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In principle, humans can make an antibody response to any non-self-antigen molecule in the 

appropriate context. This is achieved by a large naïve antibody repertoire whose diversity is 

expanded by somatic hypermutation (SHM) following antigen exposure.1 The diversity of 

the naive human antibody repertoire is estimated to be at least 1012 unique antibodies.2 

Since the number of peripheral blood B cells in an healthy adult human is on the order of 

5×109, the circulating B cell population samples only a small fraction of this diversity. Full-

scale analyses of human antibody repertoires have been prohibitively difficult, primarily due 

to their massive size. The amount of information encoded by all the rearranged antibody and 

T cell receptor genes in one person -- the “genome” of the adaptive immune system -- 

exceeds the size of the human genome by more than four orders of magnitude. Further, 

because much of the B lymphocyte population is localized in organs or tissues that cannot be 

comprehensively sampled from living subjects, human repertoire studies have focused on 

circulating B cells.3 Here, we examine the circulating B cell populations of ten human 

subjects and present the largest single collection of adaptive immune receptor sequences 

described to date, comprising almost 3 billion antibody heavy chain sequences. This dataset 
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allows genetic study of the baseline human antibody repertoire at unprecedented depth and 

granularity, revealing largely unique repertoires for each individual studied, a subpopulation 

of universally shared antibody clonotypes, and exceptional overall repertoire diversity.

Eighteen sequencing libraries were generated for each of ten subjects (Figure ED1). These 

libraries yielded 2.90×109 raw reads. Following annotation,4 which included duplicate 

removal using unique molecular identifiers,5 we obtained 3.64×108 productive antibody 

sequences (Table ED1).

Amplification was reproducible, with similar gene usage between replicates (Figures 1A, 

ED2). The frequencies of IgM-encoding (0.62–0.94) and IgG-encoding (0.06–0.38) 

sequences were consistent with the expected frequency of circulating B cells expressing 

these isotypes (Figure 1B).6 Although V-gene, J-gene and CDRH3 length (VJ-CDR3len) 

distributions were similar between subjects (Figures 1C, E-F), differences were large enough 

that individual repertoires could conceivably be distinguished using only these features. We 

reduced sequence subsamples to VJ-CDR3len frequency distributions and quantified 

similarity using the Morisita-Horn similarity index.7,8 Subject repertoires were clearly 

distinguishable using as few as 104 sequences (Figures 1D, ED4) and did not cluster by age, 

gender or ethnicity (Figure 1G). The IgG+ repertoires were least similar, suggesting that 

subjects’ unique immunological histories are a significant contributor to repertoire 

individuality (Figure 1H). A one-versus-rest support vector machine (SVM) classifier 

trained on VJ-CDR3len data from 5 of the 6 biological replicates from each subject 

accurately assigned the remaining replicate using test/train datasets of as few as 500 

sequences from each replicate (Figure 1I).

To estimate repertoire diversity while minimizing the effects of sequencing and 

amplification error, we first considered clonotype diversity. An antibody clonotype is a 

collection of sequences using the same V/J-genes and encoding an identical CDRH3 amino 

acid sequence.9 For each subject, all sequences from each biological replicate were 

collapsed into a set of unique clonotypes. Any clonotypes repeatedly observed after pooling 

deduplicated biological replicates must be derived from different cells, providing a 

straightforward means of quantifying multiple occurrence. For clarity, clonotypes or 

sequences present in multiple biological replicates from a single subject will be called 

“repeatedly observed”, while clonotypes or sequences found in multiple subjects will be 

called “shared”.

Rarefaction curves indicated a low frequency of repeatedly observed clonotypes, supported 

by capture-recapture sampling (3.9–11.7% recapture; Figure 2A, ED6). To estimate 

repertoire diversity, we selected two estimators: Chao2 and Recon. Chao2 is a non-

parametric estimator that uses repeat occurrence data from multiple samples to estimate 

species richness.10 Recon uses maximum likelihood to estimate species richness, assuming 

only that the overall size of the repertoire is large (relative to sampling depth) and well 

mixed.11 These estimates represent the total diversity capable of being generated by the 

humoral immune system. Accordingly, these estimates may greatly exceed the actual 

number of B cells present in a single individual at any one time. The estimators produced 

similar estimates of clonotype diversity for each subject, with identical rank order (Figure 
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2B). Recon consistently estimated about 2-fold greater repertoire diversity (2×107-1×109) 

than Chao2 (1×107-5×108), consistent with reports that Chao2 underestimates richness for 

samples with a non-negligible frequency of rare species.12,13 Pooling unique clonotypes 

from multiple subjects allowed us to estimate cohort-wide diversity (Figure 2C). Chao2 

(5×109) and Recon (5×109) produced nearly identical estimates for the complete 10-subject 

pool. Estimates of cohort-wide clonotype diversity exceed individual subject estimates by 

less than two orders of magnitude, suggesting a relatively high frequency of shared 

clonotypes. We next sought to estimate the sequence diversity for each individual, again 

using both Chao2 and Recon estimators. As expected, the estimates for sequences were 

substantially higher than for clonotypes, with Chao2 (2×108-2×109) and Recon 

(1×108-2×109) producing comparable estimates for each subject. Unlike the cohort-wide 

clonotype estimates, Recon estimated much lower cohort-wide sequence diversity (1×1010) 

than Chao2 (1×1011; Figure 2E). The light chain repertoire is estimated to be approximately 

four orders of magnitude less diverse than the heavy chain repertoire (Figure ED7) and 

pairing of heavy and light chains is approximately random,14 producing a total paired 

sequence diversity estimate of 1016 to 1018. The most commonly cited estimate for antibody 

repertoire diversity, 1012 unique sequences,2 considers only the unmutated naïve repertoire. 

As such, our sequence diversity estimates, which include both the naïve and memory 

sequences, are not directly comparable to this previous estimate. Clonotype diversity 

estimates, which incorporate only V and J gene assignments and the CDRH3 amino acid 

sequence, minimize the influence of SHM and are more suitable for comparison with prior 

estimates of naïve repertoire diversity. The cohort-wide paired clonotype diversity using 

either estimator, under the same assumptions about light chain diversity and random pairing, 

is estimated at 3×1015, over three orders of magnitude greater than previously estimated for 

the naïve repertoire.

While it is known that convergent antibodies may arise from different individuals in 

response to immunological exposure and a low frequency of CDRH3 sharing has been 

observed in healthy adult repertoires,9,15 the overall prevalence of repertoire sharing is 

unknown. For each combination of two or more subjects, we computed the frequency of 

shared clonotypes (Figure 3A). Pairs of subjects shared, on average, 0.95% of their 

respective clonotypes and 0.022% of clonotypes were shared by all ten subjects. We next 

used two approaches to quantify the expected frequency of clonotype sharing by chance. 

Hypergeometric distributions, based on cohort-wide clonotype diversity (Chao2) and the 

number of unique clonotypes for each subject, indicated a low likelihood that the observed 

sharing was due to chance (8.8×10−6, Bonferroni-corrected p=0.05 is 1.1×10−3). We also 

generated synthetic antibody sequences using IGoR16 to determine the expected frequency 

of clonotype sharing due to coincident V(D)J recombination. Synthetic sequence sets were 

generated using three different recombination models: 1) IGoR’s default model, inferred 

from unproductive antibody rearrangements and is thus focused only on parameters related 

to V(D)J recombination; 2) subject-specific recombination models inferred from unmutated 

sequences from each subject; and 3) a combined-subject recombination model inferred from 

a pool of unmutated sequences drawn from all subjects. For each model, 10 batches of 108 

sequences were generated, for a total of 3 billion synthetic sequences. In the sequence sets 

generated with IGoR’s default model, clonotype sharing was 7-fold lower than in human 
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repertoires (0.0032%; Figure 3B) indicating that coincident V(D)J recombination alone is 

not sufficient to explain the observed sharing. The subject-derived synthetic sequence sets 

showed much more sharing (0.1% and 0.16%, respectively; Figure 3B, ED8). In addition to 

containing information about V(D)J recombination, the subject-derived models also 

implicitly encode information about selection processes involved in B cell development. The 

increased clonotype sharing frequency in subject-derived synthetic datasets indicates that the 

sieving effect of B cell development produces naive repertoires that are more similar than 

recombination alone would be expected to produce. Combined with our observation that 

naive-enriched repertoires are more similar than class-switched repertoires (Figure 1H), a 

model emerges in which individual repertoires are quite dissimilar after V(D)J 

recombination, are homogenized during B cell development, and become increasingly 

individualized following differential responses to immunological exposure.

While the CDRH3 length distributions of unique and repeatedly observed clonotypes were 

similar, short CDRH3s were much more common in shared clonotypes (Figure 3C-D). The 

skew toward short CDRH3s in the shared population is likely due to the increased 

probability of similar recombination events among shorter CDRH3s. In contrast, repeatedly 

observed clonotypes are more often the result of clonal expansion, as evidenced their 

increased mutation frequency (Figure 3I). Shared nucleotide sequences showed a strong 

inverse relationship between mutation frequency and the number of shared subjects (Figure 

3K); virtually all sequences shared by 4 or more subjects were unmutated. Thus, while 

coincident recombination infrequently produces identical antibody sequences, the likelihood 

of coincident recombination linked to an identical set of somatic mutations is exceptionally 

low.

Antibody CDRH3s can be divided into two primary regions: the framework-proximal 

“torso” and the more variable “head”.17,18 When comparing size-matched samples of shared 

and unshared clonotypes, we noted less diversity in the head regions of shared clonotypes. 

Further, head region diversity in shared clonotypes was inversely related to CDRH3 length, a 

relationship not seen in unshared clonotypes or synthetic repertoires (Figure 3E). This 

inverse relationship, along with the skewed distribution of CDRH3 lengths in shared 

clonotypes (Figure 3D), indicates two distinct processes shaping the shared clonotype 

population. The shortest shared CDRH3s encode head region diversity similar to unshared 

CDRH3s and synthetic CDRH3s of the same length (Figure 3F). Thus, short CDRH3s are 

likely shared primarily due to their lower CDRH3 diversity and concomitantly higher 

likelihood of independent generation by coincident recombination. In contrast, longer shared 

CDRH3s are less diverse than unshared or shared synthetic populations (Figure 3G) and 

more commonly encode head regions enriched in polar, uncharged residues and lacking 

hydrophobic residues (Figure 3H). This implies the existence of a mechanism by which 

these shared clonotypes are selected or enriched post-recombination based on the 

biochemical properties of their CDRH3 regions.

In summary, sequencing the circulating B cell population of ten individuals at unprecedented 

depth has revealed repertoires that are highly individualized and extremely diverse. We 

estimate cohort-wide repertoire diversity of approximately 5×109 unique heavy chain 

clonotypes and as many as 1×1011 unique heavy chain sequences. This indicates that the 
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paired antibody diversity available to the circulating repertoire is very large, perhaps in the 

region of 1016-1018 unique antibody sequences. Despite enormous diversity, clonotypes are 

shared more frequently than would be expected from coincident V(D)J recombination. 

Further, we found that clonotype sharing likely is driven primarily by selection processes 

related to early B cell development rather than convergent responses to common antigens. 

The possible clinical and diagnostic applications of adaptive immune repertoire sequencing 

are myriad, however, much work remains. The results described here are confined to 

circulating B cells, which represent a minority of the total B cell population. The repertories 

of circulating and tissue-resident B cells are known to differ,19 and these differences may 

influence overall repertoire diversity and sharing. Further, we have only studied ten 

individuals from a limited age range (18–30 years) and geographic region at a single time 

point. Much larger cohorts representing diverse ethnicities, geographies and ages will be 

required to capture the true population-wide repertoire diversity. Nevertheless, large-scale 

sequencing of the human adaptive immune repertoire holds immense potential. Our use of 

high-level antibody feature frequencies to differentiate repertoires raises the possibility of 

identifying and classifying discrete repertoire perturbations associated with autoimmune 

disease and chronic infection. Further, because the adaptive immune receptor repertoire 

encodes a comprehensive record of an individual’s immunological encounters, leveraging 

large-scale adaptive immune receptor sequencing as a means to diagnose infection or 

deconvolute infection histories is appealing. Finally, the individuality of each subject’s 

baseline repertoire suggests that personalization of vaccine delivery and therapeutic 

intervention may produce substantial benefits in the treatment and prevention of infectious 

diseases.

METHODS

Leukapheresis samples

Full leukopaks (3 blood volumes) were obtained from ten human subjects (Hemacare). 

Samples were collected at Hemacare’s Southern California donor center. Sample collection 

was performed under a protocol approved by the Institutional Research Boards of Scripps 

Research and Hemacare. Informed consent was obtained from each subject. All subjects 

were healthy, HIV-negative adults between the ages of 18–30 with no reported acute illness 

in the 14 days prior to leukapheresis. The subject pool was gender balanced and evenly 

divided between African-American and Caucasian individuals (ethnicity was self-reported; 

Extended Data Table 1). Immediately upon receipt of the leukopak, peripheral blood 

mononuclear cells (PBMCs) were purified by gradient centrifugation and cryopreserved.

Amplification strategy and primer bias

We elected to use RNA as the template for antibody variable gene amplification, as this 

focuses our analysis on productive heavy chain rearrangements and permits the use of 

amplification primers that anneal to the CH1 region (due to the presence of an intron 

between the JH gene and CH region, the use of CH1 primers is not feasible when amplifying 

from DNA). The decision to use RNA has some inherent downsides, however, primarily the 

likelihood of over-representation of transcriptionally active B cells (namely, memory B cells 

and plasmablasts). It should be noted that the use of molecular barcodes, which allow 
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identification and collapsing of reads that originate from the same RNA molecule, will not 

correct this problem. To reduce the influence of multiplexed primer sets on the resulting 

composition of antibody genes that are amplified, we designed an amplification strategy that 

limits the use of multiplexed primers that anneal to the variable (V) gene region in an 

attempt to reduce primer bias during amplification. Following cDNA synthesis, 2nd strand 

synthesis was performed using multiplexed V gene primers that encode an overhang that 

comprises a portion of the Illumina adapters required for next-generation sequencing. V 

gene primers were then enzymatically removed before subsequent amplification of the 

antibody genes using the conserved overhang as the primer annealing site. Thus, the 

multiplexed V gene primers were only used for a single round of amplification.

Antibody gene amplification

For each subject, total RNA was separately isolated from 6 aliquots of approximately 5×108 

cryopreserved PBMCs (RNeasy Maxi, Qiagen). For each RNA aliquot, antibody genes were 

amplified in triplicate (18 total samples per subject), with each of the technical replicates 

processed independently and starting with a separate aliquot of the RNA sample. To 

minimize the likelihood of cross-contamination between subjects, RT and PCR reactions for 

each subject were processed in isolation, such that samples from two different subjects were 

never in proximity during amplification reaction preparation. All primers20 are listed in 

Extended Data Table 2. In order to increase the sequencer-perceived nucleotide diversity 

during each sequencing cycle, “offsets” were added to the RT and 2nd strand synthesis 

primers. Three sets of these primers were synthesized, with each set containing either 2, 4 or 

6 random nucleotides at the offset position (see Extended Data Table 2). These offsets 

stagger the conserved constant and framework regions and result in much higher diversity 

during each sequencing cycle and minimize the required PhiX spike. cDNA synthesis was 

performed on 11ul of RNA using 10pmol of each primer in a 20ul total reaction 

(SuperScript III, Thermo Fisher Scientific) using the manufacturer’s protocol and the 

following thermal cycling program: 55C for 60 minutes, 70C for 15 minutes. Residual 

primers and dNTPs were degraded enzymatically (ExoSAP-IT, Thermo Fisher Scientific) 

according to the manufacturer’s protocol. The entire enzyme-treated cDNA synthesis 

product was used in a 100ul second strand synthesis reaction using 10pmol of each primer 

(HotStarTaq Plus, Qiagen) using the following thermal cycling protocol: 95C for 5 minutes, 

55C for 30 seconds, 72C for 10 minutes. Residual primers and dNTPs were again degraded 

enzymatically (ExoSAP-IT) and dsDNA was purified using 0.8 volumes of SPRI beads 

(AmpureXP, Beckman Coulter Genomics) and eluted in 50uL of water. Antibody genes 

were amplified using 40uL of eluted dsDNA and 10pmol of each primer in a 100ul total 

reaction volume (HotStarTaq Plus) using the following thermal cycling program: 95C for 5 

minutes; 25 cycles of: 95C for 30 seconds, 58C for 30 seconds, 72C for 2 minutes; 72C for 

10 minutes. DNA was purified from the PCR reaction product using 0.8 volumes of SPRI 

beads (AmpureXP) and eluted in 50uL of water. 10ul of the eluted PCR product was used in 

a final indexing PCR (HotStarTaq Plus) using 10pmol of each primer in 100ul total reaction 

volume and using the following thermal cycling program: 95C for 5 minutes; 10 cycles of: 

95C for 30 seconds, 58C for 30 seconds, 72C for 2 minutes; 72C for 10 minutes. PCR 

products were purified with 0.7 volumes of SPRI beads (SPRIselect, Beckman Coulter 
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Genomics) and the entire set of samples from a single subject were eluted in a single 120ul 

volume of water.

Sequencing

SPRI-purified sequencing libraries were initially quantified using fluorometry (Qubit, 

Thermo Fisher Scientific) before size determination using a bioanalyzer (Agilent 2100). 

Libraries were re-quantified using qPCR (KAPA Biosystems) before sequencing on an 

Illumina HiSeq 2500 using 2×250bp Rapid Run chemistry.

Raw sequence processing

Raw paired FASTQ files were quality checked with FASTQC 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/). Because the 5’ end of each paired 

read encodes the unique molecular identifier (UMI), reads were quality trimmed only at the 

3’ end using Sickle (www.github.com/najoshi/sickle), using a window size of 0.1 times the 

length of the read, minimum average window quality score of 20, and a minimum read 

length after trimming of 50 nucleotides. Because UMIs are located on the ‘outside’ of the 

gene-specific primers used for amplification (see Extended Data Figure 1B), primer 

trimming was delayed until after UMI processing. Processed reads were quality checked 

again using FASTQC, and paired reads were merged with PANDAseq using the default 

(simple_bayesian) merging algorithm.21

Molecular barcodes

Although sequencing libraries were constructed to encode molecular barcodes on both ends 

of the amplicon, we observed low-level PCR recombination22 which produced “barcode 

swapping”, causing the frequency of these amplification artifacts to be amplified. In essence, 

a partial amplification product, composed of a CDRH3 and an incomplete VH gene, was 

able to prime a different antibody sequence and continue amplification, producing a hybrid 

VH gene. This hybrid amplicon encodes the 3’ molecular barcode from the primary 

antibody recombination and the 5’ molecular barcode from the second. The barcode 

swapping creates a unique barcode pair, forcing the hybrid sequence to be binned and 

processed separately. To minimize the effects of such barcode swapping, we binned 

sequences using only the 3’ molecular barcode. Because the likelihood of UMI collisions 

was relatively high given the sequencing depth, the CDRH3 nucleotide sequences of each 

UMI bin containing more than one sequence were clustered at high identity (90%) and a 

consensus sequence was computed for each cluster. For UMI bins containing only a single 

sequence, the lone sequence was used as the representative for the respective UMI bin. 

Because our sequencing depth was approximately equal to the number of input cells 

(~3×108 sequencing reads from ~3×108 input B cells), the majority of UMI bins contained 

only a single sequencing read. As such, the UMIs were not used primarily for error 

correction, but as a means for correcting differential representation arising from stochastic or 

primer-driven amplification biases. Mutation frequencies in the IgM and IgG sequence 

populations (Extended Data Figure 3) provide empirical evidence of a low amplification/

sequencing error rate that corroborates sequencer-derived quality metrics.
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Germline gene assignment and annotation

Adapters and V-gene amplification primers (used for second strand synthesis) were removed 

using cutadapt.23 cDNA synthesis primers, which anneal to the CH1 region, were not 

removed because this region is needed to determine the isotype. Sequences were annotated 

with abstar4 and two output formats were generated: a comprehensive JSON-formatted 

output, which was imported into a MongoDB database; and a minimal CSV-formatted 

output, which is tabular and suitable for direct parsing or conversion to Parquet for querying 

on a Spark cluster.

Antibody clonotypes

Antibody clonotypes, defined as a collection of sequences that use the same V and J 

germline segments and encode an identical CDRH3 amino acid sequence, were used 

throughout this study to reduce the influence of sequencing or amplification error. Although 

collapsing the V/J regions to just the germline assignment removes the possibility of double-

counting sequences that differ only by error(s) in the V- or J-gene region, it does not 

eliminate the impact of error in the CDRH3. To gauge the effect of sequencing and 

amplification error in the CDRH3 on clonotype diversity, we collapsed sequences into 

clonotypes allowing either no mismatches in the CDRH3 amino acid sequence or allowing a 

single mismatch in the CDRH3. The total number of 1-mismatch clonotypes was lower than 

the number of 0-mismatch clonotypes by only 5.9% on average (3.4–9.5%), which is as 

expected when collapsing a sequence population containing expanded antibody lineages 

(Extended Data Figure 5) and indicates that CDRH3 sequencing errors do not contribute 

meaningfully to clonotype diversity. Thus, only 0-mismatch clonotypes were used for all 

further experiments utilizing clonotypes.

Estimation of light chain diversity relative to heavy chain diversity

Estimation of light chain diversity is, in some ways, more complex than estimating heavy 

chain diversity due to the relatively high frequency of coincidentally identical 

recombinations.24 Rather than sequencing unpaired light chains and attempting to discern 

independent rearrangements from distinct copies of RNA derived from the same 

recombination event, we leveraged a novel dataset of paired antibody heavy and light chains 

to estimate the diversity of light chains relative to the diversity of heavy chains.24 For each 

of the three subjects for which paired heavy/light sequencing data was available, we 

estimated the total richness using Chao2 and Recon estimators. Each subject was sequenced 

in duplicate, and separated estimates were computed for each sequencing replicate. Because 

the sequencing depth was far lower in the paired data set than in the large-scale experiment 

described here, we extrapolated the richness estimates so that the paired richness estimates 

were more comparable with the large-scale estimates. Although such an extrapolation may 

introduce a non-trivial amount of variance into the richness estimates, we believe that this 

provides the most accurate estimate of relative light chain diversity that is currently 

available. Diversity estimates and the associated extrapolations can be found in Extended 

Data Figure 7. The highest ratio of heavy chain to light chain richness (indicating the lowest 

diversity of light chains relative to heavy chains) was observed with the Chao2 estimator 
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(3.8×103). Conservatively, we rounded this ratio up to the nearest order of magnitude (104) 

when computing the total paired repertoire diversity estimates.

Generating synthetic repertoires based on a probabilistic model of V(D)J recombination

We created a total of 3 billion synthetic antibody sequences using IGoR16 with one of three 

different approaches. First, we created 10 sequence batches, each containing 108 synthetic 

antibody sequences, using IGoR’s default recombination model, which was inferred from 

unproductive antibody rearrangements. The reason for using unproductive rearrangements 

for inferring IGoR’s default recombination model is that productive rearrangements are 

subject to a variety of selection processes during B cell maturation (negative selection of 

autoreactive clones, requirement for productive pairing with a light chain, etc), whereas 

unproductive rearrangements are subjected to none of these selection processes. Thus, a 

model inferred from unproductive rearrangements incorporates only information about the 

V(D)J recombination process. Second, we inferred subject-specific recombination models 

using 5×105 randomly selected IgM sequences that were entirely unmutated in the V-gene 

region. Ten synthetic sequence batches, each containing 108 sequences, were then generated, 

one batch per subject. Finally, we inferred a combined-subject recombination model using a 

pool of 5×105 umutated IgM sequences from all 10 subjects (5×104 sequences per subject, 

randomly selected from the sequences used to generate the subject-specific models). As with 

IGoR’s default model, 10 separate batches of 108 synthetic sequences were generated with 

the combined-subject model. All synthetic sequences were processed in the same manner as 

the observed antibody sequences, except that the adapter trimming and UMI-based 

correction steps were not performed. Kullback-Leibler divergence between models or model 

“events” was computed with the pygor package, which is distributed with IGoR (Extended 

Data Figure 8).

Morisita-Horn similarity

Antibody sequences from each subject were reduced to just the V-gene, J-gene and CDRH3 

length (VJ-CDR3len) and were randomly sub-sampled with replacement at sample sizes 

ranging from 101-107. The frequency of each VJ-CDR3len was computed, and the frequency 

distributions from two donors was used to compute the Morisita-Horn similarity index:

CH =
2∑

i = 1

S
xiyi

∑i = 1
S xi

2

X2 +
∑i = 1

S yi
2

Y2 XY

where xi is the number of times VJ-CDR3len i is represented in one sample of size X and yi 

is the number of times VJ-CDR3len i is represented in a second sample of size Y.

Rarefaction

For each subject, all unique clonotypes from each of the biological replicates were pooled. 

For varying sample sizes (ranging from 0.1 to 1.0, as a fraction of the total number of pooled 

clonotypes), samples were randomly drawn without replacement and the number of unique 
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clonotypes in the sample was computed. For each sample size, a total of 10 independent 

samplings were performed, with the exception of the 1.0 fraction, which was only sampled 

once (as samplings of the entire dataset will always produce the same result).

Classification of repertoires by subject

Repertoires were classified using one-vs-rest support vector machine classifier. Classifier 

training and evaluation were performed in Python using the scikit-learn framework. All code 

used for classification can be found at www.github.com/briney/grp_paper. It is important to 

note that this classification was performed using only 10 subjects and expanding the subject 

pool to thousands or millions of individuals while maintaining classifier accuracy would 

likely require much larger training datasets and/or the inclusion of additional sequence 

features to supplement the V-gene, J-gene, and CDRH3 length. Additionally, because the 

repertoire of each subject will be altered by new immunological encounters and ongoing 

turnover in the naive B cell population, it is possible that these high-level sequence feature 

frequencies will change substantially over time.

Statistical calculations

Statistical calculations were performed in Python using SciPy (www.scipy.org) or Seaborn 

(www.seaborn.pydata.org).
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Extended Data

Extended Data Figure 1. Nearly full-length antibody gene amplification from biological and 
technical replicate samples.
a) Schematic of biological and technical replicate samples. Biological replicates (columns) 

are derived from distinct cell aliquots, so identical clonotypes or sequences found in multiple 

biological replicates must arise from different cells. Technical replicates (rows) were 

amplified using discrete RNA aliquots from a single cell aliquot. b) Strategy for nearly full-

length antibody heavy chains. Black arrows indicate primers. Primers in the cDNA synthesis 
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step anneal to the heavy chain constant region (CH) and add the first unique molecular 

identifier (UMI) and the Illumina read 1 primer annealing site. Primers in the 2nd strand 

synthesis step anneal to the framework 1 (FR1) region of the variable gene and add a second 

UMI and the Illumina read 2 primer annealing site.

Extended Data Figure 2. V/J frequency correlations of technical and biological replicates.
For each subject, the frequency of V/J combinations was compared for technical replicates 

(left panels) or biological replicates (right panels). The coefficient of determination (r2) is 

shown for each plot.
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Extended Data Figure 3. Nucleotide mutation frequencies.
a) The distribution of nucleotide mutations in sequences encoding IgM are shown. On the 

right, the number of unmutated sequences containing no mutations in the variable gene 

segment is also plotted. b) The distribution of nucleotide mutations in sequences encoding 

IgG are shown. On the right, the mean mutation frequency for the IgG population of each 

subject is shown. Each line represents a single subject. For legibility, the legend is split 

between the two plots. Although only five subjects are shown in the legend of each plot, data 

from all ten subjects is present in each plot.
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Extended Data Figure 4. Cross-subject repertoire similarity.
Pairwise Morisita-Horn similarity comparisons between each subject and all other subjects. 

Similarity was computed using the frequency of V-gene, J-gene and CDRH3 length 

combinations. Each line represents the mean of 20 independent repertoire samplings (with 

replacement). The shading surrounding the mean line indicates the 95% confidence interval.
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Extended Data Figure 5. Collapsing sequences into clonotypes.
a) To demonstrate the effect of collapsing an expanded clonal lineage into clonotypes, we 

selected a previously reported lineage of Zika-specific monoclonal antibodies isolated from 

the plasmablast population of an acutely infected patient.25 Of 119 sequences, 89 were 

unique at the nucleotide level. b) Sequences encoding the same V-gene, J-gene and an 

identical CDRH3 amino acid sequence were collapsed into clonotypes, and the sequence 

phylogeny was colored by clonotype. 119 total sequences were collapsed into 18 clonotypes. 

c) Sequences were collapsed into clonotypes, allowing a single mismatch in the CDRH3 

amino acid sequence, and the sequence phylogeny was colored by clonotype. 119 total 

sequences were collapsed into 10 clonotypes. d) The clonotype fraction (number of 

clonotypes divided by the total number of filtered sequences) when collapsing clonotypes 

while allowing zero or one mismatch in the CDRH3 amino acid sequence for each subject in 

this study. e) Number of total clonotypes recovered when allowing zero or one mismatch in 

the CDRH3 amino acid sequence for each subject in this study.
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Extended Data Figure 6. Capture-recapture frequency.
a) Recapture frequency for each subject. Lines represent the mean of 10 random samplings 

(without replacement) for all subsample fractions except compete sampling (1.0). b) Mean 

recapture frequency for each subsample fraction.
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Extended Data Figure 7. Relative light chain diversity estimation.
Using previously reported datasets of paired heavy and light antibody chains, clonotype 

diversity was estimated for heavy and light chains using both Chao2 and Recon estimators. 

Estimates are shown in filled or unfilled points. Lines indicate the least squares polynomial 

best fit (degree=2) and is extrapolated to include both the lowest (1.17×108) and highest 

(9.06×108) number of UMI-corrected sequences from the 10 sequenced subjects.

Briney et al. Page 17

Nature. Author manuscript; available in PMC 2019 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 8. Variance between inferred V(D)J recombination models.
a) Frequency of clonotype sharing between observed human subjects (black), synthetic 

datasets generated with IGoR’s default recombination model (red), synthetic datasets 

generated with subject-specific recombination models (blue) or synthetic datasets generated 

with a combined subjects recombination model (purple). b) Combined Kullback-Leibler 

divergence (KL divergence) between pairs of subject-specific models (blue), between 

subject-specific models and IGoR’s default model (red), or between subject-specific models 
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and the combined-subject model (purple). c) Combined KL divergence between pairs of 

subject-specific models, separated by “event” type.

Extended Data Table 1.
Per-subject demographic information and sequencing 
statistics.

All ethnicities are self-reported.

Subject Age Gender Blood Type Ethnicity Raw reads Consensus sequences
Consensus

0 mismatch 1 mismatch

316188 30 female A-POS AA 320,844,194 11,767,640 2,061,409 1,865,584

326650 18 female O-POS C 218,356,368 24,592,893 8,295,298 7,935,396

326651 19 male O-POS AA 298,965,776 86,637,579 31,470,867 30,168,620

326713 25 female O-POS AA 228,526,194 90,598,768 41,809,045 40,405,491

326780 29 male O-NEG C 295,183,125 17,991,497 4,400,086 4,084,795

326797 21 female A-POS C 341,880,369 39,963,919 8,483,433 8,009,495

326907 29 male AB-POS C 275,955,787 35,726,036 8,021,582 7,621,784

326907 29 female O-NEG AA 267,970,240 13,528,917 3,236,704 3,030,208

327059 26 male B-POS AA/C 332,209,280 30,967,338 9,227,298 8,655,199

D103 25 male O-NEG C 322,781,254 11,746,606 2,914,936 2,696,342

AA: African-American, C: Caucasian

Briney et al. Page 19

Nature. Author manuscript; available in PMC 2019 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E
xt

en
d

ed
 D

at
a 

Ta
b

le
 2

.
P

ri
m

er
s 

us
ed

 fo
r 

an
ti

bo
dy

 g
en

e 
am

pl
if

ic
at

io
n.

R
eg

io
ns

 in
 p

ar
en

th
es

is
 in

di
ca

te
 “

of
fs

et
” 

po
si

tio
ns

. R
an

do
m

 o
ff

se
t n

uc
le

ot
id

es
 a

re
 a

dd
ed

 in
 m

ul
tip

le
s 

of
 2

. X
s 

in
di

ca
te

 th
e 

po
si

tio
n 

of
 I

llu
m

in
a 

T
ru

Se
q 

in
de

xe
s.

N
am

e
Se

qu
en

ce
St

ep

lg
M

-R
T

A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G
C
T
C
T
T
C
C
G
A
T
C
T
N
N
N
N
N
N
N
N
N
N
N
N
(
N
N
N
N
N
N
)
G
G
T
T
G
G
G
G
C
G
G
A
T
G
C
A
C
T
C
C

R
T

lg
G

-R
T

A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G
C
T
C
T
T
C
C
G
A
T
C
T
N
N
N
N
N
N
N
N
N
N
N
N
(
N
N
N
N
N
N
)
S
G
A
T
G
G
G
C
C
C
T
T
G
G
T
G
G
A
R
G
C

R
T

V
H

1-
2S

S
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
(
N
N
N
N
N
N
)
G
G
C
C
T
C
A
G
T
G
A
A
G
G
T
C
T
C
C
T
G
C
A
A
G

2n
d 

st
ra

nd
 s

yn
th

es
is

V
H

2-
2S

S
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
(
N
N
N
N
N
N
)
G
T
C
T
G
G
T
C
C
T
A
C
G
C
T
G
G
T
G
A
A
C
C
C

2n
d 

st
ra

nd
 s

yn
th

es
is

V
H

3-
2S

S
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
(
N
N
N
N
N
N
)
C
T
G
G
G
G
G
G
T
C
C
C
T
G
A
G
A
C
T
C
T
C
C
T
G

2n
d 

st
ra

nd
 s

yn
th

es
is

V
H

4-
2S

S
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
(
N
N
N
N
N
N
)
C
T
T
C
G
G
A
G
A
C
C
C
T
G
T
C
C
C
T
C
A
C
C
T
G

2n
d 

st
ra

nd
 s

yn
th

es
is

V
H

5-
2S

S
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
(
N
N
N
N
N
N
)
C
G
G
G
G
A
G
T
C
T
C
T
G
A
A
G
A
T
C
T
C
C
T
G
T

2n
d 

st
ra

nd
 s

yn
th

es
is

V
H

6-
2S

S
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
(
N
N
N
N
N
N
)
T
C
G
C
A
G
A
C
C
C
T
C
T
C
A
C
T
C
A
C
C
T
G
T
G

2n
d 

st
ra

nd
 s

yn
th

es
is

R
1-

fw
d

G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C

PC
R

1

R
1-

re
v

A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

PC
R

1

R
2-

fw
d

C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
G
A
T
C
G
G
T
C
T
C
G
G
C
A
T
T
C
C
T
G
C
T
G
A
A
G
A
T
X
X
X
X
X
X
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C

PC
R

2

R
2-

re
v

A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

PC
R

2

Briney et al. Page 20

Nature. Author manuscript; available in PMC 2019 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Uniqueness of the repertoires of individual subjects.
a) Frequency comparison of V/J combinations in biological replicates from subject 326650. 

V/J combinations are colored according to the V-gene used. b) Sequence frequency by 

antibody isotype. Subjects are colored as in (c). Each point represents a single biological 

replicate. Mean of all samples is indicated for each isotype. c) CDRH3 length distribution 

for each subject. CDRH3 lengths were determined using the IMGT numbering scheme. d) 

Morisita-Horn similarity of pairwise comparisons between subject 316188 and each of the 

other subjects. Lines indicate mean similarity of 20 bootstrap samplings and shaded areas 

indicate 95% confidence intervals. Data from subject 316188 is representative; plots for all 

other subjects can be found in Figure ED4. V-gene (e) and J-gene (f) use by subject. 

Increased color intensity indicates higher frequency. Subjects are colored as in (c). g) 

Clustered distance matrix of subjects, using pairwise VJ-CDR3len Morisita-Horn similarity 

as the distance measure. Distance matrix was computed using single-linkage clustering 

(Euclidean distance metric). Subject colors are as in (c). A dendrogram representation of the 
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distance matrix is also shown on the left side of the distance matrix. h) Comparison of intra- 

and inter-subject VJ-CDR3len similarity, using either all sequences, IgM sequences with 

fewer than two nucleotide mutations, IgM sequences with two or more mutations, or IgG 

sequences. Points represent individual intra- or inter-subject comparisons. Boxplots show 

the median line and span the 25th-75th percentile, with whiskers indicating the 95% 

confidence interval. i) Mean receiver operating characteristic (ROC) area under the curve 

(AUC) for a one-versus-rest SVM classifier. The ROC AUC does not drop below 1.0 for any 

subject when the test/training datasets include ≥500 sequences each, and that threshold is 

indicated with a dashed vertical line.
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Figure 2. Clonotype and sequence diversity amongst the 10 subjects.
a) Clonotype rarefaction curves for each subject. Lines represent the mean of 10 independent 

samplings, with the exception of the 1.0 fraction, which was sampled once. The dashed line 

represents a perfectly diverse sample. Inset is a close-up of the rarefaction curve ends. b) 

Total clonotype repertoire diversity estimates were computed for increasingly large fractions 

of each subject’s clonotype repertoire. Each line represents the mean of 10 random sub-

samplings without replacement (again, except for the 1.0 fraction). Chao estimates are 

shown in solid lines, Recon estimates are shown in dashed lines. Subject colors are as in (a). 
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Maximum diversity (1.0 fraction of each subject) for each estimator is shown in the right 

panel. c) Overall cross-subject clonotype diversity of each possible combination of 1 or 

more subjects. The Chao estimate is a solid line and the Recon estimate is a dashed line. 

Shaded regions indicate 95% confidence intervals. The confidence intervals in (c) are for 

different groupings of subjects, not for the estimators themselves. d) Total sequence 

repertoire diversity estimates were computed for increasingly large fractions of each 

subject’s sequence repertoire. Each line represents the mean of 10 random sub-samplings 

without replacement (except for the 1.0 fraction, for which only a single calculation was 

made). Chao estimates are shown in solid lines, Recon estimates are shown in dashed lines. 

Subject colors are as in (a). Maximum diversity (1.0 fraction of each subject repertoire) for 

each estimator is shown in the right panel. e) Overall cross-subject nucleotide sequence 

diversity of each possible combination of 1 or more subjects. The Chao estimate is a solid 

line and the Recon estimate is a dashed line. Shaded regions indicate 95% confidence 

intervals. Confidence intervals are as in (c).
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Figure 3. Shared clonotypes and sequences amongst the 10 subjects.
a) Venn diagram of shared clonotype frequency. b) Shared clonotype frequency between 

subject groups. Points represent different group combinations. Observed sequences (black), 

synthetic sequences generated with IGoR’s default model (red), and sequences generated 

with subject-specific models (blue) are shown. c) CDRH3 length distribution of clonotypes 

found in one biological replicate (top) or all six biological replicates (bottom). CDRH3 

length is defined using IMGT numbering. The legend was split maintain legibility; data for 

all subjects is present in both plots. d) CDRH3 length distribution of unshared clonotypes 

(top) or clonotypes shared by the majority of subjects (bottom). Observed sequences (black), 

default model (red) and subject-specific model (blue) synthetic sequences are shown. e) Per-

position Shannon entropy of the CDRH3 head regions of unshared (solid) or majority-shared 

(dashed) clonotypes. Points indicate the mean, whiskers indicate the 95% confidence 

interval, and lines represent the linear best fit. f-g) Sequence logos of the CDRH3s encoded 

by observed unshared clonotypes, observed majority-shared clonotypes, and synthetic 

majority-shared clonotypes of length 8 (f) or 13 (g). Head region amino acid coloring: polar 

amino acids (GSTYCQN) are green, basic (KRH) blue, acidic (DE) red, and hydrophobic 

(AVLIPWFM) black. All torso residues are grey. h) Relative abundance of amino acid 

properties in the CDRH3s of majority-shared clonotypes. Abundances are normalized to the 

frequency in unshared clonotypes. i) Nucleotide mutations for singly observed or repeatedly 

observed clonotypes. Colored lines indicate the mean for each subject, the dashed black line 
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indicates the mean of all subjects. j) Nucleotide mutations for shared or unshared 

clonotypes. Colored lines indicate the mean for each subject, the dashed black line indicates 

the mean of all subjects. k) Mutation frequency of nucleotide sequences shared by two or 

more subjects. Points indicate mean mutation frequency. The number of unique nucleotide 

sequences in each shared group is shown.
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