor-« (TNF-c), interleukin-1f (IL-1f3),
and inducible nitric oxide synthase (NOS) [79], attenuating the microglial expression of
NF-xB and activating protein-1 (AP-1) and MAPK phosphorylation [81]. The administra-
tion of different concentrations of RvD1 in an experimental model revealed the decrease
in PD progression due to the inhibition of inflammation [82]. Tian et al. studied the effect
of an intrathecal injection of RvD2 in an animal model, showing that the treatment pre-
vented the development of behavioral defects and the activation of the toll-like receptor
4 (TLR4)/NF-«B signaling pathway; therefore, there was a decrease in pro-inflammatory
mediators and in the production of reactive oxygen species (ROS) [83]. This effect is not
only exerted by the resolvin family; neuroprotectin D1 (NPD1), which has been shown to
promote survival and the preservation of the dendritic tree in rat dopaminergic neurons
in vitro, also plays a role [84]. It is important to mention that AD and PD would not be the
only beneficiaries of SPM actions, since there is evidence that other alterations in the central
nervous system can benefit from them. These include autoimmune encephalomyelitis [85],
multiple sclerosis [86] and amyotrophic lateral sclerosis [87]. All these findings lay the
foundation for understanding how the survival of neurons can be improved and how to
reduce neuroinflammation in order to avoid neurodegeneration.

6. Respiratory Diseases

SPMs specialized in airway inflammatory response have been used for the treatment
of respiratory disease [88]. In this regard, respiratory diseases include a wide range of
pathologies with different clinical manifestations, affecting the normal airways and lung
function. An increase in the inflammatory response is considered a characteristic point of
these diseases, being also a critical factor for their progression [88]. In this context, asthma
is a chronic inflammatory disease which has no cure. It is characterized by bronchial
hyperresponsiveness, airflow obstruction, and airway inflammation [89]. Glucocorticoids
have become the first choice for the treatment of asthma due to their anti-inflammatory
effects; however, long-term use may cause side effects. Therefore, there is a need to develop
alternative strategies [90]. Several studies have demonstrated that the SPMs derived from
DHA and its precursors are deregulated in asthmatics [91,92]. In a mouse model of induced
asthma, MaR2 exerted anti-inflammatory effects through the inhibition of oxidative stress,
inflammasome NLRP3 activation, and type Th2 immune response [93]. Ou et al. used a
rat model to show that MaR1 notably suppressed the activation of the NF-xB signaling
pathway as well as those of COX-2 and ICAM-1 [94]. Furthermore, in type 2 innate lym-
phoid cells (ILC2), exogenous MaR1 diminished the pulmonary inflammation and IL-5
and IL-13 expression, augmenting the de novo generation of regulatory T cells (Tregs) [95].
Consequently, alterations in the synthesis of SPMs and the persistence of inflammation
could be important mechanisms to explain the chronic nature of the inflammatory process,
pointing to SPMs derived from DHA as an effective strategy for asthma [96]. Furthermore,
the global outbreak of coronavirus disease 2019 (COVID-19), which originated in Wuhan,
China, has claimed millions of lives worldwide; therefore it has been a disease of quite
interest recently [97]. Some studies have described an imbalance in the SPMs as a defining
characteristic of the severity of COVID-19 [98,99]. One of the main consequences and rea-
sons for concern is pneumonia, which is not only caused by SARS-CoV-2, but also by other
pathogens, including rhinovirus, influenza A or B virus, respiratory syncytial virus or ade-



Nutrients 2023, 15, 3317

7 of 17

novirus, physical and chemical factors, immune disorders, allergies, and medications [100].
Pneumonia consists of the inflammation of the terminal airways, the alveoli, and the inter-
stice of the lungs [101]. Studies with experimental animals demonstrated that expression
of RvD1 is able to significantly diminish pneumonia caused by P. aeruginosa [102], since
bacterial growth, leukocyte infiltration, and damage to lung tissue are decreased [103]. It
has been reported that inflammation and lung injury were persistent in pneumonia induced
by Haemophilus influenzae in rats [104]. However, the exogenous administration of RvD1
reduced neutrophil recruitment, increased macrophage entry, stimulated macrophage M1
to M2 polarization, and lowered IL-6 and TNF-o expression [104]. Moreover, influenza
virus decreased lung PD1 levels during severe infections, yet the exogenous treatment
improved rat survival in the infected animals even at later stages of the disease [105]. It
was also shown that PD1 is a potential molecule to prevent the spread of H5N1 virus.
In this regard, Ramon et al. communicated that the product of DHA, 17-HpDHA, could
promote the significant increase in the levels of serum antibodies, and enhance the number
of antibody secretory cells in the bone marrow of rats [106].

7. Metabolic Syndrome

Obesity and metabolic disorders are important public health problems around the
world [107]. As obesity rises, the immunological profile of the adipose tissue changes,
going into a chronic inflammatory state of low grade, which gradually becomes systemic
and develops insulin resistance and metabolic disease [108,109]. In this context, Titos et al.
studied the inflamed human adipose tissue and observed that RvD1 treatment enhanced
the MAPK activity, concomitantly with a diminution in signal transducer and activator of
transcription 1 (STAT1) functioning and related inflammatory gene expression, without
altering the anti-inflammatory effects of IL-10 [110]. In addition, treatment with RvD1 and
MaR1 was found to polarize macrophages towards a phenotype similar to M2, decreasing
the levels of pro-inflammatory markers in adipose tissue of obese mice [111,112]. An in vivo
study revealed a decrease in obese mice adipose tissue related to RvD1, RvD2, and PD1
amounts, compared to that of lean mice, identifying RvD1 and RvD2 as the main SPMs
that reduce inflammatory processes in adipose tissue [113].

Obesity diminishes the levels of PD1 of the intermediates in the synthesis of resolvins
and protectins (17-HDHA) as well as maresins (14-HDHA), in the adipose tissue of obese
mice induced by diet or genetically [113-115]. Mice with leptin receptor deficiency given
RvD1 exhibit an improvement in glucose tolerance and insulin sensitivity, along with a
reduction in pro-inflammatory gene expression and the inflammatory macrophage forma-
tion [116]. Furthermore, treatment with MaR1 reversed the effect of the pro-inflammatory
cytokine TNF-« and induced the phosphorylation of protein kinase B (Akt) in subcuta-
neous adipose tissue of obese patients, and also improved glucose homeostasis in obese
mice [117]. This latter beneficial effect of MaR1 was suggested to be mediated by fibroblast
growth factor-21 (FGF21) [118], a peptide hormone mainly synthesized in the liver that
contributes to the regulation of glucose and lipid metabolism and energy homeostasis [119].
Consequently, DHA-derived SPMs protect against adipose tissue inflammation and insulin
resistance brought on by obesity; therefore, they could be new therapeutic options for the
therapy of metabolic syndrome.

8. Cardiovascular Diseases

Atherosclerosis is a disease associated with the inflammation and dysfunction of lipid
metabolism in the arteries, driven by lipid imbalance of the pro-inflammatory and resolu-
tion mechanisms [120]. It has been identified that SPMs, especially RvD1, are decreased in
vulnerable regions, histologically defined as human carotid atherosclerotic plaques [121].
Rats subjected to the administration of RvD2 prevented atheroprogression by suppressing
endothelial cell necrosis and collagen fibrous plaque formation and inhibited the secretion
of mature IL-13 by bone marrow-derived macrophages challenged with LPS + ATP [122].
These findings are of great interest because IL-13 can induce a cytokine storm in the host [123].



Nutrients 2023, 15, 3317

8 of 17

Moreover, MaR1 decreased cell-to-cell adhesion of monocytes and vascular cells, elicited
attenuation of NF-«B activation by TNF-« in endothelial cells, and lowered the levels of pro-
inflammatory cytokines and chemokines [124]. In addition, it has been observed that RvD1
regulates human PMN recruitment and SPM synthesis [125], PDs and MaRs can play an
effective role in the pathogenesis associated with worsening cardiometabolic status [126].

Ischemic heart disease is the main cause of disability and death in the whole word and
is the result of an insufficient supply of blood and oxygen to the heart [127]. It has been
reported that rats subjected to RvD1 at the beginning of ischemia in vivo decreased infarct
size by reducing the mechanism involving phosphoinositide 3-kinase (PI3K)/Akt [128].
Under these conditions, RvD1 limits neutrophil recruitment in the spleen and left ven-
tricle, augments inflammation resolution, and increases the expression of resolving M2
macrophage markers after myocardial infarction [129]. Lastly, Gilbert et al. administered
RvD1 to rats subjected to ischemia/reperfusion, showing attenuation of the symptoms of
myocardial depression and the size of the infarct [130].

It is important to point out that atherosclerosis and ischemic heart disease are not the
only pathologies that would benefit from DHA-derived SPMs, since Pope et al. reported
the attenuation of the formation and progression of aneurysms in murine models, through
polarization of the aortic wall macrophages towards a reparative M2 phenotype [131].
Also, early platelet-neutrophil interactions at sites of injury or thrombosis lead to MaR1
biosynthesis that stimulates the onset of resolution [132], an SPM that improves the hemo-
static function of human platelets and suppress their inflammatory functions [133]. The
protecting actions of SPMs are not limited to the heart, having been described in the context
of ischemia in brain, kidneys, and liver [134].

9. Liver Diseases

Chronic liver disease is more often associated with the ailment known as non-alcoholic
fatty liver disease (NAFLD), which is characterized by a process of continuous inflam-
mation [135]. NAFLD involves two phases, namely non-alcoholic fatty liver (NAFL) and
non-alcoholic steatohepatitis (NASH), a condition that includes degrees of fibrosis, cir-
rhosis, and hepatocellular carcinoma [136]. In this scenario, SPMs could be a treatment
option for the active promotion of the cessation of inflammation [64]. Accordingly, in mice
subjected to a high-fat diet, MaR1 improves hepatic steatosis by inhibiting endoplasmic
reticulum (ER) stress and lipogenic enzymes and inducing autophagia via AMP-activated
protein kinase (AMPK) [137-139]. In the model of HepG2 cells, RvD1 also decreases ER
stress and the dependent caspase-3/apoptosis activation, with diminution of triacylglycerol
accumulation [140], findings that were reproduced by PDX [141].

Experimental studies have revealed that NASH can also be alleviated by SPM adminis-
tration, considering that (i) MaR1 exerted liver protection by activating the M2 polarization
of Kupffer cells [142]; (ii) RvD1 similarly stimulated liver macrophage M1 to M2 phenotype
polarity, in addition to an anti-steatosis effect and macrophage infiltration arrest [143];
(iif) the establishment of negative correlations between the serum levels of MaR1 and body
mass index, waist circumference, alanine transaminase, gamma-glutamyl transpeptidase,
uric acid, triglyceride, and fasting blood glucose [144]; (iv) MaR1 improves parameters
related to hepatic fibrosis, concomitantly with an improvement in hepatocyte proliferation
and diminution of oxidative stress and inflammation [145], supporting SPMs as potential
therapeutic agents for NAFLD, NASH, and other liver pathologies.

Our research group have suggested that combining n-3 PUFAs and other protecting
agents may result in better responses than monotherapies concerning NAFLD [146]. This
strategy underlies (i) protective agents exerting their actions through different or similar
mechanisms to achieve synergistic or additive results to control the damage more efficiently,
and (ii) the minimization of possible side effects due to the utilization of lower dosages
than the monotherapies and shorter administration periods [147]. Data reported using the
high-fat diet protocol for 12 weeks revealed that the concomitant EPA plus hydroxytyrosol
(HT) supplementation synergistically diminished the steatosis score over individual treat-
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ments, increasing the liver levels of EPA, DHA, RvD1/2, and RvE1/2, and attenuating
inflammation [148]. More interestingly, DHA and HT co-administration confronting a
high-fat diet fully precluded liver steatosis and the pro-inflammatory state [149] compared
to the EPA plus HT protocol [147], a contention that may be related to the higher chemi-
cal reactivity of DHA generating active derivatives affording more beneficial effects than
EPA [14]. Co-supplementation of the hormetic hormone L-3,3' 5-triiodothyronine (T3) with
either (i) methylprednisolone, to preserve liver tissue regeneration post-hepatectomy [150],
or (ii) fish oil, to suppress ischemia-reperfusion inflammatory liver injury [151], have been
also suggested.

10. Other Pathologies

SPM derivatives of DHA are linked to eye health. It has been described as a disturbance
in the homeostasis of mucin secretion produced by conjunctival goblet cells, in a variety of
ocular surface diseases, such as allergic conjunctivitis and dry eye disease [152]. Alterations
in the quantity, structure, or hydration of mucin are detrimental to the clarity of the
cornea and, therefore, for vision [153]. Different studies have demonstrated in a rat model
that RvD1, MaR1, and MaR2 modulate the function of the conjunctival goblet cells to
produce mucin and, therefore, maintain homeostasis of the ocular surface and lachrymal
film [154,155]. An effect on the aging of the retina has also been seen, as evidenced by a
recent study of Trotta et al., who observed in aged rats that the levels of RvD1 in the retina
were diminished [156].

A relationship has been also observed with some (i) dental pathologies, such as inflam-
matory periodontal disease, which progresses rapidly and causes destruction of the sup-
porting tissues of the teeth [157], with MaR1 improving the phagocytosis and destruction
of periodontal pathogens [28]; likewise, orthodontic treatment produces a mechanical force
that triggers an acute inflammatory process driven by cells and immune mediators [158],
where, in the acute phase of inflammation, exogenous RvD1 favors resolution, whereas, in
the prolonged phase, it suppresses osteoclast genesis [159]. (ii) Psoriasis would also be a
disease that would benefit from DHA-derived SPMs, since PD1 decreases the symptoms of
the disease including desquamation and erythema with a reduction in pro-inflammatory
cytokine and chemokine formation, and improving the thickness of the skin [160]. Finally,
(iii) SPMs derived from DHA are also associated with male infertility [161], arthritis [162],
cystitis [163], and even postmenopausal osteoporosis [164], as well as the other clinical
applications mentioned above (Figure 3).

Clinical applications DHA lipid mediator resolution inflammation

Acute inflammation

Chronic inflammation

Resolvins D series
Respiratory diseases

Asthma < MaR1, MaR2
COVID-19+ RvD1
Avian Influenza A (H5N1) < PD1

Neurodegenerative diseases

Parkinson disease < RvD1 NPD1

Alzheimer disease « RvD1, RvD2
Metabolic syndrome < RvD1, RvD2 PD1 MaR1
Cardiovascular diseases < RvD1 MaR1
Liver diseases

NAFLD « RvD1 MaR1
Other pathologies

Ocular desease « RvD1 MaR1, MaR2

Periodontal disease « RvD1

PD1

Psoriasis <

Figure 3. DHA lipid mediator resolution inflammation and clinical applications.
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11. Conclusions

It has been shown that inflammation is a pathophysiological trait which plays a crucial
role in the pathogenesis of various diseases. The identification of biochemical pathways
that actively mediate the resolution of inflammation offers new treatment opportunities and
monitoring of progression and disease prognosis. Growing evidence indicates that DHA-
derived SPMs have important anti-inflammatory and pro-resolving properties, so they
have been considered as possible therapeutic strategies in various pathological conditions.
To date, several experimental studies have evaluated the effectiveness of D-series resolvins,
protectins and maresins, either alone or in combination with other protective agents. There
is an urgent need to further investigate the therapeutic role of these lipid mediators in the
clinical setting, in order to accurately identify molecular and cellular resolution pathways
in inflammatory pathologies and to provide therapies that foreshadow effective future
clinical applications.
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