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Abstract
Pontoscolex corethrurus (Müller, 1857) plays an important role in tropical soil ecosystems and has been 
widely used as an animal model for a large variety of ecological studies, in particular due to its common 
presence and generally high abundance in human-disturbed tropical soils. In this study we describe the 
complete mitochondrial genome of the peregrine earthworm P. corethrurus. This is the first record of a 
mitochondrial genome within the Rhinodrilidae family. Its mitochondrial genome is 14 835 bp in length 
containing 37 genes (13 protein-coding genes (PCG), 2 rRNA genes and 22 tRNA genes). It has the same 
gene content and structure as in other sequenced earthworms, but unusual among invertebrates it has 
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several overlapping open reading frames. All genes are encoded on the same strand. Most of the PCGs use 
ATG as the start codon except for ND3, which uses GTG as the start codon. The A+T content of the mi-
tochondrial genome is 59.9% (31.8% A, 28.1% T, 14.6% G, and 25.6% for C). The annotated genome 
sequence has been deposited in GenBank under the accession number KT988053.

Keywords
Pontoscolex corethrurus, mitochondria, mitochondrial genome, Rhinodrilidae, earthworm, Azores, per-
egrine species

Introduction

Excluding a few aquatic taxa, earthworms (Annelida: Clitellata) are mostly terrestrial 
and include ca. 5,500 species (Blakemore et al. 2006). Believed to have originated in the 
Guyana Shield (Righi 1984), the earthworm Pontoscolex corethrurus (Müller, 1857) is a 
globally distributed species found in most tropical regions. It mainly occurs in human-
disturbed areas and can be used as an indicator of ecosystem disturbance (Brown et al. 
2006), and is commonly used in ecotoxicological studies (e.g. Buch et al. 2011; Buch et 
al. 2013; Da Silva et al. 2016). The species formerly belonged in the Glossoscolecidae 
family, but was recently allocated to the Rhinodrilidae family by James (2012), following 
the phylogeny of James and Davidson (2012). It is also the most well-known earthworm 
species in the humid tropics, frequently used in ecological and agronomic studies (Bhat-
tacharjee and Chaudhuri 2002; Buch et al. 2013; Chapuis-Lardy et al. 2010; Dupont et 
al. 2012; Hamoui 1991; Marichal et al. 2010). Being a geophagous endogeic species, P. 
corethrurus shows high plasticity regarding its tolerance to soil physicochemical character-
istics, including variable moisture, high temperatures, exceptionally high carbon dioxide 
and low oxygen levels, and is capable of inhabiting nutrient-poor soils (Cunha et al. 
2014; Hamoui 1991; Lavelle et al. 1987), as well as rotten logs (Buch et al. 2011).

Molecular data have become increasingly important in recent years. In animals, the 
mitochondrial DNA (mtDNA) typically contains 37 genes, encoding 13 proteins for the 
enzymes required for oxidative phosphorylation, the two ribosomal RNA units (rRNA), and 
22 transfer RNAs (tRNAs) necessary for the translation of the proteins encoded by mtDNA 
(Anderson et al. 1981; Boore 1999; Zhao et al. 2015). Remarkable progress has been made 
over the past several years in the field of the molecular systematics of annelids. Compared 
with individual genes, the mitochondrial genome is still a promising tool for inferring phy-
logenetic relationships due to its high content of information, and has been applied in some 
phylogenetic studies involving earthworms (Zhang et al. 2015; Zhang et al. 2016b).

In this study, we sequenced the complete mtDNA sequence of P. corethrurus for the 
first time and analyzed its structure. Additionally, we conducted phylogenetic analyses 
based on the mitochondrial sequence data available elsewhere with the purpose of 
investigating the phylogenetic position of P. corethrurus within Clitellata. The informa-
tion reported in this article will facilitate further investigations of phylogenetic rela-
tionships of different Annelida species.

http://www.ncbi.nlm.nih.gov/nuccore/KT988053
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Material and methods

Sample collection and DNA extraction

A group of clitellate (adult) P. corethrurus was collected in São Miguel Island (Azores, 
Portugal) inside pineapple greenhouses (Locality: Fajã de Baixo, 37°45'12.2"N, 
25°38'21.3"W) during January 2015. Animals were euthanized in 10% ethanol 
and preserved in 96% ethanol for later work. A piece of body wall tissue was used 
for genomic DNA extraction using standard phenol/chloroform (Sambrook and 
Russell 2001) procedure followed by ethanol precipitation and kept at 4°C for 
subsequent use.

Mitochondrial DNA amplification

The complete P. corethrurus mitogenome was amplified using seven sets of primers (Table 1) 
designed based on sequences retrieved from a previous study (Cunha et al. 2014).

Long PCR targets were amplified using different combinations of the primer sets, 
and initially sequenced with the same forward or reverse primers. Subsequent primer 
walking method was used to close the sequencing gaps. To ensure the accuracy of the 
sequence, every two contiguous segments overlapped by at least 80 bp. PCRs were 
performed using ~40 ng of DNA and 0.4 μM forward and reverse primers, 0.2 mM 
dNTP mix and 1.25 U Platinum HiFi DNA polymerase buffered with 1X Mg-free 
buffer (Thermofisher Scientific, UK). PCR amplification buffer was supplemented 
with MgCl2 to achieve a final concentration of 1.75 mM in a total volume of 25 μl 
reaction mixture. The reaction was denatured at 95°C for 3 min, cycled 35 times at 
95°C for 30 s, 30 s at the required primer annealing temperature and 72°C for 1 min 
per 1000 bp depending on target fragment length. Negative controls were included 
in all PCR amplifications to confirm the absence of contaminants. Before sequenc-
ing, PCR cleanups were performed using Exo-SAP-IT (Amersham Pharmacia, UK) 
reagents. Exonuclease 1 (0.25 μl) and Shrimp Alkaline Phosphatase (0.5 μl) were 
mixed with the PCR product (10 μl) and incubated at 37°C for 45 min followed by 
80°C for 15 min. DNA was sequenced using ABI PRISM® BigDye v3.1 Terminator 
Sequencing technology (Applied Biosystems, USA) on an ABI PRISM® 3100 DNA 
automated Sequencer.

Sequence editing and analysis

Sequence trace files were corrected and aligned with the MEGA v.7 (Kumar et al. 
2016). The sequence overlap and mitogenome assembly were performed using CLC 
main workbench v.6 (Qiagen). The annotation of the 13 protein-coding genes and two 
rRNA genes were determined using the MITOS v.2 web server (Bernt et al. 2013) and 
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Table 1. Details of the primers used to amplify the mitochondrial DNA of P. corethrurus.

Primer code Orientation Annealing 
position (bp) Nucleotide sequence (5’-3’) Melting 

Temperature (°C)
FP_1 Forward 2154..2175 CTCTACTATGTACCCAGGAGTG 57.46
RP_1 Reverse  2758..2775 GCGGCCAAGATAAAGCAC 57.67
RP_2 Reverse 3740..3762 TAGAGGCGGTAAGGAGAAAGTAT 58.61
RP_3 Reverse 5691..5708 CAGAGGCGAGGTAAATTC 53.85
RP_4 Reverse 6356..6373 TGTTCAGGGCTAGGATTG 54.99
FP_5 Forward 7983..8004 ACTAGTGTCACTTACAACAACC 57.16
RP_5 Reverse 8649..8670 TGATAAGGGGGAAAGTCTGATC 56.84
FP_6 Forward 8766..8787 AGTAGCCGCTATAATAGTCCTT 57.91
RP_6 Reverse 10328..10349 TGATTTGGGGTCAGAGCCGTAG 61.59
FP_7 Forward 10459..10478 AAAGCTTGGCGGTGCTTCAC 63.23
RP_7 Reverse 11242..11263 CCTAGTGTGTGTCAGGACGCTT 64.75

manually curated using other published annelid mitogenomes as shown in Table 2, 
whereas the tRNA genes were identified using the program tRNAscan-SE 1.21 (Lowe 
and Eddy 1997). The annotated genome sequence was deposited in GenBank under 
accession number KT988053.

Phylogenetic analyses

To clarify the phylogenetic position of P. corethrurus within the Clitellata, the complete 
mitogenome sequences of eight representative Clitellata species (Table 2) were incorpo-
rated together with the presently obtained P. corethrurus mitogenome sequence for phy-
logenetic analysis. Phylogenetic analyses were based on 13 protein-coding genes and the 
two rRNA units, which were aligned separately using MEGA v.7 (Kumar et al. 2016) 
with minor manual adjustments and then concatenated. The possible bias of substitution 
saturation at each codon position of protein-coding genes and two rRNA genes was inves-
tigated using DAMBE v.4.5.57 (Xia and Xie 2001) and MEGA v. 7 (Kumar et al. 2016).

Table 2. Representative Clitellata species included in this study for comparison.

Species Family Length (bp) GenBank accession number
Pontoscolex corethrurus Rhinodrilidae 14,835 Present study
Tonoscolex birmanicus Megascolecidae 15,170 KF425518
Amynthas gracilis Megascolecidae 15,161 NC_027258
Duplodicodrilus schmardae Megascolecidae 15,156 NC_029867
Metaphire guillemi Megascolecidae 15,174 NC_029869
Perionyx excavatus Megascolecidae 15,083 NC_009631
Lumbricus terrestris Lumbricidae 14,998 NC_001673
Drawida japonica Moniligastridae 14,648 NC_028050
Hirudo nipponia Hirudinidae 14,414 NC_023776

http://www.ncbi.nlm.nih.gov/nuccore/KT988053
http://www.ncbi.nlm.nih.gov/nuccore/KF425518
http://www.ncbi.nlm.nih.gov/nuccore/NC_027258
http://www.ncbi.nlm.nih.gov/nuccore/NC_029867
http://www.ncbi.nlm.nih.gov/nuccore/NC_029869
http://www.ncbi.nlm.nih.gov/nuccore/NC_009631
http://www.ncbi.nlm.nih.gov/nuccore/NC_001673
http://www.ncbi.nlm.nih.gov/nuccore/NC_028050
http://www.ncbi.nlm.nih.gov/nuccore/NC_023776
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Two different methods, Bayesian inference (BI) and maximum likelihood (ML) 
were used to construct the phylogenetic tree. Bayesian analyses were undertaken with 
MrBayes v.3.1.2 (Ronquist and Huelsenbeck 2003) under the best-fit model of nu-
cleotide evolution selected in MrModeltest v.2.3 (Nylander 2004), using the Assign-
ment Index Criterion (AIC). Analyses were run for 1,000,000 generations, and sam-
pled every 100 generations to assess convergence. Trees that produced non-stationary 
log-likelihood values were discarded as part of a burn-in procedure and combined the 
remaining trees that resulted in convergent log-likelihood scores from both independ-
ent searches. These trees were used to construct a consensus tree.

Maximum likelihood analysis (ML) was performed with MEGA v.7 (Kumar et al. 
2016). Initial tree(s) for the heuristic search were obtained automatically by applying 
Neighbour-Joining and BioNJ algorithms to a matrix of pairwise distances estimated 
using the Maximum Composite Likelihood (MCL) approach and then selecting the 
topology with superior log likelihood value. A discrete Gamma distribution was used 
to model evolutionary rate differences among sites (5 categories (+G, alpha parameter = 
0.9143)). The rate variation model allowed for some sites to be evolutionarily invariable 
([+I], 17.7596% sites). The analysis involved nine mitogenome sequences (Table 2). All 
positions containing gaps and missing data were eliminated. The bootstrap consensus 
tree inferred from 1000 replicates was taken to represent the evolutionary history of the 
taxa analysed (Felsenstein 1985).

Results and discussion

Mitochondrial genomic structure

The mitochondrial genome of P. corethrurus was determined to be 14 835 bp in 
length, comprising 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 
two ribosomal RNAs (rRNAs), and one putative control region with a length of 
318 bp (Figure 1).

The mitochondrial genome structure is detailed in Table 3. Gene order and ori-
entation are similar to the previous earthworm mitochondrial genomes (Boore and 
Brown 1995; Zhang et al. 2015) but slightly smaller and more condensed (with several 
intergenic overlaps, see Table 3). The gene organization is similar to other earthworm 
species (e.g. Lumbricus terrestris: Boore and Brown 1995).

The nucleotide composition is asymmetric (31.9% A, 27.9% T, 14.9% G, and 
25.3% for C) with an overall A+T content of 59.9%. One remarkable trait of meta-
zoan mitogenomes is the strand-specific bias in nucleotide composition (Hassanin et 
al. 2005; Reyes et al. 1998). Such bias is measured as G/C-skew (G%-C%)/(G%+C%) 
and A/T-skew (A%-T%)/(A%+T%), respectively (Perna and Kocher 1995). The over-
all GC- and AT-skews of the H-strand of P. corethrurus mitogenome were -0.258 and 
0.066, respectively, indicating a compositional bias associated with an excess of C over 
G nucleotides and a slight excess of A over T nucleotides on the H-strand.
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Figure 1. The mitochondrial genome of Pontoscolex corethrurus (Müller, 1857). Gene order and positions 
are shown, including the putative control region. IUPAC single letter codes are used to identify transfer 
RNA. The L1, L2, S1, and S2 transfer RNAs are differentiated on the basis of their anti-codons TAG, 
TAA, TCT, and TGA, respectively.

Protein-coding genes

The P. corethrurus genome contained the expected 13 protein-coding genes with a total of 
11,131 bp in size, accounting for 75.03% of the whole mitogenome. Most of the PCGs 
are initiated with ATG codons, except for ND3 gene, which uses GTG as the initiation 
codon. Six PCGs (COX1, ATP8, COX3, ND6, ND3, and ND2) are terminated with an 
incomplete codon T or TA, which could be completed to TAA by polyadenylation post-
transcriptionally (Ojala et al. 1981). COX2 and ND1 use TAG as a termination codon.

Nucleotide composition and codon usage frequencies were calculated from a con-
catenated sequence of all protein-coding genes on the H-strand. The base composition 
of protein-coding genes revealed a negative bias for A (14.4%), especially at second co-
don positions (12.9%, Table 4). For all protein genes, T was the most frequent nucleo-
tide at the first and third positions whereas G was most frequent at the second position.
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Table 3. Organisation and structure of the P. corethrurus mitochondrial genome.

Gene Direction From To Size 
(bp) Start Stop Anti-

codon
Intergenic bases 

(bp)
COX1 + 1 1540 1540 ATG T-- 0
tRNA-Asn + 1541 1602 62 GTT 0
COX2 + 1603 2289 687 ATG TAG -1
tRNA-Asp + 2289 2351 63 GTC 2
ATP8 + 2354 2513 160 ATG T-- 0
tRNA-Tyr + 2514 2576 63 GTA -1
tRNA-Gly + 2576 2638 63 TCC 3
COX3 + 2642 3419 778 ATG T-- 0
tRNA-Gln + 3420 3488 69 TTG 0
ND6 + 3489 3954 466 ATG T-- 0
Cytb + 3955 5094 1140 ATG TAA -2
tRNA-Trp + 5092 5154 63 TCA 1
ATP6 + 5156 5851 696 ATG TAA -2
tRNA-Arg + 5850 5910 61 TCG 0
Putative Control Region + 5911 6228 318
tRNA-His + 6229 6288 60 GTG 0
ND5 + 6289 8010 1722 ATG TAA 3
tRNA-Phe + 8014 8073 60 GAA 4
tRNA-Glu + 8078 8141 64 TTC 0
tRNA-Pro + 8142 8204 63 TGG 4
tRNA-Thr + 8209 8272 64 TGT 0
ND4L + 8273 8569 297 ATG TAA -7
ND4 + 8563 9921 1359 ATG TAA -2
tRNA-Cys + 9920 9986 67 GCA 1
tRNA-Met + 9988 10050 63 CAT -1
s-rRNA + 10050 10838 789 -7
tRNA-Val + 10832 10894 63 TAC -2
l-rRNA + 10893 12104 1212 0
tRNA-Leu 1 + 12105 12166 62 TAG 2
tRNA-Ala + 12169 12230 62 TGC 1
tRNA-Ser 2 + 12232 12293 62 TGA 1
tRNA-Leu 2 + 12295 12360 66 TAA 0
ND1 + 12361 13290 930 ATG TAG -1
tRNA-lle + 13290 13354 65 GAT 0
tRNA-Lys + 13355 13417 63 TTT 0
ND3 + 13418 13770 353 GTG TA- -1
tRNA-Ser 1 + 13770 13832 63 TCT 0
ND2 + 13833 14835 1003 ATG T-- 0

Ribosomal and transfer RNA genes

Like other mitochondrial genomes (Inoue et al. 2000; Zardoya et al. 1995), twenty-
two tRNA genes were identified (Supplementary figure 1). The tRNA genes were scat-
tered throughout the mitochondrial genome and ranged in size from 60 to 67 bp 
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(Table 3). The P. corethrurus mitogenome also contained a small subunit of rRNA and 
a large subunit of rRNA, which were 789 bp and 1212 bp in length, respectively. As in 
other Clitellata genomes, these genes were located between the tRNAMet and tRNAVal 

genes and between tRNAVal and tRNALeu genes, respectively (Zhang et al. 2016b).

Non-coding regions

As shown in Table 3, there are 22 intergenic spacer regions, ranging in size from -7 to 
4 bp observed in P. corethrurus.

As in most Clitellata, the major non-coding region in P. corethrurus mitochondrial 
genome was located between tRNA-Arg and tRNA-His. It was determined to be 318 bp 
in length, less than other reported Clitellata species (Zhang et al. 2016a), and it had a 
base composition that was rich in A and T (A+T=67.6%).

Phylogenetic analyses within the Clitellata

The phylogenetic trees (the 50% majority-rule consensus tree is shown in Figure 2) 
were highly consistent regardless of the analytic method used, and were statistically 

Figure 2. Phylogenetic relationships among phylum Annelida based on the combined 13,416 bp nu-
cleotide positions. Total alignment length is greater than the combined P. corethrurus protein coding and 
rRNA sequence lengths due to overlapping protein coding sequences that are subsequently concatenated, 
and indel regions in the alignment. The posterior probability value of BI analyses and bootstrap support 
values of ML analyses (in the order: BI, ML) are indicated near the branches.
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supported by high posterior probability and intermediate bootstrap values. This phylo-
genetic analysis represented the first investigation of P. corethrurus relationships within 
the Clitellata based on the complete mitogenome. As indicated by the tree, different 
species from the same family clustered together (Megascolecidae: M. guillemi, D. sch-
mardae, A. gracilis, P. excavatus and T. birmanicus), and the species from Lumbricidae 
and the P. corethrurus formed a monophyletic group. The species D. japonica belongs 
to the Moniligastridae, the sister group to Crassiclitellata (earthworms), which ex-
plains its phylogenetic position. The Moniligastridae are not Crassiclitellata because 
they have a single cell layer in the clitellum.

Conclusion

For the first time, the sequencing, annotation and analysis of the mitochondrial ge-
nome of a member of Rhinodrilidae was completed. The mitogenome of P. corethrurus 
was found to be 14,835 bp in length and showed a similar composition in size, low GC 
content and gene order to earthworm mitogenomes already available. The complete 
mitogenome reported here is expected to allow for further studies of the P. corethrurus 
phylogeny and for analyses on the taxonomic status of the family Rhinodrilidae.

Table 4. Base composition for protein-coding, tRNA, and rRNA genes of P. corethrurus mitogenome.

Gene/Region
Base composition (%)

A+T (%) Size (bp)
T C A G

COX1 27.4 26.7 27.9 18.1 55.3 1,540
COX2 25.8 24.3 34.9 15.0 60.7 687
ATP8 24.4 26.9 36.9 11.9 61.3 160
COX3 27.3 27.5 25.7 19.5 53.0 778
ND6 28.3 26.0 30.3 15.5 58.6 466
Cytb 28.0 27.1 29.7 15.3 57.6 1,140
ATP6 29.6 29.2 30.6 10.6 60.2 696
ND5 27.7 26.7 31.7 13.9 59.4 1,722

ND4L 25.9 28.3 33.0 12.8 58.9 297
ND4 27.5 27.5 32.3 12.7 59.8 1,359
ND1 28.4 25.8 29.8 16.0 58.2 930
ND3 32.6 26.1 27.2 14.2 59.8 353
ND2 30.0 28.2 30.7 11.1 60.7 1,003

Protein Coding            
1st 30.2 25.4 17.4 27.0 47.6 3,710
2st 24.9 27.6 12.9 34.6 37.8 3,710
3st 36.1 27.9 13.8 22.3 49.8 3,710

Total 30.4 27.0 14.7 28.0 45.1 11,131
tRNA 30.5 17.6 34.9 17.0 65.5 1,391
rRNA 24.1 22.0 37.6 16.3 61.7 2,001

Putative Control Region 31.5 18.9 36.2 13.5 67.6 318
Overall 28.1 25.6 31.8 14.6 59.9 14,835
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