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SUMMARY

Multiple sclerosis (MS) is a demyelinating disease caused by an auto-reactive im-
mune system. Recent studies also demonstrated synapse dysfunctions in MS pa-
tients andMSmousemodels. We previously observed decreased synaptic vesicle
exocytosis in photoreceptor synapses in the EAE mouse model of MS at an early,
preclinical stage. In the present study, we analyzed whether synaptic defects are
associated with altered presynaptic Ca2+ signaling. Using high-resolution immu-
nolabeling, we found a reduced signal intensity of Cav-channels and RIM2 at
active zones in early, preclinical EAE. In line with these morphological alterations,
depolarization-evoked increases of presynaptic Ca2+ were significantly smaller.
In contrast, basal presynaptic Ca2+ was elevated. We observed a decreased
expression of Na+/K+-ATPase and plasma membrane Ca2+ ATPase 2 (PMCA2),
but not PMCA1, in photoreceptor terminals of EAE mice that could contribute
to elevated basal Ca2+. Thus, complex Ca2+ signaling alterations contribute to
synaptic dysfunctions in photoreceptors in early EAE.

INTRODUCTION

Multiple sclerosis (MS) is a severe and frequent demyelinating disease of the central nervous system char-

acterized by inflammation, demyelination, and axonal degeneration in the white matter (Lassmann et al.,

2007; Dendrou et al., 2015; Faissner et al., 2019). Optic neuritis is a frequent and early event inMS. The path-

ogenesis of MS is not completely understood. Recent studies both in MS patients (Loewe et al., 2014;

Haider et al., 2014; Jürgens et al., 2016) and mouse models of MS (Habbas et al., 2015; Stampanoni Bassi

et al., 2017; Rizzo et al., 2018) revealed that not only the white matter but also the gray matter is affected by

the disease. In the gray matter, neurodegeneration, neuronal cell death, and synapse dysfunctions were

found (Mandolesi et al., 2015; Stampanoni-Bassi et al., 2017; Schattling et al., 2019). Interestingly, gray mat-

ter alterations occur early in the disease before obvious changes in the white matter, arguing against the

possibility that these changes happen as a consequence of demyelination. Recently, Dembla et al. (2018)

observed synaptic dysfunctions in the retina of the experimental auto-immune encephalomyelitis (EAE)

mouse model of MS. The EAE mouse model is a prevalent, frequently used and well-validated model of

MS (‘‘gold-standard animal model for MS’’; Constantinescu et al., 2011; Robinson et al., 2014; Ben-Nun

et al., 2014). In the retina, photoreceptor synapses, an unmyelinated tissue, were particularly strongly

affected in early, pre-clinical EAE. These synapses showed morphological and functional alterations,

including decreased synaptic vesicle exocytosis and impaired visually guided behavior without gross

morphological alterations in the optic nerve at the light and electron microscopic level (Dembla et al.,

2018).

Photoreceptor synapses are continuously active ribbon synapses (Matthews and Fuchs, 2010; Lagnado and

Schmitz, 2015; Moser et al., 2020). In photoreceptor synapses, synaptic vesicle fusion occurs predominantly

at the active zones where L-type voltage-gated Ca2+ (Cav)-channels and RIM proteins, which control Cav-

channel function, are enriched. To maintain continuous transmission over long periods of time, the active

zones are associated with large presynaptic specializations, the synaptic ribbons that tether additional ves-

icles (Moser et al., 2020). The RIBEYE protein is the central building block of synaptic ribbons (Schmitz et al.,

2000; Maxeiner et al., 2016). At their basal, membrane-proximal end, the ribbons are anchored to the active

zones. At the photoreceptor active zone, the L-type Ca2+-channels, consisting of the Cav1.4 pore-forming

a1-subunit and the auxiliary b2-and a2d4 subunits, show little voltage- and Ca2+-dependent inactivation

(Wahl-Schott et al., 2006; Joiner and Lee, 2015; Pangrsic et al., 2018), thus promoting continuous synaptic
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vesicle exocytosis. RIM2 is the major long RIM variant in rod photoreceptor synapses (Grabner et al., 2015;

Löhner et al., 2017). CASPR1, an adhesion protein and a frequent auto-immune target (Stathopoulos et al.,

2015), is also present at the synaptic ribbon complex (Dembla et al., 2018). The photoreceptor ribbon syn-

apses were affected early on in the preclinical phase of EAE (Dembla et al., 2018). These early synaptic

changes in EAE retinas are associated with a rapid and massive auto-immune response directed against

retinal proteins, including auto-antibodies against CASPR1, that lead to an enhanced recruitment and acti-

vation of a local complement system at retinal synapses. This occurs in parallel with impaired synaptic

vesicle exocytosis at photoreceptor synapses, altered synaptic ribbons, and altered visual behavior before

the onset of optic nerve demyelination (Dembla et al., 2018).

In the present study, we analyzed molecular mechanisms that might be underlying the early synaptic alter-

ations in photoreceptor synapses of EAE mice. We focused on presynaptic Ca2+ signaling because of its

central role in synaptic transmission (Südhof, 2012b, 2014). Furthermore, some drugs used in MS therapy

target Ca2+-dependent pathway and Ca2+-homeostasis (Schampel et al., 2017; Ingwersen et al., 2018; Hun-

dehege et al., 2018; Criscuolo et al., 2019; Faissner et al., 2019), emphasizing an important role of Ca2+ in

MS. Therefore, we analyzed whether key components of presynaptic Ca2+ signaling at the active zone of

photoreceptor synapses might be morphologically altered in early preclinical EAE. Intracellular Ca2+

changes were measured to determine basal synaptic Ca2+ levels under resting conditions and depolariza-

tion-evoked Ca2+ responses during stimulation. Using these approaches we found morphological and

functional evidence for altered Ca2+ signaling at photoreceptor synapses in early EAE.

RESULTS

In the present study, we tested for possible alterations of Ca2+ homeostasis in the EAEmousemodel of MS.

In this prevalent, well-validated model (for review, see Constantinescu et al., 2011; Robinson et al., 2014;

Ben-Nun et al., 2014), MS-like symptoms are induced by injection of encephalitogenic MOG35-55 peptide

from myelin oligodendrocyte glycoprotein (MOG) emulsified with complete Freund’s adjuvant (CFA) (and

additional pertussis toxin (PTX) injection) (see also Transparent Methods). This MOG35-55-EAE C57BL/6

model is considered as a ‘‘gold-standard’’ animal model for MS (Ben-Nun et al., 2014).

Cav1.4 Is less Enriched at the Active Zone of Photoreceptor Synapses in EAE Mice

We first analyzed the distribution of voltage-gated Ca2+ (Cav) channels in rod photoreceptor synapses of

MOG/CFA-injected mice in comparison to CFA-injected control mice (Figures 1, S1, and S2). Rod photo-

receptor synapses are located in the outer plexiform layer (OPL) of the retina and can be clearly identified

by the presence of a single large horseshoe-shaped synaptic ribbon (Schmitz et al., 2000; Moser et al.,

2020). For immunolabeling of Cav-channels, we made use of three different, knockout-verified antibodies

against Cav1.4 (Dembla et al., 2020) (Figures 1, S1, and S2). Themorphological analyses were performed on

retina sections obtained from mice 9 days after injection with MOG/CFA (experimental condition) or CFA

alone (control condition). At this time point, the optic nerve appears morphologically unaffected and does

not show obvious demyelination and signs of optic neuritis (Fairless et al., 2012; Dembla et al., 2018). This

early preclinical time window was chosen to exclude changes in the retina that are secondary to demyelin-

ation and axon loss in the optic nerve.

The typical horseshoe-shaped pattern of immunolabeled synaptic ribbons and Cav1.4-labeled active zones

were readily evident in the OPL of CFA-injected control retinas, as demonstrated by double-immunolab-

eling with Cav1.4- and RIBEYE antibodies (Figures 1, S1, and S2). Confocal microscopy of control retinas

demonstrated that both proteins co-localized at the active zone of photoreceptor synapses (Figures 1A–

1C, S1A–S1C, and S2A–S2C). All three Cav1.4 antibodies demonstrated that Cav1.4 was still present at

the photoreceptor active zone of MOG/CFA-injected EAE mice (Figures 1D–1F, S1D–S1F, and S2D–

S2F). But quantitative analyses of the intensity of Cav1.4 immunosignals revealed that the intensity was

significantly reduced in photoreceptor active zones of MOG/CFA-injected EAE mice in comparison to

CFA-injected control mice (Figures 1G, 1H, S1G, S1H, S2G, and S2H). This reduction in Cav1.4 immunolab-

eling intensity was consistently observed with all three different Cav1.4 antibodies (Figures 1, S1, and S2).

Remarkably, the number of Cav1.4 puncta in the OPL was unchanged between CFA-injected control mice

and MOG/CFA-injected EAE mice (Figures 1I, 1J, S1I, S1J, S2I, and S2J). This indicates that the number of

photoreceptor synapses and active zones is identical in CFA control and MOG/CFA-injected mice 9 days

after injection. These results were consistently observed with the three different Cav1.4 antibodies, Cav1.4

Cterm (Figure 1), Cav1.4 Nterm (Figure S1), and Cav1.4 [16D9] (Figure S2), raised against different regions
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Figure 1. Cav1.4 Is Less Enriched at the Active Zone of Photoreceptor Synapses in EAE Mice

(A–F) Retina sections (0.5 mm in thickness) from CFA- and MOG/CFA-injected mice processed 9 days after injection. Confocal analyses of rod photoreceptor

synapses in the OPL immunolabeled with rabbit polyclonal antibody against Cav1.4 (Cav1.4 Cterm) and mouse monoclonal antibody (2D9) against RIBEYE.

The intensity of the Cav1.4 immunosignals is quantified as integrated density in (G and H). The number of Cav1.4 puncta is quantified in (I and J). Values are

meansG S.E.M. (G and I). In the box-and-whiskers plots of the data in (H and J) mean values are labeled by blue horizontal bars and median values by green

horizontal bars. Boxes represent 25th–75th percentiles of values, and whiskers are equal to 1.5 times of the interquartile range (IQR). Statistical significance

was determined with Mann-Whitney U-test. Abbreviations: OPL, outer plexiform layer; S.E.M., standard error of the mean; N = number of mice; n = number

of images analyzed from retinal sections. Scale bars: 2 mm.
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of Cav1.4. Retinal sections were co-stained with anti-RIBEYE in these experiments to label synaptic ribbon

as a reference (Figures 1B, 1E, S1B, S1E, S2B, and S2E). The fluorescence intensity of photoreceptor syn-

aptic ribbons is also reduced in MOG/CFA-injected animals in comparison to CFA-injected control mice

(Dembla et al., 2018).

Cav1.4 [16D9] and Cav1.4 Cterm have been previously verified on Cav1.4 knockout tissue (Dembla et al.,

2020). The specificity of Cav1.4 Nterm for Cav1.4 is demonstrated in Figure S1K–S1P. The Cav1.4 Nterm

generated a strong signal in the OPL of control retina (Figures S1K–S1P), similar to previously published

data (Dembla et al., 2020). This Cav1.4 signal in the OPL was completely absent in the Cav1.4 knockout

retina (Figure S1N), demonstrating the specificity of the antibody for Cav1.4. Retinal sections were also

co-stained with anti-RIBEYE (Figures S1L and S1O). Synaptic ribbons in the OPL are altered in size and dis-

tribution in Cav1.4 knockout tissue, as was previously described (for review, see Joiner and Lee, 2015; Pan-

grsic et al., 2018). All Cav1.4 immunosignals were contained within the PSD95-immunolabeled photore-

ceptor presynaptic terminals (Figure S3). We did not observe any Cav1.4 immunosignal outside of the

photoreceptor terminals (Figures S3N and S3P), similar to as previously described (Dembla et al., 2020).

The Length of Cav1.4 Protein Clusters at the Active Zone of Photoreceptor Synapses Is

Decreased in EAE Mice

To better understand the underlying mechanism of the reduced Cav1.4 immunosignal strength in rod

photoreceptor synapses of MOG/CFA-injected EAEmice in comparison to littermate control mice, we per-

formed super-resolution structured-illumination-microscopy (SR-SIM) to analyze the size of the Cav1.4-im-

munolabeled active zone in greater detail. SR-SIM experiments demonstrated that the mean contour

length of the Cav1.4 immunosignals in rod photoreceptor synapses of MOG/CFA-injected EAE mice

was considerably shorter than in CFA-injected littermate control mice (Figure 2). Thus, the shorter contour

length of the Cav1.4 immunosignals appears to be the main reason behind the observed reduced intensity

of Cav1.4 immunosignals at rod photoreceptor synapses in EAE mice.

The Auxiliary b2-Subunit of Cav-Channels Is Also less Enriched at the Active Zone of

Photoreceptor Synapses in EAE Mice

To further corroborate these findings, we also tested for the distribution of the auxiliary b2-subunit of the

Cav-channels in rod photoreceptor synapses. For this purpose, we used two different, previously charac-

terized antibodies against Cavb2 (Meissner et al., 2011; Katiyar et al., 2015). Both Cavb2 antibodies pro-

duced similar immunolabeling results (Figures 3A–3C, 3D–3F, S4A–S4C, and S4D–S4F), showing reduced

Cavb2 immunosignal strength in the OPL of MOG/CFA-injected mice in comparison to CFA-injected con-

trol mice (Figures 3G, 3H, S4G, and S4H). This reduction in the Cavb2 immunosignal intensity was similar to

the observed decreased intensity of the Cav1.4 a-subunit (Figures 1, S1, and S2). Again, similar to Cav1.4,

the number of immunoreactive Cavb2 puncta in the OPL remained unchanged (Figures 3I, 3J, S4I, and S4J).

We also performed SR-SIM analyses with Cavb2-immunolabeled retinas and found, similar to what we had

previously observed for Cav1.4, a reduction in the contour length of the Cavb2 immunosignals at rod

photoreceptor synapses in the OPL of MOG/CFA-injected mice with respect to CFA-injected control litter-

mate mice (Figure 4).

Validation of RIM2 Antibodies

Next we checked for RIM proteins. RIM proteins are essential components of the active zone and important

for controlling central aspects of Cav-channel function (Kaeser et al., 2011, Han et al., 2011; Deng et al.,

2011; Eggermann et al., 2011; Südhof, 2012a, 2012b; Hallermann and Silver, 2013; Kim et al., 2013; Nanou

and Catterall, 2018). At rod photoreceptor synapses RIM2 is the major long RIM isoform (Grabner et al.,

2015; Löhner et al., 2017). Based on its central function for Ca2+ homeostasis, we analyzed the distribution

of RIM2 in rod photoreceptor synapses using a mouse monoclonal antibody against RIM2, clone 4C6.

The specificity of the 4C6 monoclonal RIM antibody was verified on photoreceptor-specific RIM1/2 double

knockout retina in comparison to control retinas (Figure S5). The RIM2monoclonal antibody 4C6 generated

a strong immunosignal in the OPL of wild-type retinas (Figures S5A–S5C) but not in the OPL of the photo-

receptor-specific RIM1/2 double-knockout (DKO) retina (Figures S5D–S5F). In the OPL of photoreceptor-

specific RIM1/2 DKO retinas, the RIM2 immunosignals were completely abolished, (Figure S5D) whereas

RIBEYE immunosignals (Figure S5E) were qualitatively unaffected. These experiments show that the 4C6

monoclonal antibody specifically detects RIM2 in the murine retina. The specificity of the RIM2 monoclonal
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Figure 2. The Length of Cav1.4 Protein Clusters at the Active Zone Of Photoreceptor Synapses Is Decreased in

EAE Mice

3D SR-SIM analyses of individual active zones of rod photoreceptor synapses from CFA-injected control mice and MOG/

CFA-injected experimental mice immunolabeled with polyclonal antibody against Cav1.4 Cterm.

(A–D) demonstrate how contour length of individual active zones was determined by 3D SR-SIM. (A) Individual z stack

obtained with 3D SR-SIM; (B) the spatial 3D view; (C) the 2D projection of the 3D view with the active zone being rotated

parallel to the X, Y-plane; (D) the measurement of the contour length of the presented active zone.

(E and F) Exemplary SR-SIM images from CFA-injected control mice (E) and MOG/CFA-injected EAE mice (F).

(G and H) Quantitative analyses of the active zone contour length (mean G S.E.M.) (G) obtained from SR-SIM

measurements. In the box-and-whiskers plots in (H), mean values are indicated by blue horizontal bars and median values

by green horizontal bars. Boxes represent 25th–75th percentiles of values and whiskers are equal to 1.5 times of the IQR.

Statistical significance was determined with Mann-Whitney U-test. Abbreviations: S.E.M., standard error of the mean; N =

number of mice; n = number of analyzed immunolabelled active zones; OPL, outer plexiform layer. Scale bar: 0.5mm (A).
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antibody 4C6 for the RIM2 peptide was also verified by pre-absorption experiments. The 4C6 monoclonal

antibody was pre-absorbed either with the RIM2 peptide against which the antibody was raised (Figure S5J)

or with an unrelated control peptide (Figure S5G). Pre-absorption with the RIM2 peptide completely abol-

ished binding of the 4C6 RIM2 antibody to its target in the OPL (Figure S5J), whereas blocking with unre-

lated peptide had no effect (Figure S5G). Blocking with either peptide had no influence on RIBEYE labeling

(Figures S5H, S5I, S5K, and S5L).

RIM2 Is Less Enriched at the Active Zones of Photoreceptor Synapses in EAE Mice

The immunolabeling results obtained with themonoclonal RIM2 antibody 4C6 demonstrated that the RIM2

immunosignals were severely reduced in the active zone of photoreceptor synapses from MOG/CFA-in-

jected mice (Figure 5D) in comparison to CFA-injected control mice (Figure 5A) (for quantification of immu-

nosignal strengths, see Figures 5G and 5H). Similar to Cav1.4 and Cavb2, the number of immunoreactive

RIM2 puncta in the OPL of MOG/CFA-injected mice were unchanged in comparison to CFA-injected

Figure 3. The Auxiliary b2-Subunit of Cav Channels Is Also Less Enriched at the Active Zone of Photoreceptor

Synapses in EAE Mice

(A–F) Retina sections (0.5 mm in thickness) from CFA- and MOG/CFA-injected mice processed 9 days after injection.

Confocal analyses of rod photoreceptor synapses in the OPL immunolabeled with rabbit polyclonal antibody against

Cavb2 (ab#1) and mouse monoclonal antibody (2D9) against RIBEYE. The intensity of the Cavb2 immunosignals is

quantified as integrated density in (G and H). The number of Cavb2 puncta is quantified in (I and J). Values are

meansG S.E.M. (G and I). In the box-and-whiskers plots of the data in (H and J) mean values are labeled by blue horizontal

bars and median values by green horizontal bars. Boxes represent 25th–75th percentiles of values and whiskers are equal

to 1.5 times of the IQR. Statistical significance was determined with Mann-Whitney U-test. Abbreviations: OPL, outer

plexiform layer; S.E.M., standard error of the mean; N = number of mice; n = number of images analyzed from retinal

sections. Scale bars: 2 mm.
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littermate control mice (Figures 5I and 5J). Very similar immunolabeling and quantification results were ob-

tained with another RIM2 monoclonal antibody (4F7 RIM2 monoclonal antibody; Figure S6). Fluorescence

intensity measurements with the 4F7 RIM2 antibody were performed on CFA and MOG/CFA sections dou-

ble-immunolabeled with PSD95 (Figures S6A–S6H). Counting of RIM2 puncta with the 4F7 RIM2 antibody

was done on sections double-immunolabeled with anti-RIBEYE antibody (for better reference to the active

zone [figure not shown]; for quantification see Figures S6I and S6J). We did not perform SR-SIM analyses

with the 4C6 or 4F7 monoclonal RIM2 antibodies because the RIM2 immunosignals were too weak in the

OPL of MOG/CFA-injected samples and thus difficult to discriminate from background signals after pro-

cessing for SR-SIM.

Thus, in conclusion two central components of the active zones (Cav1.4 channels and RIM2 proteins) were

consistently less enriched at the active zone of rod photoreceptor synapses of MOG/CFA-injected EAE

mice, whereas the number of active zones remained unchanged. This decreased protein enrichment in

EAE photoreceptor synapses appeared to be selective for active zone proteins because other proteins

of the presynaptic rod photoreceptor terminal, e.g. PSD-95, PMCA1 (the most abundant PMCA protein

in the murine retina), were not altered in signal strength in EAE photoreceptor synapses (Figures 8H, 8K,

8M, 8N, 9D, 9G, 9H, S9D, S9G, and S9H) if compared against photoreceptor synapses of CFA-injected con-

trol mice (Figures 8B, 8E, 8M, 8N, 9A, 9G, 9H, S9A, S9G, and S9H).

Fura2 Ca2+ Imaging of Photoreceptor Synapses in the Outer Plexiform Layer of the Retina

Next, we asked whether the observed morphological changes of active zone proteins also lead to func-

tional alterations. For this purpose, we performed Fura2 Ca2+ imaging and monitored high

Figure 4. The Length of Auxiliary Cav Channel b2-Subunit Protein Clusters at the Active Zone of Photoreceptor

Synapses Is Decreased in EAE Mice

3D SR-SIM analyses of individual active zones of rod photoreceptor synapses from CFA-injected control mice and MOG-

CFA-injected experimental mice immunolabeled with polyclonal antibody against Cavb2 (ab #1), (A–D) Exemplary SR-SIM

images from CFA-injected control mice (A) and MOG/CFA-injected EAE mice (B).

(C and D) quantitative analyses of the active zone contour length (mean G S.E.M.) (C) obtained from SR-SIM

measurements. In the box-and-whiskers plots of the data in (D), mean values are indicated by blue horizontal bars and

median values by green horizontal bars. Boxes represent 25th–75th percentiles of values and whiskers are equal to 1.5

times of the IQR. Statistical significance was determined with Mann-Whitney U-test. Abbreviations: S.E.M., standard error

of the mean; N = number of mice; n = number of analyzed immunolabeled active zones; OPL, outer plexiform layer.
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K+-depolarization-induced Ca2+ entry in the OPL of retinal slices of mice that were injected with either

MOG/CFA (EAE experimental group) or with CFA (control group). Fura2 recordings were performed at

7 days (Figure 6A), 8 days (Figures 6B), and 9 days (Figure 6C) after injection. Regions of interest (ROIs)

for analyses were placed at the OPL between the ONL and INL, as identified by phase contrast microscopy,

F380 epifluorescence, and F340/F380 fluorescence signals. To further confirm proper localization of the

ROIs, we also analyzed RIBEYE-FP-transgenic mice in which synaptic ribbons are fluorescently labeled

(Okawa et al., 2019). These controls confirmed that the ROIs were properly placed and further suggested

that the strongest K+-depolarization-evoked responses were observed at the presynaptic photoreceptor

terminals in the OPL (Figure S7), in agreement with previous findings (for review, see Van Hook et al., 2019).

Decreased High K+-Depolarization-Evoked Ca2+ Responses and Elevated Basal, Resting Ca2+

Levels in Photoreceptor Synapses of EAE Mice

With Fura2 Ca2+ imaging, we observed severe alterations in presynaptic Ca2+ in photoreceptor synapses of

MOG/CFA-injected mice in comparison to CFA-injected control mice (Figures 6 and 7). The Ca2+ baseline

levels were consistently higher (more thanz100nM) in photoreceptor synapses of EAEmice in comparison

to control synapses from CFA-injected mice (Figures 6A–6C; quantification in 6D, and 6E). In contrast, the

high K+-depolarization-induced increases of presynaptic Ca2+ concentration were smaller in MOG/CFA-in-

jected mice in comparison to CFA-injected control mice (Figures 6A–6C and 7). In order to better analyze

the evoked Ca2+ responses independent of the different resting values, we normalized the evoked

Figure 5. RIM2 Is Less Enriched at the Active Zones of Photoreceptor Synapses in EAE Mice

(A–F) Retinal sections (0.5 mm in thickness) from CFA- and MOG/CFA-injected mice processed 9 days after injection.

Confocal analyses of rod photoreceptor synapses in the OPL immunolabeled with mouse monoclonal antibody against

RIM2 (4C6) and rabbit polyclonal antibody against RIBEYE (U2656, Schmitz et al., 2000). The intensity of the RIM2

immunosignals were quantified as integrated density in (G and H). The number of RIM2 puncta are quantified in (I and J).

Values are means G S.E.M. (G and I). In the box-and-whiskers plots of the data in (H and J), mean values are indicated by

blue horizontal bars and median values by green horizontal bars. Boxes represent 25th–75th percentiles of values and

whiskers are equal to 1.5 times of the IQR. Statistical significance was determined with two-sample unpaired Student’s t

test. Abbreviations: OPL, outer plexiform layer; S.E.M., standard error of the mean; N = number of mice; n = number of

images analyzed from the retinal sections. Scale bars: 2 mm.
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responses to identical baseline levels (Figures 7A–7F). Normalization to identical starting baseline levels

clearly revealed the decrease in high K+-evoked Ca2+ responses in the MOG/CFA-injected animals in com-

parison to the littermate controls. K+-depolarization-induced responses were reduced on all days

analyzed, as early as on day 7 after injection (Figures 7A and 7B). The high K+-depolarization-evoked

Ca2+ responses could be best fitted by a single exponential curve (Figures 7B, 7D, and 7F). From the

respective mono-exponential curve fits we extracted the response amplitudes (Figures 7G and 7H). In all

cases, the amplitudes of depolarization-evoked responses were significantly smaller in EAE mice (Figures

7G and 7H). The decreased evoked responses are most likely caused by the alterations of the active zone

described above. The high K+-depolarization-evoked Ca2+ responses in the OPL were due to Ca2+ influx

Figure 6. Altered presynaptic Ca2+ signaling at photoreceptor synapses in EAE mice

(A–C) Mean Fura2 ratiometric Ca2+ signals (GS.E.M.) measured in the OPL of CFA-injected control mice and MOG/CFA-

injected EAE mice. Intracellular Ca2+ signals were measured at the indicated days after injection (day 7, day 8, or day 9

after injection). After 1min incubation in RS to obtain stable baseline signals, slices were depolarized by the addition of a

K+-rich depolarization solution, as indicated by the red bar. Mean calibrated Ca2+ concentration before and after addition

of high potassium are indicated for each analyzed day after injection. In (D), the mean baseline Fura2 responses were

plotted from MOG/CFA-injected EAE mice and CFA-injected control mice. Values are shown as means G S.E.M. (D). In

(E), the data summarized in (D) were plotted as box-and-whiskers plots to show their individual distribution. Mean values

are indicated by blue horizontal bars and median values by green horizontal bars (E). Boxes represent 25th–75th

percentiles of values and whiskers are equal to 1.5 times of the IQR. Statistical significance was determined with two-

sample unpaired Student’s t test (data of day 7, day 8) and with Mann-Whitney U-test (data of day 9). Using the calibration

described in Materials and Methods, the following Ca2+ concentrations were determined for Fura2 baseline values at

resting conditions on day 7: 173 nM Ca2+ (for CFA), 319 nM Ca2+ (for MOG/CFA); on day 8: 169 nM Ca2+ (for CFA), 284 nM

Ca2+ (for MOG/CFA); and on day 9: 198 nM Ca2+ (for CFA), 295 nM Ca2+ (for MOG/CFA). For the high K+-depolarization-

evoked responses, the following Ca2+ concentrations were determined for day 7: 300 nM Ca2+ (for CFA), 439 nM Ca2+ (for

MOG/CFA); on day 8: 283 nM Ca2+ (for CFA), 381 nM Ca2+ (for MOG/CFA); and on day 9: 316 nM Ca2+ (for CFA), 386 nM

Ca2+ (for MOG/CFA). Abbreviations: OPL, outer plexiform layer; S.E.M., standard error of the mean; N = number of mice;

n = number of retinal slices.
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through voltage-gated Ca2+ (Cav) channels as shown by control experiments with Co2+ (Figures S7J and

S7K).

As shown in Figure 6, presynaptic basal Ca2+ in MOG/CFA-injected EAEmice under resting conditions was

higher in comparison to control mice. It is well known that cytoplasmic Ca2+ is increased by inhibition of the

Na+/K+-ATPase (Schatzmann, 1953; Repke and Portius, 1963; Repke, 1964; Skou, 1998; Ravens and Himmel,

1999; Katz and Lorell, 2000; Aizman et al., 2001; Kaplan, 2002; Wasserstrom and Aistrup, 2005; Bay et al.,

Figure 7. Decreased High K+-Depolarization-Evoked Ca2+ Responses in Photoreceptor Synapses of EAE Mice

Analyses of depolarization-evoked Fura2 ratiometric Ca2+ signals at photoreceptor synapses of MOG/CFA-injected EAE

mice and CFA-injected control mice at the indicated days after injection (day 7, day 8, and day 9 after injection). Curves

shown in (A, C, E) represent the Fura2 F340/F380 ratiometric signals (from Figure 6), normalized to the resting Fura2

signals before high potassium application for better display of the Fura2 signals that result from depolarization-evoked

increase of presynaptic Ca2+. In (B, D, F), only the normalized signals after high potassium application are depicted

together with the respective curve fits. Statistical analyses of the normalized, high potassium-induced depolarization

Fura2 signals are shown in (G, H). Values are shown as means G S.E.M. (A–G). In the box-and-whiskers plot of the

individual data points in (H), mean values are indicated by blue horizontal bars and median values by green horizontal

bars. Boxes represent 25th–75th percentiles of values and whiskers are equal to 1.5 times of the IQR. Statistical significance

was determined with Mann-Whitney U-test (data of day 7) and with two-sample unpaired Student’s t test (data of day 8,

day 9). Abbreviations: OPL, outer plexiform layer; S.E.M., standard error of the mean; N = number of mice; n = number of

retinal slices.
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Figure 8. Decreased Expression of Na+/K+-ATPase in Photoreceptor Synapses of EAE Mice

Distribution of Na+/K+-ATPase in the OPL of CFA-injected control mice (A–F) and in MOG/CFA-injected EAE mice (G–L)

processed 9 days after injection. Retinal sections (0.5 mm in thickness) were double-immunolabeled with a mouse

monoclonal pan a-subunit Na+/K+-ATPase antibody and a rabbit polyclonal antibody against PSD95. PSD95 denotes the

extension of presynaptic photoreceptor terminals. Quantification of immunolabeling signals is shown in (M–P). Statistical
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2013; Blaustein 2018; Blaustein and Hamlyn, 2020). Interestingly, Na+/K+-ATPase can interact with CASPR1

(Zhang et al., 2019). At photoreceptor synapses, CASPR1 is altered early on in preclinical EAE (Dembla

et al., 2018). Therefore, we studied whether the phenotype of increased basal Ca2+ might be caused by

a change of Na+/K+-ATPase expression levels in the retina of MOG/CFA-injected mice compared with

CFA-injected controls.

Decreased Expression of Na+/K+-ATPase in Photoreceptor Synapses of EAE Mice

In CFA-injected control mice, we found a strong expression of the Na+/K+-ATPase in the synaptic layers of

the retina, similar to what was previously described (McGrail and Sweadner, 1986;Wetzel et al., 1999). In the

OPL, a large portion of the Na+/K+-ATPase was localized to photoreceptor synapses as demonstrated by

co-labeling with anti-PSD95 (Figure 8). PSD95, a component of the presynaptic cytoskeleton of the plasma

membrane in photoreceptor terminals, delineates the presynaptic terminals (Koulen et al., 1998). Part of

the Na+/K+-ATPase immunosignals was also present in the extra-synaptic, neuropil sub-layer of the OPL

(Figures 8F and 8L). In the OPL of MOG/CFA-injected mice the immunolabeling intensity of Na+/K+ATPase

was strongly reduced, both in the synaptic as well as in the extra-synaptic sublayer of the OPL (Figures 8G

and 8J; for quantification see Figures 8O and 8P). In contrast, the intensity of PSD95 immunosignals was

unchanged in MOG/CFA-injected mice compared with CFA-injected control mice (Figures 8M and 8N).

The decreased Na+/K+-ATPase expression in the OPL of MOG/CFA-injected mice in comparison to

CFA-injected control mice went in parallel to a decreased expression of CASPR1 in the OPL (Figure S8),

similar to as previously described (Dembla et al., 2018).

In order to estimate the relevance of the observed decreased levels of Na+/K+-ATPase for the elevated pre-

synaptic basal Ca2+ levels in photoreceptor synapses of MOG/CFA-injected mice, we incubated acute

retinal slices from untreated wildtype mice in the presence or absence of the cardiotonic steroid ouabain,

a well-characterized inhibitor of the Na+/K+-ATPase pump (Schatzmann, 1953; Repke, 1964; Hansen, 1984).

In agreement with previous findings (Repke, 1964; Blaustein 1993; Zucker, 1993; Amaral et al., 2009; Milla

et al., 2011), we observed an increase in presynaptic Ca2+ after treatment with ouabain (Figure 8Q). This

finding suggests that the decreased expression of Na+/K+-ATPase in photoreceptor synapses in early

EAE observed in the present study can contribute to the elevated basal Ca2+ levels in photoreceptor syn-

apses of MOG/CFA-injected mice.

Decreased Expression of Plasma Membrane Ca2+ ATPase 2 (PMCA2), but Not of PMCA1, in

Photoreceptor Synapses of EAE Mice

PMCAs are major Ca2+ extruding proteins in the retina (Krizaj et al., 2002). Therefore, we also analyzed the

plasma membrane calcium ATPase (PMCA) proteins for potential alterations. PMCAs are key proteins of

Ca2+ extrusion at the plasma membrane that are also expressed in photoreceptor terminals (Brini and Car-

afoli, 2011; Kri�zaj, 2012; Cali et al., 2017; Stafford et al., 2017). Furthermore, a proteome study has found a

portion of PMCA to be part of an active zone - associated protein network (Müller et al., 2010).

Similar to Na+/K+-ATPase (Figure 8), PMCA immunosignals were found both in the extra-synaptic neuropil

portion as well as in the synaptic portion of the OPL, with the latter being demarcated by PSD95 immuno-

labeling (Figures 9, 10, S9, and S10).

Antibodies against PMCA1, the most abundant PMCA isoform, revealed no change in expression at the

OPL in early EAE, both in the synaptic as well as in the extra-synaptic sub-layer (Figures 9 and S9).

PMCA1 expression in the IPL was also unaffected (Figures 9 and S9). In contrast, antibodies against

Figure 8. Continued

significance in (M–P) was determined with Mann-Whitney U-test. In (Q), Fura2 ratiometric signals of basal Ca2+ levels

in the OPL of control retinal slices from wild-type mice and retinal slices treated with the Na+/K+-ATPase inhibitor

ouabain were plotted (N = 3 mice; n = 43 slices [ouabain]; N = 3 mice; n = 43 slices [untreated controls]). Statistical

significance in (Q) was performed with Student t test. Values are depicted as meanG S.E.M. (M and O). In the box-and-

whiskers plots of the individual data points (N, P, and Q), mean values are indicated by blue horizontal bars and

median values by green horizontal bars. Boxes represent 25th–75th percentiles of values and whiskers are equal to 1.5

times of the IQR. Abbreviations: ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL,

inner plexiform layer; bracket a, synaptic portion of the OPL; bracket b, extra-synaptic, neuropil portion of the OPL;

S.E.M., standard error of the mean; N = number of mice; n = number of total images analyzed from retinal sections.

Scale bars: 5 mm (A–L).
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Figure 9. Expression of Plasma Membrane Ca2+ ATPase 1 (PMCA1) Is Unchanged in Photoreceptor Synapses of EAE Mice

(A–F) Retina sections (0.5 mm in thickness) from CFA- and MOG/CFA-injected mice processed 9 days after injection. Confocal analyses of rod photoreceptor

synapses in the OPL immunolabeled with rabbit polyclonal antibody against PMCA1 and rabbit polyclonal antibody against PSD95 using the Fab method.

The intensity of the PMCA1 immunosignals is quantified as integrated density in (G and H). Values are means G S.E.M. (G). In the box-and-whiskers plots of

the data in (H), mean values are labeled by blue horizontal bars and median values by green horizontal bars. Boxes represent 25th–75th percentiles of values,

and whiskers are equal to 1.5 times of the interquartile range (IQR). Statistical significance was determined with Mann-Whitney U-test. Abbreviations: ONL,

outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; bracket a, synaptic sub-layer of the

OPL; bracket b, extra-synaptic, neuropil sub-layer of the OPL; S.E.M., standard error of the mean; N = number of mice; n = number of images analyzed from

retinal sections. Scale bars: 5 mm.
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PMCA2/3 revealed a significantly reduced signal intensity in the OPL of EAE mice in comparison to control

mice, both in the synaptic as well as in the extra-synaptic sub-layer of the OPL (Figure 10). PMCA2/3 expres-

sion was also reduced in the IPL (Figure 10). A further independent antibody raised against PMCA2 also

confirmed a strong reduction in signal intensity in the OPL of MOG/CFA-injected mice in comparison to

CFA-injected control mice (Figure S10). These latter two antibodies propose that PMCA2 expression is

reduced in the OPL of MOG/CFA-injected EAE mice in comparison to CFA-injected control mice. We

did not further analyze PMCA3 because PMCA3 was previously reported to be not expressed in presynap-

tic photoreceptor terminals (Krizaj et al., 2002).

Figure 10. Decreased Expression of Plasma Membrane Ca2+ ATPase 2 (PMCA2) in Photoreceptor Synapses of

EAE Mice

(A–L) Retina sections (0.5 mm in thickness) from CFA- and MOG/CFA-injected mice processed 9 days after injection.

Confocal analyses of rod photoreceptor synapses in the OPL immunolabeled with mouse monoclonal antibody against

PMCA2/3 and rabbit polyclonal antibody against PSD95. The intensity of the PMCA2/3 immunosignals is quantified as

integrated density in (M and N). Values are means G S.E.M. (M). In the box-and-whiskers plots of the data in (N), mean

values are labeled by blue horizontal bars and median values by green horizontal bars. Boxes represent 25th–75th

percentiles of values and whiskers are equal to 1.5 times of the interquartile range (IQR). Statistical significance was

determined with Mann-Whitney U-test. Abbreviations: ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner

nuclear layer; IPL, inner plexiform layer; bracket a, synaptic sub-layer of the OPL; bracket b, extra-synaptic, neuropil sub-

layer of the OPL; S.E.M., standard error of the mean; N = number of mice; n = number of images analyzed from retinal

sections. Scale bars: 5 mm.
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Western Blot Analyses

We also performed western blot analyses to check whether the global expression of the mentioned pro-

teins was altered (Figure 11; for quantification, see Figures S11 and S12). From all the proteins only

PMCA2/3 was found to be altered at a global level. Thus, decreased immunosignals of all the other proteins

were based on de-enrichment/de-clustering but not due to a reduction in the global levels of protein

expression.

DISCUSSION

In the current study, we observed that the clustering of active zone proteins at photoreceptor synapses is

altered in the EAE mouse model of MS very early on in a preclinical stage. We found that central protein

components of the Ca2+-signaling machinery of photoreceptor active zones (Cav1.4, Cavb2, and RIM2)

were significantly less enriched at the active zone of photoreceptor synapse in MOG/CFA-injected mice

in comparison to CFA-injected control mice. This was shown by immunolabeling of retinas obtained at

the early, preclinical stage of EAE, at day 9 after injection. At this time point, no signs of demyelination

were observed in the optic nerve (Dembla et al., 2018), arguing that these alterations are not secondary

changes, e.g. due to optic nerve demyelination. Other proteins of the presynaptic terminal, such as

PSD95 and PMCA1, were not affected, demonstrating that the changes at the active zone are specific

and not resulting from global alterations of protein composition. The decreased enrichment of active

zone proteins was not due to loss of synapses because the number of active zone puncta remained un-

changed between EAE and control mice (Figures 1I, 1J, S1I, S1J, S2I, S2J, 3I, 3J, S4I, S4J; Figures 5I, 5J,

S6I, and S6J). Instead, the length of the respective protein clusters at the active zone, as determined by

SR-SIM measurements of immunolabeled active zone protein clusters (Cav1.4; Cavb2), was found to be

decreased (Figures 2 and 4). The decrease in the size of the Cav1.4/Cavb2 protein clusters at the active

zone was not due to a reduction of global expression of these proteins, as shown by western blot analyses

(Figures 11A, 11C, 11E, and S11) but most likely result from an altered recruitment of these proteins to the

active zone. Recently, it has been shown that the active zone of photoreceptor synapses can be modulated

in size and that this dynamics occurs within a relatively short time frame (inz20 min; Dembla et al., 2020). A

similar mechanism, i.e. loss of protein components from the active zone, could also be engaged in medi-

ating the early synaptic changes in EAE.

In line with the morphological defects at the active zone, we also observed alterations of Ca2+ signaling in

the presynaptic terminal. The amplitudes of high K+-depolarization-evoked Ca2+ responses were signifi-

cantly decreased in MOG/CFA-injected mice in comparison to CFA-injected control mice (Figure 7). The

Fura2 responses were recorded at the OPL of retinal slices. In the OPL, photoreceptor synapses are highly

enriched in a very organized fashion (see also Figure S7A) and harbor all the Cav1.4 voltage-gated Cav-

channels that are expressed (Figure S3; see also Dembla et al., 2020). The strongest Fura2 responses

were observed in the sub-layer of the OPL in which the photoreceptor terminals are located, as also verified

by co-recording in RIBEYE-FP mice (Figure S7). Therefore, we think that the recorded depolarization-

evoked responses are largely occurring at photoreceptor synapses although we cannot exclude some

contribution from horizontal cells (for review, see Van Hook et al., 2019). The smaller amplitudes of depo-

larization-evoked Ca2+ responses in EAE are in line with the observed decreased enrichment of Cav-chan-

nel components and RIM2 protein at the active zone of EAE mice. The decreased enrichment of these

active zone proteins in photoreceptor synapses and the decreased depolarization-evoked Ca2+ responses

could contribute also to the previously observed reduced synaptic vesicle exocytosis in early EAE (Dembla

et al., 2018) because vesicle exocytosis depends on Ca2+. Recently, it has been proposed that the synaptic

ribbon is involved in the delivery of active zone material to the active zone and for regulating the size of the

active zone (Dembla et al., 2020). The synaptic ribbon complex itself is strongly affected in early EAE (Dem-

bla et al., 2018), raising the possibility that disturbed trafficking at the ribbon complex might be involved in

the decreased enrichment of active zone proteins at photoreceptor synapses in EAE. Clearly, further inves-

tigations will be required to reveal the molecular mechanisms. Additional proteins of the active zone (tom

Dieck et al., 2012; Kiyonaka et al., 2012; Hagiwara et al., 2018) could also play an important role in the re-

organization of the active zone in early, pre-clinical EAE. The reasons for the increased basal Ca2+ levels in

photoreceptor synapses of EAE mice most likely involve additional pathways (see below).

Except for Cav1.4 a1 subunit, the analyzed proteins (RIM2, Cavb2) are cytoplasmic proteins of the active

zone. How could an auto-reactive immune system, activated in EAE, target the presynaptic active zone?

The protein CASPR1 could play an important role. CASPR1 is an auto-antigen frequently targeted in MS
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(Stathopoulos et al., 2015). In the retina, CASPR1 is found in a protein complex with RIBEYE, the main

component of synaptic ribbons (Dembla et al., 2018). In agreement with these biochemical data, ultrastruc-

tural analyses also show localization of CASPR1 in close proximity to the synaptic ribbon (Dembla et al.,

2018). CASPR1 is also present at the paranodal region of the node of Ranvier (Gordon et al., 2014; Statho-

poulos et al., 2015), on the luminal surface of brain microvascular endothelial cells (Zhang et al., 2019) as

well as on dendritic processes of secondary neurons (Dembla et al., 2018). In the endothelium, CASPR1

can even serve as a receptor for pathogenic bacterial proteins that promote entry of the bacteria into

the CNS (Zhao et al., 2018a, 2018b). CASPR1 also directly interacts with the b3-subunit of Na+/K+-ATPase

in brain endothelial cells and this interaction is important for the activity, stabilization, and surface expres-

sion of Na+/K+-ATPase (Zhang et al., 2019). Interestingly, the b3-subunit of Na+/K+-ATPase is also present

in photoreceptor synapses (McGrail and Sweadner, 1986; Blanco andMercer, 1998; Wetzel et al., 1999) and

Figure 11. Western Blot Analyses

Western blot (WB) testing of global protein expression in retinal lysates obtained from MOG/CFA- and CFA-injected

control retinas, isolated 9 days after injection. 40 mg of protein was loaded in each lane. In A, C, E, G, and I, the samples

were probed with the indicated experimental antibodies. In B, D, F, H, and J, the same lanes were incubated with anti-

actin antibody to verify equal protein loading of the MOG/CFA and CFA lanes. The boxed areas were quantified in

Figures S11 and S12. Figure A–J show representative images fromWB experiments repeated 7 times; for quantification of

all WB results, see Figure S11 and S12.
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thus available to form complexes with CASPR1. In early EAE, auto-antibodies against CASPR1 lead to a

decrease of CASPR1 expression at photoreceptor synapses (Dembla et al., 2018). Because CASPR1 is

known to stabilize Na+/K+-ATPase, the observed decreased expression of Na+/K+-ATPase (Figures 8

and S8) could result from the decreased expression of CASPR1 in photoreceptor synapses in early EAE

as observed by Dembla et al. (2018). Na+/K+-ATPase is also reduced in the extra-synaptic portion of the

OPL, which might be due to a reduction of CASPR1 also at extra-synaptic sites or by further, independent

mechanisms.

Decreased expression of Na+/K+-ATPase in photoreceptor terminals will lead to a diminished extrusion

of Na+ and an increase of intracellular Na+. This increase of intracellular Na+ could subsequently result in

a secondary increase of intracellular Ca2+, in analogy to well-characterized processes in the heart. In the

heart, inhibition of Na+/K+-ATPase (e.g. by ouabain or other foxglove glycosides) leads to an increase of

intracellular Na+ that drives the Na+/Ca2+-exchanger (NCX) into the ‘‘reverse mode’’ with a concomitant

increase of intracellular Ca2+ (e.g. Katz and Lorell, 2000; Hirota et al., 2007; Sibarov et al., 2012; Verkh-

ratsky et al., 2018). Such a mechanism could principally also be responsible for the elevated resting cyto-

solic Ca2+ in retinal photoreceptor synapses, as it was also shown to be relevant in other synapses (e.g.

Zucker, 1993). NCX is expressed in photoreceptor synapses although at low levels (Morgans et al., 1998)

and predominantly in cone photoreceptor synapses that represent only a minor fraction of all photore-

ceptor synapses in the mouse retina (Johnson et al., 2007). Rod photoreceptors also possess a Na+/

Ca2+K+-exchanger (NCKX) (Schnetkamp, 1986; Cook and Kaupp, 1988; Reiländer et al., 1992). But

NCKX expression in photoreceptors is restricted to the plasma membrane of the outer segments

(Reid et al., 1990; Schnetkamp, 2013; Vinberg et al., 2015; Hassan and Lytton, 2020; Jalloul et al.,

2020). In some systems, inhibition of the Na+/K+-ATPase by ouabain leads to an increase of cytosolic

Ca2+ that is in part also mediated by increased Ca2+ release from the endoplasmic reticulum (ER)(Amaral

et al., 2009; Stafford et al., 2017). The decreased expression of Na+/K+-ATPase that we observed in early

EAE could lead to elevated resting Ca2+ concentrations by a similar mechanism in photoreceptor synap-

ses. Interestingly, recently it was shown that the b-subunit of Cav-channels inhibits Ca2+ release from the

ER(Belkacemi et al., 2018). This was demonstrated for the b3-subunit of voltage-gated Cav channels (Bel-

kacemi et al., 2018). Rod photoreceptor synapses, the predominant type of photoreceptor synapses in

the mouse retina, express the Cavb2-subunit instead (Ball et al., 2002; Katiyar et al., 2015). Possibly,

the b2-subunit of Cav-channels at photoreceptor synapses might play a similar role in inhibiting Ca2+

release from the ER in photoreceptor synapses. These ER-related mechanisms could also be linked to

the Na+/K+-ATPase. The Na+/K+-ATPase appears to represent a central signaling hub that regulates—

beyond its pump activity—various events relevant for presynaptic Ca2+ including the control of intracel-

lular Ca2+ stores (Yuan et al., 2005; Pierre and Xie, 2006; Aperia, 2007; Liang et al., 2007; Liu et al., 2007;

Nguyen et al., 2011; Sibarov et al., 2012; Luan et al., 2014; Shi et al., 2019).

Besides Na+/K+-ATPase, decreased clearance of Ca2+ by plasma membrane Ca2+ ATPases (PMCAs) could

also contribute to elevated basal Ca2+ in the OPL of early EAE mice. PMCAs are known to be strongly ex-

pressed in photoreceptor synapses and other parts of the retina (Morgans et al., 1998; Johnson et al., 2007;

Stafford et al., 2017). Using a monoclonal antibody against PMCA2/3, we found PMCA2/3 to be less en-

riched at photoreceptor synapse inMOG/CFA-injected animals (in comparison to CFA-injected control an-

imals, Figure 10). This effect was observed to be specific for PMCA2/3 because the major PMCA isoform,

PMCA1, was found to be unaffected (Figures 9 and S9). Also, an antibody specific for PMCA2 showed a

similar reduction in staining intensity (Figure S10), as the antibody against PMCA2/3. PMCA3 is not ex-

pressed in detectable amounts at photoreceptor terminals (Krizaj et al., 2002). Therefore, we also assume

that the decreased immunosignal in the OPL of MOG/CFA-injected mice obtained with the anti-PMCA2/3

antibody is mainly caused by a decrease in the synaptic expression of PMCA2. Of particular interest,

PMCA2 was previously found to be altered in the spinal cord in the EAE mouse model of MS and respon-

sible for early neuronal dysfunction (Nicot et al., 2003, 2005; Kurnellas et al., 2007; Mirabelli et al., 2019).

Furthermore, PMCA2/3 was the only protein that we found to be reduced in western blot analyses (Figures

11, S11, and S12), indicating that PMCA2 could play a prominent role in the synaptic pathology in early EAE.

Also further other mechanisms could contribute to the increased basal Ca2+, e.g. decreased Ca2+ clearance

from the presynaptic terminals, e.g. via altered NCX/NCKX activity, mitochondrial Ca2+ clearance, SERCA

pump activity, calcium-induced calcium release (CICR), or activities of plasma membrane ion channels as

well as altered coupling between plasma membrane ion channels and calcium stores (Morgans et al.,
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1998; Zenisek and Matthews, 2000; Amaral et al., 2009; Szikra et al., 2009; Wan et al., 2012; Kri�zaj, 2012;

Sibarov et al., 2012; Feske et al., 2015; Stafford et al., 2017; Ben-Kasus-Nissim et al., 2017; Verkhratsky

et al., 2018; Shi et al., 2019). CICR is a well-known phenomenon at photoreceptor synapses (Cadetti

et al., 2006; Szikra et al., 2009; Babai et al., 2010; Chen et al., 2015). In photoreceptor synapses, mitochon-

dria are placed close to the synaptic ribbons (Johnson et al., 2007; Stone et al., 2008; Linton et al., 2010;

Perkins et al., 2012; Graffe et al., 2015; Li et al., 2016) and possess a strong impact on Ca2+ regulation in

retinal ribbon synapses (Zenisek and Matthews, 2000; Wan et al., 2012; Wong et al., 2019). Also, the cation

chloride co-transporter NKCC1 is enriched in photoreceptor synapses (Shen et al., 2013) that can affect

presynaptic Ca2+ (Thoreson et al., 2000, 2002, 2003). Future studies have to clarify which of these pathways

also contribute to the observed elevated resting cytosolic Ca2+ levels in photoreceptor synapses in early

EAE.

Our study demonstrated that the situation of Ca2+ homeostasis is already complex on day 9 of early pre-

clinical EAE. Two key components relevant for determining baseline Ca2+ levels in photoreceptor synap-

ses, Na+/K+�ATPase and PMCA2, were already altered at day 9. Based on these results, future studies

might target even earlier time points. Our Fura2 imaging revealed dysfunctions of Ca2+ homeostasis as

early as on day 7 of preclinical EAE.

In conclusion, we showed that the active zone of photoreceptor synapses is strongly affected in the early

stages of EAE. These alterations of the active zone can contribute to the recently described changes in syn-

aptic vesicle exocytosis present in photoreceptor synapses of EAE mice (Dembla et al., 2018). Constantly

elevated basal levels of Ca2+ could lead to synapse dysfunctions, neurodegeneration, and neuronal cell

death (Sancho-Pelluz et al., 2008; Gadjanski et al., 2009; Fairless et al., 2014; Rodriguez-Muela et al.,

2015; Schaefer et al., 2016; Wong et al., 2019). Finally, MS patients also show some alterations in ERG

that are compatible with altered photoreceptor synapse function, e.g. increased peak delay time of the

b-wave/b-wave implicit time and some alterations in b-wave amplitude (Forooghian et al., 2006; Gundogan

et al., 2007; Saidha et al., 2011; You et al., 2018; Filgueiras et al., 2019).

Limitations of the Study

The present study was performed on the experimental auto-immune encephalomyelitis (EAE) mouse

model of MS. The EAE model is a very well-validated and frequently used mouse model of MS. Future in-

vestigations on MS patients should also provide further insights into retinal synaptic pathology in humans.
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P., Knöfele, J., Sättler, M.B., Fairless, R.,
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Figure	S1.	Cav1.4	is	less	enriched	at	the	active	zone	of	photoreceptors	in	EAE	mice.	
Related	to	Figure	1.	
	

	



	
	
Figure	S1.	(A-F)	Retina	sections	(0.5	µm	in	thickness)	from	CFA-	and	MOG/CFA-injected	
mice	processed	9	days	after	injection.	Confocal	analyses	of	rod	photoreceptor	synapses	
in	 the	 OPL	 immunolabelled	 with	 rabbit	 polyclonal	 antibody	 against	 Cav1.4	 (Cav1.4	
Nterm)	 and	 mouse	 monoclonal	 antibody	 (2D9)	 against	 RIBEYE.	 The	 intensity	 of	 the	
Cav1.4	immunosignals	is	quantified	as	integrated	density	in	(G,	H).	The	number	of	Cav1.4	
puncta	 is	quantified	 in	(I,	 J).	Values	are	means	±	S.E.M.	(G,	 I).	 In	 the	box-and-whiskers	
plots	of	the	data	in	(H,	J)	mean	values	are	labelled	by	blue	horizontal	bars;	median	values	
by	green	horizontal	bars.	Boxes	represent	25	th	-75	th	percentiles	of	values	and	whiskers	
are	 equal	 to	 1.5	 times	 of	 the	 IQR.	 Statistical	 significance	was	 determined	with	Mann-
Whitney	U	 test	 in	 (G,	H)	and	with	 two-sample	unpaired	Student’s	 t-test	 in	 (I,	 J).	 (K-P)	
Validation	 of	 the	 antibody	 anti-Cav1.4	 Nterm.	 Semi-thin	 resin	 sections	 were	
immunolabelled	 with	 the	 indicated	 antibodies	 and	 analyzed	 by	 confocal	 microscopy.	
Anti-Cav1.4	Nterm	was	tested	on	control	retina	(K-M)	and	Cav1.4	knockout	retina	(N-P).	
Abbreviations:	OPL,	outer	plexiform	 layer;	 IPL,	 inner	plexiform	 layer;	 S.E.M.,	 standard	
error	 of	 the	 mean;	 N=number	 of	 mice;	 n=	 number	 of	 images	 analyzed	 from	 retinal	
sections.	Scale	bars:	2	µm	(C,	F);	5	µm	(M,	P).	
	
	 	



Figure	S2.	Cav1.4	is	less	enriched	at	the	active	zone	of	photoreceptors	in	EAE	mice.	
Related	to	Figure	1.	

	
(A-F)	 Retina	 sections	 (0.5	 µm	 in	 thickness)	 from	 CFA-	 and	 MOG/CFA-injected	 mice	
processed	9	days	after	injection.	Confocal	analyses	of	rod	photoreceptor	synapses	in	the	
OPL	immunolabelled	with	mouse	monoclonal	antibody	against	Cav1.4	(16D9)	and	rabbit	
polyclonal	antibody	(U2656,	Schmitz	et	al.,	2000)	against	RIBEYE.	The	intensity	of	 the	
Cav1.4	immunosignals	is	quantified	as	integrated	density	in	(G,	H).	The	number	of	Cav1.4	
puncta	 is	quantified	 in	(I,	 J).	Values	are	means	±	S.E.M.	(G,	 I).	 In	 the	box-and-whiskers	
plots	 of	 the	data	 in	 (H,	 J),	mean	values	 are	 indicated	by	blue	horizontal	 bars;	median	
values	 by	 green	 horizontal	 bars.	 Boxes	 represent	 25th	 -75th	 percentiles	 of	 values	 and	
whiskers	are	equal	to	1.5	times	of	the	IQR.	Statistical	significance	was	determined	with	
Mann-Whitney	U	test	 in	(G,	H)	and	with	 two-sample	unpaired	Student’s	 t-test	 in	(I,	 J).	
Abbreviations:	OPL,	outer	plexiform	layer;	S.E.M.,	standard	error	of	the	mean;	N=number	
of	mice;	n=	number	of	images	analyzed	from	retinal	sections.	Scale	bars:	2	µm.	



Figure	S3.	Cav1.4	is	restricted	to	the	PSD95-labelled	photoreceptor	terminals	in	the		
																					OPL.	Related	to	Figure	1.	
	

	
(A-L)	 Confocal	 analyses	 of	 retinal	 sections	 (0.5	 µm	 in	 thickness)	 from	 CFA-	 and	
MOG/CFA-injected	 mice	 immunolabelled	 with	 mouse	 monoclonal	 antibody	 against	
Cav1.4	 (16D9)	 and	 rabbit	 polyclonal	 antibody	 against	 PSD95	 processed	 9	 days	 after	
injection.	 (A-C;	 G-I)	 provide	 low	 magnification	 overviews;	 (D-F;	 J-L)	 provide	 high	
magnification	views	of	the	immunolabelled	OPL.	In	M-P,	the	sections	were	subjected	to	
line	scans	to	further	analyze	the	relation	of	the	location	of	the	immunosignals.	In	the	OPL,	
all	Cav1.4	immunosignals	were	contained	within	the	PSD95-immunolabelled	presynaptic	
terminals	(N-P).	Abbreviations:	ONL,	outer	nuclear	layer;	OPL,	outer	plexiform	layer;	INL,	
inner	nuclear	layer;	IPL,	inner	plexiform	layer.	Scale	bars:	5	µm	(C,	F,	I,	L).	
	
	 	



Figure	S4.	Cavb2	is	less	enriched	at	the	active	zone	of	photoreceptors	in	EAE	mice.	
Related	to	Figure	3.	
	

	
(A-F)	 Retina	 sections	 (0.5	 µm	 in	 thickness)	 from	 CFA-	 and	 MOG/CFA-injected	 mice	
processed	9	days	after	injection.	Confocal	analyses	of	rod	photoreceptor	synapses	in	the	
OPL	immunolabelled	with	rabbit	polyclonal	antibody	against	Cavb2	(ab#2)	and	mouse	
monoclonal	antibody	(2D9)	against	RIBEYE.	The	intensity	of	the	Cavb2	immunosignals	is	
quantified	as	integrated	density	in	(G,	H).	The	number	of	Cavb2	puncta	is	quantified	in	(I,	
J).	Values	are	means	±	S.E.M.	(G,	I).	In	the	box-and-whiskers	plots	of	the	data	in	(H,	J)	mean	
values	are	labelled	by	blue	horizontal	bars;	median	values	by	green	horizontal	bars.	Boxes	
represent	25th	-75th	percentiles	of	values	and	whiskers	are	equal	to	1.5	times	of	the	IQR.	
Statistical	significance	was	determined	with	Mann-Whitney	U	test.	Abbreviations:	OPL,	
outer	plexiform	layer;	S.E.M.,	standard	error	of	the	mean;	N=number	of	mice;	n=	number	
of	images	analyzed	from	retinal	sections.	Scale	bars:	2	µm.	



Figure	S5.	Validation	of	mouse	monoclonal	RIM2	antibody	4C6.	Related	to	Figure	5.	
	

	
(A-F)	Characterization	of	the	RIM2	mouse	monoclonal	antibody	4C6	on	wildtype	control	
retina	 (A-C)	 and	photoreceptor-specific	RIM1/2	knockout	 retina	 (D-F).	 Semi-thin	 (0.5	
µm-thin)	 resin	 sections	 of	 the	 retina	 were	 double-immunolabelled	 with	 mouse	
monoclonal	RIM2	antibody	4C6	and	rabbit	polyclonal	antibody	against	RIBEYE	(U2656,	
Schmitz	et	al.,	2000).	In	the	wildtype	control,	we	found	a	strong	4C6	immunolabelling	in	
the	OPL	(A),	similarly	as	previously	described	with	another	RIM2	monoclonal	antibody	
(4F7;	Dembla	et	al.,	2020).	The	RIM2	immunosignal	in	the	OPL	is	completely	absent	in	
the	 photoreceptor-specific	 RIM1/2	 knockout	 (D).	 The	 RIBEYE	 immunosignals	 were	



qualitatively	unaffected	in	wildtype	and	knockout	tissue	(B,	C,	E,	F).	(G-L)	Pre-absorption	
controls	of	RIM2	signals	performed	on	wildtype	retina	sections.	The	4C6	antibody	was	
either	pre-absorbed	with	an	unrelated	control	peptide	(G-I)	or	the	RIM2	peptide	against	
which	 the	 antibody	 was	 raised	 (J-L).	 Blocking	 the	 4C6	 antibody	 with	 RIM2-specific	
peptide	completely	abolished	immunosignals	in	the	OPL	(J)	while	pre-absorption	with	an	
unrelated	control	peptide	had	no	effect	on	immunosignals	(G).	RIBEYE	immunosignals	
were	unaffected	by	blocking	with	either	peptide	(H,	I;	K,	L).	Abbreviations:	ONL,	outer	
nuclear	layer;	OPL,	outer	plexiform	layer;	INL,	inner	nuclear	layer;	IPL,	inner	plexiform	
layer.	Scale	bars:	5µm	(C,	F);	2µm	(I,	L).		
	
	 	



Figure	S6.	RIM2	is	less	enriched	at	the	active	zones	of	photoreceptor	synapses	in			
																						EAE	mice.	Related	to	Figure	5.	
	

	
(A-F)	 Retinal	 sections	 (0.5	 µm	 in	 thickness)	 from	 CFA-	 and	 MOG/CFA-injected	 mice	
processed	9	days	after	injection.	Confocal	analyses	of	rod	photoreceptor	synapses	in	the	
OPL	 immunolabelled	with	mouse	monoclonal	antibody	against	RIM2	(4F7)	and	rabbit	
polyclonal	antibody	against	RIBEYE	(U2656,	Schmitz	et	al.,	2000).	The	 intensity	of	 the	
RIM2	immunosignals	were	quantified	as	integrated	density	in	(G,	H).	The	number	of	RIM2	
puncta	are	quantified	in	(I,	J).	Values	are	means	±	S.E.M.	(G,	I).	In	the	box-and-whiskers	
plots	 of	 the	data	 in	 (H,	 J),	mean	values	 are	 indicated	by	blue	horizontal	 bars;	median	
values	 by	 green	 horizontal	 bars.	 Boxes	 represent	 25th-75th	 percentiles	 of	 values	 and	
whiskers	are	equal	to	1.5	times	of	the	IQR.	Statistical	significance	was	determined	with	
Mann-Whitney	 U-test.	 Abbreviations:	 ONL,	 outer	 nuclear	 layer;	 OPL,	 outer	 plexiform	
layer;	INL,	 inner	nuclear	layer;	IPL,	 inner	plexiform	layer;	S.E.M.,	standard	error	of	the	
mean;	N=number	of	mice;	n=	number	of	images	analyzed	from	the	retinal	sections.	Scale	
bars:	5	µm.	
	
	
	 	



Figure	S7.	Fura2	 imaging	of	photoreceptor	 synapses	 in	 retinal	 slices.	Related	 to	
Figure	6.	

	
(A)	Schematic	drawing	of	the	outer	plexiform	layer	(OPL).	In	the	OPL,	rod	photoreceptor	
(r)	terminals	contact	the	dendritic	processes	of	bipolar	(b)	and	horizontal	(h)	cells.	In	the	
outer	portion	of	the	OPL,	close	to	the	ONL,	the	synapses	are	located	(sub-layer	a)	whereas	
a	second	sub-layer	of	the	OPL	(sub-layer	b)	contains	the	neuropil	of	dendritic	and	axonal	
processes	of	bipolar	and	horizontal	cells	as	well	as	processes	from	Müller	glia	cells	(not	
shown).	These	 sublayers	 (sub-layers	 a,	 b)	 are	 also	 indicated	 in	B-I.	 (B,	C),	 ratiometric	
F340	/	F380	micrograph	from	a	Fura2-loaded	retinal	slice	of	a	RIBEYE-FP	mouse	(Okawa	
et	al.,	2019)	showing	 the	OPL	before	(B)	and	after	 (C)	depolarization	 in	200	µm-thick	
retinal	 slices.	 The	 strongest	 high	 K+	 depolarization-induced	 Fura2	 responses	 were	



observed	 in	 the	synaptic	sub-layer	of	 the	OPL	(sub-layer	a,	arrow).	 (D,	E,	F)	Similarly,	
these	 depolarization-induced	 Fura2	 peaks	 in	 the	 OPL	 largely	 co-localized	 with	 the	
endogenous	 fluorescence	 of	 synaptic	 ribbons	 of	 the	 RIBEYE-FP	 mice	 in	 which	 the	
synaptic	ribbons	are	tagged	with	a	fluorescent	protein	thus	indicating	the	localization	of	
the	 presynaptic	 photoreceptor	 terminal	 in-situ.	 Please	 note	 that	 individual	 ribbons	
cannot	 be	 resolved	 in	 the	 retinal	 slices	 due	 to	 the	 thickness	 of	 the	 slices	 (200µm).	 A	
similar	image	as	shown	in	(B-F)	is	demonstrated	in	(G-I)	at	a	higher	magnification.	The	
heatmap	indicates	the	relative	intensity	of	the	signals	(the	brighter	the	color,	the	stronger	
the	signal.	J)	High	K+	depolarization-induced	Fura2	responses	at	the	ROI	made	in	the	OPL	
of	mice	 retinal	 slices	 could	 be	 blocked	 by	 the	 addition	 of	 Co2+	 that	 blocks	 Ca2+	 entry	
through	 Cav-channels	 demonstrating	 that	 the	 observed	 Fura-2	 signals	 were	 indeed	
dependent	upon	Ca2+-influx	through	voltage-gated	Cav-channels.	Fura2	values	of	control-	
and	Co2+-treated	slices	in	the	depolarization	phase	(50-60sec)	were	significantly	different	
from	each	other	(p=5.28E-07;	Mann-Whitney	U	test).	 In	the	box-and-whiskers	plots	of	
the	 individual	data	 in	 (K),	mean	values	 are	 indicated	by	blue	horizontal	bars;	median	
values	 by	 green	 horizontal	 bars.	 Boxes	 represent	 25th-75th	 percentiles	 of	 values	 and	
whiskers	are	equal	to	1.5	times	of	the	IQR.	Abbreviations:	ONL,	outer	nuclear	layer;	OPL,	
outer	plexiform	layer;	INL,	inner	nuclear	layer.	Scale	bars:	100	µm.	
	
	 	



Figure	S8.	Reduced	expression	of	CASPR1	and	Na+K+-ATPase	in	photoreceptor			
																						synapses	in	the	OPL	of	EAE	mice.	Related	to	Figure	8.	
	

	
(A-F)	 Retina	 sections	 (0.5	 µm	 in	 thickness)	 from	 CFA-	 and	 MOG/CFA-injected	 mice	
processed	9	days	after	injection.	Confocal	analyses	of	rod	photoreceptor	synapses	in	the	
OPL	immunolabelled	with	mouse	monoclonal	antibody	against	CASPR1	(5F9)	and	mouse	
monoclonal	 antibody	 against	Na+K+ATPase	using	 the	Fab	method.	Both	Na+K+ATPase-	
and	CASPR1	immunosignals	were	found	to	be	decreased	in	the	OPL	of	MOG/CFA-injected	
mice	(D-F)	 in	comparison	to	CFA-injected	control	mice	(A-C).	For	quantification	of	the	
Na+K+ATPase	immunosignal	intensity,	see	Fig.	8.	CASPR1	signal	intensity	in	the	OPL	of	
MOG/CFA	and	CFA-injected	mice	was	already	previously	quantified	(Dembla	et	al.,	2018).	
Abbreviations:	ONL,	outer	nuclear	layer;	OPL,	outer	plexiform	layer;	INL,	inner	nuclear	
layer.	Brackets	 indicate	 the	synaptic	 sub-layer	of	 the	OPL	(sub-layer	a)	and	 the	extra-
synaptic,	neuropil	layer	of	the	OPL	(sub-layer	b).	Scale	bars:	5	µm.	
	 	



Figure	S9.	Expression	of	pan-PMCA	in	the	retina	of	EAE	and	control	mice.	Related	
to	Figure	9.		
	

	
(A-F)	 Retinal	 sections	 (0.5	 µm	 in	 thickness)	 from	 CFA-	 and	 MOG/CFA-injected	 mice	
processed	9	days	after	injection.	Confocal	analyses	of	rod	photoreceptor	synapses	in	the	
OPL	 immunolabelled	with	mouse	monoclonal	 antibody	 against	 panPMCA	 (5F10)	 and	
rabbit	 polyclonal	 antibody	 against	 PSD95.	 The	 intensity	 of	 the	 panPMCA	 (5F10)	
immunosignals	were	quantified	as	integrated	density	in	(G,	H).	Values	are	means	±	S.E.M.	
(G).	In	the	box-and-whiskers	plots	of	the	data	in	(H),	mean	values	are	indicated	by	blue	
horizontal	 bars;	 median	 values	 by	 green	 horizontal	 bars.	 Boxes	 represent	 25th-75th	
percentiles	 of	 values	 and	 whiskers	 are	 equal	 to	 1.5	 times	 of	 the	 IQR.	 Statistical	
significance	 was	 determined	 with	 Mann-Whitney	 U	 test.	 Abbreviations:	 ONL,	 outer	
nuclear	layer;	OPL,	outer	plexiform	layer;	INL,	inner	nuclear	layer;	IPL,	inner	plexiform	
layer;	GCL,	ganglion	cell	layer;	bracket	a,	synaptic	sub-layer	of	the	OPL;	bracket	b,	extra-
synaptic,	neuropil	sub-layer	of	the	OPL;	S.E.M.,	standard	error	of	the	mean;	N=number	of	
mice;	n=	number	of	images	analyzed	from	the	retinal	sections.	Scale	bars:	5	µm.	
	
	 	



Figure	 S10.	Decreased	 expression	 of	 PMCA2	 in	 photoreceptor	 synapses	 of	 EAE	
mice.	Related	to	Figure	10.	
	

	
(A-F)	 Retinal	 sections	 (0.5	 µm	 in	 thickness)	 from	 CFA-	 and	 MOG/CFA-injected	 mice	
processed	9	days	after	injection.	Confocal	analyses	of	rod	photoreceptor	synapses	in	the	
OPL	 immunolabelled	 with	 rabbit	 polyclonal	 antibody	 against	 PMCA2	 and	 rabbit	
polyclonal	antibody	against	PSD95	using	 the	Fab	method.	The	 intensity	of	 the	PMCA2	
immunosignals	were	quantified	as	integrated	density	in	(G,	H).	Values	are	means	±	S.E.M.	
(G).	In	the	box-and-whiskers	plots	of	the	data	in	(H),	mean	values	are	indicated	by	blue	
horizontal	 bars;	 median	 values	 by	 green	 horizontal	 bars.	 Boxes	 represent	 25th-75th	
percentiles	 of	 values	 and	 whiskers	 are	 equal	 to	 1.5	 times	 of	 the	 IQR.	 Statistical	
significance	 was	 determined	 with	 Mann-Whitney	 U	 test.	 Abbreviations:	 ONL,	 outer	
nuclear	layer;	OPL,	outer	plexiform	layer;	INL,	inner	nuclear	layer;	IPL,	inner	plexiform	
layer;	GCL,	ganglion	cell	layer;	bracket	a,	synaptic	sub-layer	of	the	OPL;	bracket	b,	extra-
synaptic,	neuropil	sub-layer	of	the	OPL;	S.E.M.,	standard	error	of	the	mean;	N=number	of	
mice;	n=	number	of	images	analyzed	from	the	retinal	sections.	Scale	bars:	5	µm.	
	
	 	



Figure	S11.	Quantification	of	Western	blot	bands	of	the	indicated	proteins.	Related	
to	Figure	11.	

	
	



Figure	S11.	The	protein	bands	indicated	by	boxes	in	the	representative	WB	experiments	
shown	in	Fig.	11	were	quantified	as	described	in	Materials	and	Methods.	The	intensity	of	
each	of	the	protein	bands	(Cav1.4,	Cavb2,	RIM2,	see	Fig	11)	was	normalized	to	the	actin	
signal	 of	 the	 same	 lane	 to	 compensate	 for	 potential	 loading	 differences	 between	
individual	lanes.	The	results	of	all	seven	individual	blots	performed	for	quantification	are	
shown	in	A,	B,	E,	F,	I	and	J.	In	B,	F,	J,	 individual	CFA	values	were	set	to	100%	to	better	
evaluate	the	relative	changes	in	MOG/CFA	samples	in	comparison	to	CFA	values.	(C,	G,	K)	
Bar	graphs	 show	 the	means	±	 S.E.M.	 from	 the	values	 shown	 in	 (A,	E,	 I).	The	box-and-
whiskers	plots	in	(D,	H,	L)	represent	the	distribution	of	the	individual	data	from	(A,	E,	I).	
Mean	values	are	 indicated	by	blue	horizontal	bars;	median	values	by	green	horizontal	
bars	(D,	H,	L).	Boxes	represent	25th-75th	percentiles	of	values	and	whiskers	are	equal	to	
1.5	times	of	the	IQR.	Statistical	significance	was	determined	with	two-sample	unpaired	
Student’s	t-test.	Abbreviations:	A.U.,	arbitrary	units;	S.E.M.,	standard	error	of	the	mean.	
	
	 	



Figure	S12.	Quantification	of	Western	blot	bands	of	the	indicated	proteins.	Related	
to	Figure	11.	
	

	
The	protein	bands	indicated	by	boxes	in	the	representative	WB	experiments	shown	in	
Fig.	11	were	quantified	as	described	in	Materials	and	Methods.	The	intensity	of	each	of	
the	protein	bands	 (PMCA2/3;	Na+K+-ATPase,	 see	Fig.	10)	was	normalized	 to	 the	actin	
signal	 of	 the	 same	 lane	 to	 compensate	 for	 potential	 loading	 differences	 between	



individual	lanes.	The	results	of	all	seven	individual	blots	performed	for	quantification	are	
shown	in	A,	B,	E,	F.	In	B,	F,	individual	CFA	values	were	set	to	100%	to	better	evaluate	the	
relative	changes	 in	MOG/CFA	samples	 in	comparison	 to	CFA	values.	 (C,	G)	Bar	graphs	
represent	the	means	±	S.E.M	from	the	values	shown	in	(A,	E).	The	box-and-whiskers	plots	
in	(D,	H)	represent	the	distribution	of	the	individual	data	shown	in	(A,	E).	Mean	values	
are	 indicated	 by	 blue	 horizontal	 bars;	median	 values	 by	 green	 horizontal	 bars.	 Boxes	
represent	25th-75th	percentiles	of	values	and	whiskers	are	equal	to	1.5	times	of	the	IQR.	
Statistical	 significance	 was	 determined	 with	 two-sample	 unpaired	 Student’s	 t-test.	
Abbreviations:	A.U.,	arbitrary	units;	S.E.M.,	standard	error	of	the	mean.	 	



Transparent	Methods	
	
Animals	
Experiments	were	carried	out	using	10-12	weeks	old	female	C57BL/6J	mice	(body	weight	
between	20g-25g).	Mice	were	subjected	to	standard	light/dark	cycles	and	were	provided	
with	 water	 and	 standard	 food	 ad	 libitum.	 All	 animal	 procedures	 were	 reviewed	 and	
approved	by	the	local	animal	authorities	and	performed	according	to	the	German	Animal	
Protection	 Law.	 Cav1.4	 knockout	 tissue	 was	 kindly	 provided	 by	 Prof.	 Dr.	 M.	 Biel	
(University	of	Munich)	(Specht	et	al.,	2009;	Michalakis	et	al.,	2014).	RIBEYE-FP	transgenic	
mice	with	fluorescent	synaptic	ribbons	were	previously	generated	and	used	as	described	
(Okawa	et	al.,	2019).	
	
Antibodies	
	
Primary	antibodies:	
Antibody	 Reference	 Dilution	
Anti-RIBEYE(B),	rabbit	polyclonal	(U2656)	 Schmitz	et	al.,	2000	 1:1,500	(IF)	
Anti-RIBEYE(B),	mouse	monoclonal	(2D9)	 Dembla	et	al.,	2018	 1:1,000	(IF)	
Anti-Cav1.4	Cterm,	rabbit	polyclonal	 Dembla	et	al.,	2020	 1:800	(IF)	
Anti-Cav1.4	Nterm,	rabbit	polyclonal,	raised	
against	aa1-aa121	of	mouse	Cav1.4	

this	study	 1:800	(IF);	
1:1,000(WB)	

Anti-Cav1.4,	mouse	monoclonal	(16D9),	
raised	against	aa1-aa121	of	mouse	Cav1.4	

Dembla	et	al.,	2020	 1:20	(IF)	

Anti-Cavb2,	rabbit	polyclonal	(#1),	raised	
against	aa507-aa525	of	mouse	Cavb2	

Link	et	al.,	2009;	
Meissner	et	al.,	2011	

1:100	(IF)	

Anti-Cavb2,	rabbit	polyclonal	(#2),	raised	
against	aa593-aa611	of	mouse	Cavb2	

Link	et	al.,	2009;	
Katiyar	et	al.,	2015	

1:800	(IF);	
1:1,000(WB)	

Anti-RIM2,	mouse	monoclonal	(4C6)	(IgG2A),	
raised	against	aa544-aa564	of	RIM2	

this	study	 1:20	(IF)	

Anti-RIM2,	mouse	monoclonal	(4F7),	raised	
against	aa544-aa564	of	RIM2	

Dembla	et	al.,	2020	 1:20	(IF)	

Anti-RIM2,	rabbit	polyclonal	 Synaptic	Systems	(140-
303);	Grabner	et	al.,	
2015	

1:500	(WB)	

Anti-Na+/K+-ATPase	a-subunit,	mouse	
monoclonal	antibody	(clone	H-3)	

Santa	Cruz	(sc-48345);	
Shi	et	al.,	2019	

1:100	(IF);	
1:500	(WB)	

Anti-CASPR1,	mouse	monoclonal	antibody	
(5F9)	

Dembla	et	al.,	2018	 1:50	(IF)	

Anti-PSD95,	rabbit	polyclonal	antibody	
(L667)	

Irie	et	al.,	1997	 1:800	(IF)	

Anti-PMCA1,	rabbit	polyclonal	 ThermoFisher	(PA1-
914),	Hegedüs	et	al.,	
2017	

1:100	(IF)	

Anti-panPMCA,	mouse	monoclonal	(5F10)	 Invitrogen	(MA3-914)	
Križaj	et	al.,	2002	

1:500	(IF)	

Anti-PMCA2,	rabbit	polyclonal	 ThermoFisher	(PA1-
915)	Jeong	et	al.,	2016	

1:100	(IF)	



Anti-PMCA2/3,	mouse	monoclonal	(clone	C-
3),	raised	against	aa	83-194	of	human	PMCA2	

Santa	Cruz	(sc-398013)	
Schmidt	et	al.,	2017	

1:100	(IF)	
1:200	(WB)	

Anti-Actin,	mouse	monoclonal	(clone	C4)	 Millipore	(MAB1501)	
Eich	et	al.,	2017	

1:2,000(WB)	

	
Secondary	antibodies:	
	
Antibody	 Source	 Dilution	
Chicken	anti-mouse	Alexa488						Invitrogen	Molecular	Probes,	A-21200	 1:1,000	(IF)	
Donkey	anti-rabbit	Alexa568	 Invitrogen,	Molecular	Probes,	A-10042	 1:1,000	(IF)	
Chicken	anti-rabbit	Alexa488	 Invitrogen,	Molecular	Probes,	A-21441	 1:1,000	(IF)	
Donkey	anti-mouse	Alexa568	 Invitrogen,	Molecular	Probes,	A-10037	 1:1,000	(IF)	
Goat	anti-rabbit	Alexa647	 Invitrogen,	Molecular	Probes,	A-21245	 1:1,000	(IF)	
Goat	anti-rabbit	peroxidase-
conjugated	(POX)	

Sigma,	A-3673	 1:3,000	
(WB)	

Goat	anti-mouse	POX	 Sigma,	A-6154	 1:3,000(WB)	
Rabbit	anti-mouse	IgG	(H&L)	
Fab	fragment	

Rockland	Antibodies,	810-4102	 1:50(IF)	

Goat	anti-rabbit	IgG	(H&L)	
Fab	fragment	

Rockland	Antibodies,	811-1102	 1:50(IF)	

	
Solutions	
Resting	solution	(RS):	132	mM	NaCl,	3	mM	KCl,	1	mM	MgCl2x6H2O,	2	mM	CaCl2,	10	mM	
HEPES,	 pH	 7.4,	 10	 mM	 sodium	 pyruvate,	 10	 mM	 glucose	 (osmolality	 305-315	
mOsmol/kg).		
	
Low	Ca2+	solution	(LCS):	132	mM	NaCl,	3	mM	KCl,	1	mM	MgCl2x6H2O,	0.5	mM	CaCl2,	10	
mM	 HEPES,	 pH	 7.4,	 10	 mM	 sodium	 pyruvate,	 10	 mM	 glucose	 (osmolality	 305-315	
mOsmol/kg).	
	
Depolarization	solution:	85	mM	NaCl,	50	mM	KCl,	1	mM	MgCl2x6H2O,	2	mM	CaCl2,	10	mM	
HEPES,	 pH	 7.4,	 10	 mM	 sodium	 pyruvate,	 10	 mM	 glucose	 (osmolality	 305-315	
mOsmol/kg).	
	
Methods	
Induction	of	EAE	
For	induction	of	experimental	autoimmune	encephalomyelitis	(EAE),	 female	C57BL/6J	
mice	older	than	10	weeks	(body	weight	between	20g-25g)	were	selected	(Dembla	et	al.,	
2018). Mice	were	injected	subcutaneously	into	the	axilla	and	groin	with	encephalitogenic	
MOG35-55	 peptide	 of	 mouse	 myelin	 oligodendrocyte	 glycoprotein	
(MEVGWYRSPFSRVVHLYRNGK)	 contained	 in	 a	 ready-to-go	 suspension	 from	 Hooke	
laboratories	 (MOG35-55/CFA	 Emulsion	 PTX,	 Hooke	 Laboratories,	 Lawrence.	 MA,	 USA;	
#EK-2110) or	with	self-made	suspensions	(Dembla	et	al.,	2018)). To	increase	blood-brain	
barrier	permeability,	200	ng	of	pertussis	toxin	(PTX)	from B.	pertussis in	a	volume	of	100	
µl sterile	glycerol	buffer	was	injected	intraperitoneally	on	the	same	day	(day	0,	1-2hr	after 
MOG35-55	peptide	injection)	and	also	on	the	subsequent	day	(day1,	16-20	hr	after	first	PTX	
injection). Controls	were	 injected	with	CFA	only,	 i.e.	without	MOG35-55	peptide	 (Hooke	
Laboratories,	Lawrence.	MA,	USA;	CFA	control	kit	#	CK-2110). All	other	treatments	for	
the	control	injections,	e.g,	pertussis	toxin	injection	were	done	identically	as	described	for	



MOG/CFA	injection.	For	the	Fura2	analyses,	all	mice	were	injected	with	commercial,	pre-
made	 suspensions	 (Hooke	 Laboratory,	 see	 above).	 Subsequent	 analyses	 were	 done	
blindly,	i.e.	the	experimenter	was	not	aware	whether	a	mouse	was	MOG/CFA-injected	or	
CFA	(control)-injected.	
	
Immunolabelling	of	resin	sections	of	the	retina	
Retina	 samples	 were	 collected	 within	 5	 min	 post-mortem	 and	 processed	 for	
immunolabelling	(Wahl	et	al.,	2013,	2016;	Dembla	et	al.,	2014,	2018):	First,	the	tissue	was	
flash-frozen	in	liquid	nitrogen-cooled	isopentane.	The	subsequent	lyophilization	of	the	
tissue	was	 performed	 at	 a	 vacuum	of	 ≈10-7	mbar.	 The	 vacuum	was	 generated	with	 a	
TCP270	 turbomolecular	 pump	 (Arthur-Pfeiffer-Vacuumtechnik,	 Wetzlar/Aßlar,	
Germany)	 controlled	 by	 a	 PKG020	 Pirani-gold	 cathode	 gauge	 control	 unit	 and	 an	 oil	
diffusion	pump	as	pre-pumping	unit	 (type	DUO	004B;	Arthur-Pfeiffer-Vacuumtechnik,	
Wetzlar/Aßlar,	 Germany).	 During	 this	 process,	 the	 tissue	was	 continuously	 cooled	 by	
liquid	 nitrogen.	 Samples	 were	 lyophilized	 in	 liquid	 nitrogen	 for	 ≈24hrs.	 Afterwards,	
samples	 were	 equilibrated	 to	 room	 temperature,	 infiltrated	 with	 Epon	 resin	 and	
degassed	 for	 24	 hrs	 to	 ensure	 complete	 penetration	 with	 Epon.	 Curing	 of	 the	 resin-
embedded	samples	was	done	at	60oC	for	≈24	hrs.	Immunolabelling	was	performed	on	0.5	
µm-thin	resin	sections	for	confocal	microscopy	(Wahl	et	al.,	2013,	2016;	Dembla	et	al.,	
2014,	 2018).	 Prior	 to	 immunolabelling	 resin	 was	 removed.	 For	 this	 purpose,	 tissue	
sections	were	incubated	in	the	following	solutions:	sodium	methanolate	(30%	solution	
in	methanol;	Merck/Sigma-Aldrich)	(10	min);	1:1	mixture	of	xylol	/	methanol	(10	min);	
acetone	(2x10	min),	H2O	(10	min)	and	PBS	(10	min).	After	resin	removal,	sections	were	
incubated	with	specified	primary	antibodies	at	the	indicated	dilutions	(4°C	overnight).	
For	double-immunolabelling	analyses,	incubation	with	the	two	primary	antibodies	was	
performed	simultaneously.	After	several	washes	with	PBS	to	remove	unbound	primary	
antibodies,	bound	primary	antibodies	were	detected	by	incubation	with	corresponding	
secondary	antibodies	conjugated	to	the	indicated	fluorophores	(1:1,000	dilution;	1	hr	at	
room	 temperature).	 Immunolabelled	 sections	 were	 embedded	 in	 N-propyl	 gallate	
antifade,	 as	 described	 (Wahl	 et	 al.,	 2013,	 2016;	 Dembla	 et	 al.,	 2014,	 2018).	 Negative	
controls	 were	 done	 by	 omitting	 primary	 antibodies,	 by	 using	 irrelevant	 primary	
antibodies	and	by	using	incubations	of	knockout	sections,	as	indicated	in	the	respective	
experiments.	 Pre-absorption	 experiments	 were	 performed	 by	 adding	 the	 specified	
peptides	 (final	 concentration	 of	 1	 mg	 /	 mL)	 to	 the	 antibodies	 in	 their	 final	 working	
concentrations.	The	tubes	with	the	antibody	mixtures	were	incubated	overnight	at	4°C	
with	an	overhead	rotator	and	used	for	immunolabelling	experiments	on	the	next	day.			
In	order	to	use	two	primary	antibodies	generated	 in	the	same	species	(e.g.	rabbit)	 for	
immunolabelling	on	the	same	section,	a	Fab	fragment	method	was	used	(Eich	et	al.,	2017;	
Dembla	et	al.,	2018,	2020): Fab	fragments	raised	against	the	species	(e.g.	anti-rabbit	or	
anti-mouse)	 in	which	 the	 primary	 antibody	was	 generated	were	 used	 for	 blocking	 of	
unblocked	Fc	regions.	Fab	fragments	were	applied	on	the	sections	at	a	dilution	of	1:50	in	
PBS	 for	 3-4h	 at	 room	 temperature	 (Dembla	 et	 al.,	 2018). After	 washing	 with	 PBS	 to	
remove	unbound	antibody,	the	second	primary	antibody	was	incubated	overnight	(4oC).	
Binding	of	this	antibody	was	detected	the	next	day	with	a	second	secondary	antibody	that	
was	conjugated	to	a	different	fluorophore. Anti-mouse	Fab	fragments	were	applied	in	the	
double	 immunolabelling	with	 the	mouse	monoclonal	antibodies	against	Na+K+-ATPase	
(H3)	 and	 Caspr1	 (5F9),	 Fig.	 S8. Anti-rabbit	 Fab	 fragments	 were	 used	 in	 the	 double	
immunolabelling	of	the	rabbit	polyclonals	PMCA1	and	PMCA2	with	PSD95,	Fig.	9	and	Fig.	



S10.	 	 Possible	 cross-talks	 of	 antibodies	were	 ruled	out	 by	performing	 the	 experiment	
omitting	one	of	the	two	primary	antibodies.	
	
Confocal	microscopy	and	quantitative	analyses	of	immunosignals	
Confocal	microscopy	of	 immunolabelled	sections	was	performed	 largely	as	previously	
described	 (Wahl	 et	 al.,	 2016;	 Eich	 et	 al.,	 2017;	 Dembla	 et	 al.,	 2018):	 For	 confocal	
microscopy,	 an	 A1R	 confocal	 microscope	 (Nikon)	 equipped	 with	 the	 NIS	 Elements	
software	(NIS	Elements	AR	3.2,	64	bit)	was	used. Images	were	acquired	with	a	60X/1.40	
N.A.	 oil	 objective	 using	 the	 488	 nm,	 561	 nm	 and	 647	 nm	 laser	 excitation	 lines.	 For	
quantitative	analyses,	confocal	images	of	experimental	and	control	retinas	were	acquired	
under	 identical	 conditions	 by	 using	 the	 ‘‘re-use’’	 settings	 option	 of	 the	 NIS	 elements	
software	 every	 time	 to	 keep	 the	 same	 acquisition	 conditions	 for	 CFA-injected	 and	
MOG/CFA-injected	samples,	as	previously	described	(Wahl	et	al.,	2016;	Eich	et	al.,	2017;	
Dembla	et	al.,	2018). Quantitative	analyses	were	performed	in	a	blinded	manner	with	the	
experimenter	 not	 knowing	 the	 identity	 of	 the	 samples.	 Fluorescence	 intensity	 of	 the	
immunolabelled	 structures	 in	 the	 outer	 plexiform	 layer	 (OPL)	 was	 measured	 as	
integrated	density	with	NIH	ImageJ	(Schneider	et	al.,	2012;	Schindelin	et	al.,	2012).	The	
region	 of	 interest	 (ROI)	was	 determined	 by	 the	RIBEYE	 /	 PSD95	 immunosignals	 that	
served	as	reference	to	define	the	location	of	photoreceptor	synapses	in	the	OPL	(Schmitz	
et	 al.,	 2000).	Respective	 rectangular	ROIs	were	placed	directly	bounding	 the	RIBEYE/	
PSD95	immunosignals	using	the	ROI	manager	of	NIH	ImageJ.	Identical	ROIs	were	used	
for	retinal	sections	from	CFA-	and	MOG/CFA-injected	mice.	For	manually	counting	the	
number	 of	 immunolabelled	 puncta,	 the	multipoint	 tool	 of	 NIH	 ImageJ	 was	 used.	 The	
number	of	puncta	was	related	to	the	actual	length	of	the	scan	areas	that	was	determined	
using	the	measurement	option	of	NIS	Elements	AR	3.2,	64-bit.	The	average	number	of	
immunolabelled	puncta	was	 extrapolated	 for	 100	µm	 length	 of	OPL.	 For	 fluorescence	
intensities,	averages	of	the	values	were	calculated	and	plotted	as	relative	values	(in	%)	
normalized	to	CFA	values.	Box-and-whiskers	plots	were	generated	with	Origin	Pro	2018	
software.	A	normal	distribution	of	the	data	was	tested	by	the	Shapiro-Wilk	normality	test.	
When	data	were	normally	 distributed,	 statistical	 significance	was	determined	with	2-
tailed	 unpaired	 Student’s	 t-test;	 non-normally	 distributed	 data	 were	 analyzed	 with	
Mann-Whitney	 U-test.	 Differences	 were	 considered	 to	 be	 statistically	 different	 with	
p<0.05.	 Statistical	 analyses	 were	 performed	with	 Origin	 Pro	 2018	 software.	 The	 line	
scans	for	the	immunosignals	of	Cav1.4	(16D9)	and	PSD95	in	Fig.	S3	were	made	using	the	
Plot	Profile	option	in	NIH	ImageJ	and	Microsoft	Excel.	
	
Super-Resolution	 Structured-Illumination-Microscopy	 (SR-SIM)	 and	 quantitative	
analyses	of	immunosignals		
An	ELYRA	PS1	setup	(Carl	Zeiss	Microscopy	GmbH)	was	used	for	SR-SIM.	Images	were	
acquired	with	a	63X/1.4	NA	oil	(DIC)	objective	using	the	561	nm	laser	line	and	collected	
through	an	Andor	 iXon	EM-CCD	camera	(Wahl	et	al.,	2013,	2016;	Dembla	et	al.,	2014;	
Dembla	 et	 al.,	 2020).	 Data	 acquisition	 was	 performed	 in	 a	 blinded	 manner	 with	 the	
experimenter	not	knowing	the	identity	of	the	samples.	For	3D	SR-SIM	(Schermelleh	et	al.,	
2010),	1.5	µm-thin	immunolabelled	resin	sections	were	used	and	processed	(Dembla	et	
al.,	 2020).	 Z-stack	 images	 were	 acquired	 with	 an	 interval	 of	 125nm	 between	 the	
individual	z-planes	using	the	ZEN	2010	software	(black	edition).	The	entire	thickness	of	
the	retinal	section	was	scanned,	and	images	were	then	processed	for	3D	SR-SIM.	Sections	
were	 oversampled	 to	 avoid	 signal	 loss	 during	 3D	 reconstruction.	 Z-stack	 images	 of	 a	
single	 cropped	 Cav1.4	 punctum	 were	 iteratively	 scanned	 to	 ensure	 the	 complete	



coverage	of	 the	 immunosignal	before	proceeding	 to	create	 the	3D	view.	Maximum	2D	
projection	images	were	generated	from	the	3D	images	of	single,	cropped	Cav1.4	puncta	
for	further	analysis.	The	determination	of	the	contour	length	of	the	presynaptic	Cav1.4	
clusters	obtained	from	the	maximum	2D	projections	of	the	3D-images	is	exemplified	in	
Fig.	4A.	The	contour	length	(in	µm)	was	determined	with	the	open	polynomial	line	option	
tool	of	the	ZEN	2012	software.	Average	values	were	calculated	and	plotted	in	Microsoft	
Excel.	Box-and-whiskers	plots	were	generated	with	Origin	Pro	2018	software.	Statistical	
analyses	 of	 the	 SR-SIM	 data	were	 performed	 as	 described	 above	 for	 the	 quantitative	
analyses	of	confocal	images.	
	
Preparation	of	mouse	retinal	slices	for	Fura2	recordings	
Retinal	 slices	 for	 Fura2-recordings	 were	 prepared	 with	 a	 Werblin-type	 tissue	 slicer	
(Wahl	et	al,	2016)	from	CFA-	or	MOG/CFA-injected	mice	obtained	7-,	8-	or	9	days	after	
injection,	as	indicated.	After	having	removed	pigment	epithelium	and	vitreous	body,	the	
retina	 was	 cut	 at	 four	 opposing	 sides	 and	 was	 flat-mounted	 onto	 a	 nitrocellulose	
membrane	 (Millipore,	#HABG01300)	 covered	with	 a	drop	of	 the	LCS	buffer	 (with	 the	
ganglion	cell	layer	facing	the	membrane).	The	membrane-attached	retina	was	transferred	
onto	a	silica	sieve	 funnel	attached	 to	a	20	mL	syringe.	Manual	suctioning	of	 the	 filter-
attached	retina	placed	at	the	funnel	was	performed	for	≈20	times	to	promote	adherence	
of	the	retina	to	the	membrane.	Afterwards,	the	membrane	(with	the	attached	retina)	was	
fixed	on	a	glass	slide	(retina	on	top)	with	vaseline	and	rewetted	with	a	drop	of	LCS.	The	
slide	was	transferred	to	the	cutting	stage	of	a	Werblin-type	tissue	slicer	to	cut	200	to	300	
µm	thick	slices.	For	attachment	of	the	retinal	slices,	parallel	streaks	of	vaseline	were	made	
on	25	mm-diameter	cover	slips.	The	gaps	between	the	vaseline	streaks	were	filled	with	
200-300	µL	of	LCS	buffer.	Finally,	the	slices	were	picked,	rotated	by	90⁰	and	fixed	between	
the	vaseline	streaks	so	that	all	cross-sectioned	retinal	layers	were	visible.	The	slices	were	
kept	for	about	10	min,	prior	to	use	in	a	humidified	acrylic	glass	chamber	aerated	with	5%	
CO2/	95%	O2	at	room	temperature.	
	
Loading	of	retinal	slices	with	Fura2-AM	and	ratiometric	Ca2+-measurements	
Fura2-recording	was	performed	largely	as	previously	described	(Katiyar	et	al.,	2015):	For	
loading	 of	 the	 slices	 with	 Fura2,	 resting	 solution	 (RS)	 was	 used	 containing	 10	 µM	
membrane-permeable	 Fura2-AM	 (diluted	 from	 a	 1	 mM	 stock	 in	 DMSO).	 For	 better	
dispersion	 of	 Fura2-AM,	 pluronic	 acid	 (Pluronic	 F-127;	 Invitrogen,	Molecular	 Probes,	
P3000MP;	Yates	et	al.,	1992)	was	added	(0.2%	final	concentration,	made	from	a	20%	w/v	
solution	in	DMSO).	The	retinal	slices	were	then	incubated	with	50	to	100	µl	Fura2-AM	
solution	in	a	humidified	acrylic	glass	chamber	aerated	with	5%	CO2/95%	O2	for	45	to	60	
min	at	room	temperature.	
The	 coverslip	with	 the	 attached	 Fura2-loaded	 retinal	 slice	was	 placed	 in	 a	 self-made	
circular	open	bottom	chamber	in	a	volume	of	1.5	mL	RS.	The	entire	setup	was	mounted	
onto	the	stage	of	the	Nikon	Eclipse	FN1	microscope,	equipped	with	a	high-resolution	10x	
water	objective	(N.A.	1.2)	and	an	additional	2x	magnifying	lens	in	front	of	the	camera.	
Responses	 were	 recorded	 from	 the	 outer	 plexiform	 layer	 (OPL)	 containing	 the	
photoreceptor	synapses	(as	the	region	of	interest,	ROI)	using	the	ROI	manager	of	the	NIS	
elements	 software.	 The	 OPL	 was	 readily	 identified	 by	 epifluorescence	 (380	 nm	
excitation),	 phase	 contrast	 and	 F340	 /	 F380	 epifluorescence	 signals	 and	 the	ROI	was	
made	according	to	that.	After	incubation	with	Fura2-AM,	retinal	slices	were	washed	twice	
with	resting	solution	(RS).	Next,	fluorescence	recording	was	started	with	the	slices	being	
incubated	 in	 1.5	 mL	 RS	 to	 monitor	 the	 resting	 Fura2	 signals	 in	 the	 photoreceptor	



synapses.	Ratiometric	images	were	acquired	by	means	of	a	Sutter	DG4	light	source	for	
fast	wavelength	 switching,	 equipped	with	 the	 respective	 filter	 systems	 (Ex	340/12	//	
380/12;	 dichroic	 400LP;	 Em	 510/80)	 for	 Fura2	 Ca2+-imaging.	 Image	 acquisition	 was	
controlled	with	 the	NIS	Elements	AR	4.30.02	 software.	 Images	were	acquired	every	1	
second.	All	conditions	were	kept	 identical	 for	the	sets	of	retinal	slices.	The	F340	nm	/	
F380	 nm	 ratio	 recorded	 under	 these	 conditions	were	 considered	 as	 read	 out	 for	 the	
intracellular	 Ca2+-concentrations	 at	 the	 resting	 state	 (i.e.	 without	 depolarization	
stimulus). For	inducing	depolarization-evoked	responses,	50	mM	K+-containing	solution	
was	added	to	a	same	volume	of	RS	to	obtain	a	depolarization	solution	that	contained	~25	
mM	K+	(26.5	mM	K+).	The	high	K+	depolarization-induced	Ca2+-responses	in	the	OPL	were	
recorded	at	an	image	acquisition	frequency	of	1Hz,	as	described	above.	8-10	retinal	slices	
were	typically	recorded	from	an	individual	mouse.	Data	acquisition	was	performed	in	a	
blinded	manner	with	the	experimenter	not	knowing	the	identity	of	the	samples.	
 
Quantitative	 analyses	 of	 Fura2	 Ca2+	 -	 signals	 at	 resting	 and	 depolarization	
conditions			
Ratiometric	 Fura2	 values	 recorded	 from	 the	 OPL	 during	 resting	 conditions	 and	
depolarization	were	exported	as	Excel	files.	Mean	values	and	standard	errors	of	the	mean	
of	Fura2	signals	under	resting	conditions	(i.e.	incubation	with	RS	only)	were	calculated	
and	 plotted	 with	 Excel.	 Baseline	 values	 were	 tested	 for	 normal	 distribution	 using	
Shapiro-Wilk	 test	 performed	 with	 Origin	 software	 (2018b).	 Accordingly,	 two-tailed	
unpaired	Student’s	 t-test	 (for	normally	distributed	data)	or	Mann-Whitney	U-test	 (for	
non-normally	 distributed	 data)	 was	 performed	 for	 testing	 statistical	 significance.	
Differences	were	considered	to	be	statistically	different	with	p<0.05.	Data	distributions	
were	illustrated	by	box-and-whiskers	plots	with	median	(50%)	and	mean	values,	boxes	
extending	from	the	25th	to	the	75th	percentile	and	whiskers	extending	down	to	1.5	times	
of	 the	 interquartile	 range	 (IQR)	on	both	sides.	The	calculations	and	analyses	of	Fura2	
signals	were	done	for	each	of	the	indicated	days	after	peptide	injection	separately	(i.e.	
day	7,	day	8	or	day	9	after	injection).			
 For	 the	 analyses	 of	 depolarization-evoked	 Fura2	 signals,	 all	 individual	
depolarization-evoked	responses/traces	were	normalized	to	the	values	obtained	at	the	
time	point	at	which	the	depolarization	solution	was	added	(i.e.	at	the	60	seconds	time	
point).	Normalized	mean	curves	were	plotted	in	Microsoft	Excel.	Data	were	imported	into	
the	Igor	Pro	6.22A	software	to	determine	the	peak	amplitudes.	Subsequent	curve	fitting	
of	 the	 traces	 with	 Igor	 Pro	 revealed	 that	 the	 traces	 follow	 a	 single	 exponential	 fit.	
Averages	of	the	individual	extracted	amplitudes	from	all	slices	of	the	CFA-	and	MOG/CFA-
injected	mice	from	days	7	to	9	after	injection	were	calculated	and	plotted	in	Microsoft	
Excel. Statistical	analyses	of	data	were	performed	as	described	above.	
In	order	 to	semi-quantitatively	 relate	 the	measured	mean	ratiometric	Fura2	values	 to	
calcium	concentrations,	calcium	calibration	was	done	on	retinal	slices	that	were	loaded	
with	Fura2	AM	(as	described	above).	The	slices	were	first	equilibrated	to	0	nM	Ca2+	in	the	
presence	of	0.4%	Pluronic	acid	and	50	µM	Ionomycin	(Sigma,	I3909).	Subsequently,	by	
using	 commercial	 Ca2+	 buffer	 solutions	 with	 defined	 calcium	 concentrations (Fisher	
Scientific,	F6774)	experimental	KD	of	Fura2	was	determined	and	mean	Fura2	F340	/	F380	
ratiometric	 values	 (basal	 resting	 values	 and	 peak	 amplitudes	 of	 the	 average	 traces	
determined	by	Igor	Pro	curve-fitting)	were	transformed	into	Ca2+	concentrations	by	using	
the	Grynkiewicz	equation	(Grynkiewicz	et	al.,	1985).	

	



Incubation	of	retinal	slices	with	ouabain	before	subsequent	Fura2	recording	
For	the	ouabain	experiments,	mouse	retinal	slices	were	first	loaded	with	Fura2	AM	for	45	
min	as	described	above.	The	slices	were	subsequently	washed	2-3	times	with	RS.	Next,	3-
4	 coverslips	were	 incubated	with	 50-100	µL	 of	 500	µM	ouabain	 in	RS	 for	 15-20	min	
before	the	beginning	of	the	Fura2	recording.	The	concentration	of	ouabain	applied	in	our	
study	is	similar	to	concentrations	that	have	been	also	used	in	other	studies	on	murine	
tissues	(e.g.	Winkler,	1983;	Vale-Gonzalez	et	al.	2007;	Yuan	et	al.,	2014;	Akimova	et	al.,	
2015).	During	 incubation	of	 the	 experimental	 slices	with	 ouabain,	 control	 slices	were	
incubated	 with	 RS.	 All	 other	 procedures	 were	 kept	 identical.	 Fura2	 recording	 was	
performed	 as	 described	 above	 at	 an	 acquisition	 frequency	 of	 1	Hz.	 12-16	 slices	were	
recorded	from	each	mouse.	Statistical	analyses	were	performed	with	Origin2019b.			
	
Fura2	control	experiment	in	retinal	slices	with	Co2+	
In	 order	 to	 probe	 whether	 the	 high	 K+	 depolarization-evoked	 Ca2+	 Fura2	 responses	
originate	 from	 Ca2+	 entry	 via	 voltage-gated	 calcium	 channels	 (Cav-channels)	 control	
experiments	were	done	by	pre-treating	slices	with	2.5	mM	Co2+	 that	blocks	Ca2+	entry	
through	Cav-channels	(Evans	et	al.,	1978;	Schwartz,	1986;	Grabner	et	al.,	2015). Fura2	
imaging	of	retinal	slices	were	started	in	1.5	ml	of	RS	to	which	2.5	mM	Co2+	had	been	added	
(for	 a	 duration	 of	 30	 sec)	 followed	 by	 depolarization	 with	 1.5	 ml	 of	 depolarization	
solution	that	also	contained	2.5	mM	Co2+.	The	solutions	for	the	untreated	control	slices	
had	no	Co2+.	Recording	was	performed	with	NIS	Elements	software,	as	described	above.	
After	 recording,	 the	 average	 Fura2	 (F340	 /	 F380)	 traces	 of	 the	 cobalt	 treated	 and	
untreated	slices	were	normalized	to	a	common	baseline	set	at	the	30th	sec	value	and	the	
depolarization	evoked	Ca2+	 influx	in	both	the	cases	were	plotted	and	compared	in	MS-
Excel.	Analyses	for	statistical	significance	were	done	with	Origin	Pro	2020.	
	
Western	blot	analyses	
Retinas	 from	 CFA	 and	 MOG/CFA	 mice	 were	 obtained	 within	 5	 min	 post-mortem,	
transferred	 into	a	 tube	with	50	µl	of	 ice-cold	PBS	and	sonicated	using	two	pulses	of	1	
second	at	10%	power	and	8	x	10%	cycle	(Bandelin	Sonoplus).	200 µL of	37⁰C	Laemmli	
buffer	was	added	to	the	cell	lysate	and	incubated	at	37⁰C	for	30	min for	the	Western	blots	
with	anti-PMCA2/3,	 anti-Na+K+ATPase a-subunit	 and	Cav1.4	N-term. For	 the	Western	
blots	with	anti-RIM2	and	anti-Cavb2, the	protein	lysates	were	heated	in	Laemmli	sample	
buffer	at	95⁰C	for	10	min.	40 µg of	retinal	lysate	(quantified	by	the	Amido	Black	method	
as	described	by	Dieckmann-Schuppert	and	Schnittler,	1997)	was	loaded	on	a	7	%	SDS	
PAGE	gel	and	run	at	80	V	 for	45	min,	 followed	by	100	V	 for	4	hr	on	 ice. Western	blot	
transfer	was	done	in	the	cold	room	at	40	V	for	10	hr.	The	next	day,	the	blots	were	blocked	
in	5%	skim	milk	/	0.1%	Tween20	in	PBS	(blocking	buffer)	before	the	incubation	with	the	
primary	antibody	solution	(in	blocking	buffer,	overnight,	at	4oC).	The	following	day,	after	
several	washes	with	PBS	 to	remove	unbound	primary	antibody,	 lanes	were	 incubated	
with	the	respective	POX-conjugated	anti-mouse	and	anti-rabbit	secondary	antibodies	for	
1-2	hr	at	a	dilution	of	1:3,000	and	developed	with	enhanced	chemiluminescence	and	a	
BioRad	Geldoc	system.		
Quantification	of	Western	blot	bands	were	done	using	the	“Analyze	Gels”	option	of	NIH	
ImageJ.	The	band	intensities	for	the	various	proteins	normalized	with	the	respective	actin	
loading	controls	of	each	MOG/CFA	and	CFA	pair	were	plotted	in	Microsoft	Excel.	The	band	
intensities	for	each	pair	of	mice	was	also	plotted	with	the	CFA	values	set	to	100%	in	MS	
Excel	to	better	compare	also	changes	between	the	individual	Western	blots.	Box	plots	of	
the	data	and	statistical	analyses	of	the	data	(test	of	normality	followed	by	the	significance	



test	depending	on	normality)	were	performed	in	Origin	2019b.	Unpaired	t-test	for	equal	
variances	was	performed	in	all	the	cases	as	the	data	were	normally	distributed	and	the	
MOG/	CFA	and	CFA	groups	demonstrated	equal	variances.	
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