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Arachidonic acid (AA) metabolites such as leukotrienes (LT) 
are key inflammatory mediators, whose overactivity causes 
bronchoconstriction in asthmatic patients. A number of thera-
pies targeting this pathway are already marketed or in devel-
opment–montelukast (Singulair; 10 mg once daily (q.d.)), a LT 
receptor (LTR) antagonist and zileuton (Zyflo IR/CR; 600 mg 
four times a day or 1,200 mg twice a day), a 5-lipoxygenase 
(5LO) redox enzyme inhibitor, are both marketed agents and 
5LO activation protein inhibitors are in development.1 In spite 
of extensive clinical experience with this pathway, some gaps 
in our understanding of this mechanism still exist. For exam-
ple, the sparse clinical data2–4 on the dose response of zileu-
ton is interesting; on acute dosing, both 400 and 600 mg four 
times a day (q.i.d.) result in similar bronchodilatory response 
as measured by forced expiratory volume in 1 s (FEV1); how-
ever, when dosing is continued beyond 1–2 weeks, dose 
response emerges. Also, the relative bronchodilatory poten-
tial of different interventions along the AA pathway–e.g., 
LTR blockade vs. 5LO inhibition vs. 5LO activation protein 
inhibition is not known. Furthermore, it is not known whether 
zileuton doses higher than 600 mg q.i.d. would result in even 
higher efficacy. Understanding these properties would be 
critical to exploiting the full therapeutic potential of this path-
way–for example, to develop a non-redox 5LO inhibitor with 
less frequent dosing regimen than zileuton (e.g., once daily). 
An empirical approach such as a pharmacokinetic-pharma-
codynamic (PKPD) modeling approach is not suitable for 
answering these questions; a descriptive model would be 
unable to provide a mechanistic explanation of the observed 
PKPD data and a model developed based on 5LO inhibitor 
data would have limitations in predicting the effects of LTR 
blockade. Using a quantitative systems pharmacology (QSP) 
model, we have previously shown5 that a non-redox 5LO 
inhibitor could have the same efficacy as a redox inhibitor. 

We further developed this model6,7 using literature-published 
data to help answer these additional questions.

Several mathematical models describing various parts of the 
5LO system have already been published.8–10 These models 
describe basic aspects of the enzyme function–binditng AA 
in catalytic and regulatory sites of 5LO and its transformation 
to products–they do not take into account other important fea-
tures such as LTA4 synthesis, reduction of 5-hydroperoxyeico-
satetraenoic acid (HPETE) and other peroxides to activate 5LO 
(pseudoperoxidase reaction), reversible inactivation of 5LO by 
5-hydroxyeicosatetraenoic acid,11 and irreversible inactivation 
by LTA4.12,13 Models of AA metabolism that include both lipoxy-
genase and cyclooxygenase pathways resulting in formation 
of LTs and prostanoids have also been reported.12,13 The influ-
ence of various inhibitors of 5LO and cyclooxygenase on AA 
metabolism have been studied in these models. However, rate 
laws for enzymes involved in the AA metabolism have been 
described in semi-empirical manner using Michaelis–Menten 
type equations and, consequently, inhibition of 5LO by AA, and 
activation with product HPETE and pseudoperoxidase activity 
of 5LO have not been taken into account. Another effort to con-
struct quantitative description of allergic airway inflammation 
has been performed by Walsh et al.14 The computational model 
represents Boolean network including eosinophils, T cells, and 
other cell types as well as a variety of interleukins (IL), and is 
trained against literature data on C57BL/6 and BALB/c mice. 
However, this type of modeling does not allow us to understand 
mechanisms underlying complex PKPD behavior after admin-
istration of antiasthmatic drugs.

Therefore, a more detailed model of 5LO system which des
cribes intracellular LT synthesis, extracellular LT transformation, 
and cell dynamics of eosinophils is required to fully understand 
the therapeutic potential of this pathway in asthma. This article 
describes the development and evaluation of such a model.

Zileuton, a 5-lipoxygenase (5LO) inhibitor, displays complex pharmaokinetic (PK)-pharmacodynamic (PD) behavior. Available 
clinical data indicate a lack of dose–bronchodilatory response during initial treatment, with a dose response developing after ~1–2 
weeks. We developed a quantitative systems pharmacology (QSP) model to understand the mechanism behind this phenomenon. 
The model described the release, maturation, and trafficking of eosinophils into the airways, leukotriene synthesis by the 5LO 
enzyme, leukotriene signaling and bronchodilation, and the PK of zileuton. The model provided a plausible explanation for the 
two-phase bronchodilatory effect of zileuton–the short-term bronchodilation was due to leukotriene inhibition and the long-
term bronchodilation was due to inflammatory cell infiltration blockade. The model also indicated that the theoretical maximum 
bronchodilation of both 5LO inhibition and leukotriene receptor blockade is likely similar. QSP modeling provided interesting 
insights into the effects of leukotriene modulation.
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RESULTS

In this manuscript, we define the term “5LO system” as a 
set of processes including intracellular biosynthesis of cys-
teinyl LT (CysLT) from AA by eosinophils, extracellular trans-
formation of CysLTs, CysLT- and IL-5–mediated eosinophils 
maturation, migration and activation, production of IL-5 and 
histamine by eosinophils and mast cells, and effect of CysLTs 
and histamine on airway smooth muscles contraction. A sche-
matic of the model is presented in Figure 1. The model has 
been developed using data published in literature. These data 
and some of the key underlying assumptions are presented 
in Table 1. Briefly, the process described by the model is as 
follows: after maturation in the bone marrow in IL-5–depen-
dent manner, eosinophils migrate to blood, where they are 

activated by CysLTs. Activated eosinophils produce CysLTs 
and IL-5, which further accelerates the process (positive feed-
back). Both activated and non-activated eosinophils produce 
histamine. Increase in IL-5 and CysLT blood concentration 
stimulates migration and accumulation of both activated and 
non-activated eosinophils to airways. Histamine and CysLT 
action in the airways results in bronchoconstriction. Zileuton 
inhibits intracellular production of CysLTs from AA; montelu-
kast inhibits LT binding to its receptor to both activated and 
non-activated eosinophils and to cause bronchoconstriction.

The systems model describes the complex PKPD 
behavior of zileuton
To understand the complex PKPD relationship of zileuton 
observed in the clinic2 and to understand the relative efficacy 

Figure 1  Schematic representation of processes considered in the model. Broken arrows signify transport across tissues. Solid arrows signify 
production/synthesis/stimulation process. Lines (red) identify points of therapeutic intervention. CysLT, cysteinyl leukotrienes; EO, non-activated 
eosinophils; EOa, activated eosinophils; FEV1, forced expiratory volume in 1 s; Hn, histamine; IL-5, interleukin-5; ML, montelukast; ZL, zileuton.
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Table 1  Description of available experimental data and facts

Assumption/fact References

Eosinophils and mast cells are the key cells mainly responsible for bronchoconstrictors production 16,18,44

Cysteinyl leukotrienes C4, D4, and E4 (LTC4, LTD4 and LTE4), histamine, and prostaglandins D2 and F2 are key bronchoconstrictors responsible 
for excessive bronchoconstriction in asthmatic patients. Among leukotrienes, LTD4 is the strongest bronchoconstrictor

45

IL-5, granulocyte-macrophage colony-stimulating factor, and stem cell factor are main cytokines governing eosinophils and mast cells maturation 16,46

Binding of LTD4 and LTC4 to cysteinyl leukotriene receptors 1 and 2 (CysLT1R and CysLT2R) is able to transform inactive eosinophil to activated 
eosinophil

44

Only activated eosinophils are responsible for high production of IL-5 and LTC4 44

Life span of activated eosinophil is larger than that of inactivated eosinophil 47

Mast cells are able to produce histamine spontaneously. Mast cells of asthmatics produce more histamine than those of healthy subjects 16

Eosinophils are able to modulate histamine production in mast cells via excretion of eosinophil cationic protein (ECP). Increase in ECP results in  
degranulation of mast cells

16

The key chemoattractants driving eosinophils migration are LTE4 and IL-5 31,34,45,48

Increase in LTE4 concentration results in significant accumulation of eosinophils in airways from blood 18,34,45

Increase in IL-5 blood plasma level leads to elevation of eosinophils trafficking from blood plasma to airways 31,48

ASM contraction is governed by intracellular calcium level 45

Intracellular calcium level depends on concentration of bronchoconstrictors (LTD4, LTC4, and histamine) 49

Binding of LTD4 and LTC4 to CysLT1R and CysLT2R of ASM and binding of histamine to H1 receptor results in increase in intracellular Ca2+ 
concentration

49,50

ASM, airway smooth muscle; IL-5, interleukin-5.
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potential of 5LO inhibition vs. LTR inhibition with montelukast, 
we have simulated 400 and 600 mg q.i.d. zileuton doses and 
10 (clinically marketed dose of montelukast as Singulair) and 
50 mg montelukast doses q.d. Figure 2a–c show the effect 
of these doses on FEV1, airway eosinophils and extracellu-
lar LT concentrations simulated with our model and clinically 
measured. These figures show that 5LO inhibition causes 
bronchodilation in two phases. In the first “acute” phase (0–1 
days), bronchodilation is due to direct inhibition of airway LTD4 
by ~60% (Figure 2b). Minimal changes in airway eosinophils 
are predicted in this phase (Figure 2c). Continued dosing at 
400 mg results in equilibrium in the system between the airway 
eosinophils and the LTD4 and histamine they produce, which 
in turn attract eosinophils. At higher zileuton doses, the lower 
levels of LT and histamine achieved in the airways results in an 
unsustainable cell population in the airways, and hence a con-
tinued decrease in the cell numbers and subsequent broncho-
dilation. A final new steady state corresponding to higher FEV1 
(Figure 2a) is reached with low airway cells and LT/histamine 
concentrations at this higher dose after ~3 weeks of dosing.

Zileuton 600 mg q.i.d. has higher bronchodilation than 
montelukast 10 mg q.d.
Our simulations indicate that 5LO inhibition with zileuton at 
600 mg q.i.d. has higher mean efficacy than LTR inhibition 
with montelukast at 10 and 50 mg q.d. The maximum FEV1 
increase predicted by the model for zileuton 600 mg is 23% 
and that for montelukast 10 mg dosing is 5% (Figure 2a). 
Montelukast dosing 10 mg q.d. is predicted to result in essen-
tially unchanged airway cell populations in peripheral tissues 
(see Figure 2c for comparison with clinically measured data) 
due to low blockade of LT action, similar to that reported by 
Reiss et al.15 The marginal effect of montelukast on airway 
cell population (predicted by the model) was found to be due 
to high competition from airway LT for the CysLT receptors.

Doses of zileuton of 600 mg q.i.d. achieves maximum 
bronchodilation possible with this mechanism
We also ran simulations to evaluate whether higher doses of 
zileuton could result in higher efficacy. As shown in Figure 
3a, 600 mg zileuton q.i.d. results in maximum efficacy. Higher 
doses result in faster approach to maximum efficacy, but no 
higher bronchodilation is predicted. Unlike zileuton, higher 
doses of montelukast are predicted to result in greater efficacy 
(Figure 3b), with doses >250 mg resulting in FEV1 increases 
similar to that of zileuton at the higher FEV1 steady state.

DISCUSSION

We have illustrated how a systems pharmacology modeling 
approach can be used to understand the complex pharmaco-
logical behavior of the 5LO inhibitor zileuton and to compare 
potential efficacy of intervention at different points along the 
AA pathway–i.e., 5LO inhibition vs. LTR blockade.

The final model of the 5LO system is an ensemble model 
of six submodels each describing different aspects of the 
PKPD system. Each component submodel is a system of ordi-
nary differential equations (ODE), which represent a simpli-
fied quantitative representation of the interactions within the 

subsystem. For example, the airway trafficking of eosinophils 
in our model is assumed to be entirely due to IL-5 and LTE4. 
However, other cytokines such as granulocyte-macrophage 
colony-stimulating factor and stem cell factor are also known 
to be involved in eosinophil maturation, release, and airway 
trafficking.16 This is illustrated by the fact that complete inhi-
bition of IL-5 activity reduced lung eosinophilia incompletely 
by mepolizumab.17 Similarly, in our model LTs are produced 
only by eosinophils whereas there is evidence that basophils 
and mast cells may also be involved in LT production.16 These 
important assumptions in our model are made to ensure that 
only the minimum number of variables is included in our system 
of equations in order to answer the main questions of interest. 
Therefore, while each component of the model is quantitative, 
the overall result should be considered semi-quantitative only. 
Within these constraints, the model predictions are roughly 
in line with observations on eosinophil changes observed in 
the clinic. For example, our model predicts complete reduction 
in airway eosinophil count at 600 mg q.i.d. dosing of zileuton, 
whereas Hasday et al.18 reported ~70% reduction in bronchial 
lavage eosinophils count and preclinical data indicate a maxi-
mum reduction in airway eosinophils and CysLT of 80%.19 For 
montelukast also, the predicted blood eosinophil reduction is in 
line with observations; 10% predicted vs. ~10% observed.15,20

Also, it should be noted that in our biophysical model, pla-
cebo effects on FEV1 changes are not accounted for; how-
ever, for the sake of qualitative description of bronchodilation 
by zileuton and to compare the relative effects of 5LO inhibi-
tion and LTR blockade, this level of abstraction is sufficient.

All submodel parameters were estimated with adequate 
precision (Supplementary Data J online). Each submodel 
provided adequate description of the underlying data. The 
model predicted the two-phase FEV1 change and the tran-
sition time from the first to the second phase after zileuton 
administration.

Our model provides a plausible explanation for the unusual 
PKPD behavior of zileuton. In the acute-dosing phase, bron-
chodilation is achieved by inhibiting LT action on the airways. 
However, airway eosinophils continue to produce LTs, which 
continue to attract and activate eosinophils in the airways. Due 
to the positive feedback in this system, higher level of LT block-
ade is required to disrupt the trafficking process and therefore, 
higher doses of zileuton–i.e., doses ≥600 mg–are required to 
achieve additional bronchodilation. The time required for this 
additional bronchodilation to be achieved corresponds to the 
lifespan of activated eosinophils in the airways (3–4 days). 
Intriguingly, the model suggests that this phenomenon is also 
true for montelukast, albeit at doses >250 mg q.d., which have 
not been reported as tested in clinical trials. For montelukast, 
direct blockade of LTR provides acute bronchodilation; how-
ever, competition from high levels of airway LT limits its ability 
to block eosinophil trafficking, except at doses >250 mg. To the 
best of the authors’ knowledge, this is the first instance of this 
mechanism being shown to be a plausible explanation of the 
observed data. Apart from 5LO inhibitors and LTR antagonists, 
this mechanism is also likely applicable for other anti-inflam-
matory bronchodilation agents including steroids, which have 
delayed action.

The model predicts that presently marketed doses of zileu-
ton provide maximum possible bronchodilation available for this 
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mechanism, but those of montelukast only provide broncho-
dilation due to direct inhibition of LT action. LTR antagonists 
with greatly improved receptor affinities may provide improved 

asthma treatment over montelukast. Our simulations also 
suggest that at marketed doses, zileuton has higher FEV1 
increase (23%) than montelukast 10 mg (~5%). The predicted 

Figure 2  Simulated and clinically measured response to administration of labeled dosages of zileuton (ZL) and montelukast (ML) presented in 
longer and shorter time scales. Solid lines represent simulations, symbols (squares, triangles, and diamonds) represent clinical observations. 
Dependence of (a) forced expiratory volume in 1 s (FEV1), (b) airways LTD4 concentration, and (c) airways eosinophils (EOs) number on time 
under condition of ZL and ML administration. Four hundred milligrams (blue curve, closed squares) and 600 mg (red curve, closed triangles) of 
ZL is administered four times a day (q.i.d.); 10 mg (green curve, open diamonds) and 50 mg (violet curve) of ML is administered q.d. All simulated 
characteristics are expressed as percentage from baseline. Clinically measured data on FEV1 response to ZL were taken from Liu et al.2 Vertical 
blue and green arrows indicate time of administration of ZL during the first day of therapy and ML during two initial days of therapy. q.d., once daily.

0
0

5

10

15

F
E

V
1,

 %

20

25

0 1 2
0

5

10

15

F
E

V
1,

 %

20

25

10 20 30 40 50

Time, day Time, day

Long scale Short scale

ZL, 400 mg, q.i.d.

ZL, 600 mg, q.i.d.

ML, 10 mg, q.d.

ML, 50 mg, q.d.

60 70 80 90 100

0
0

20

40

60

80

LT
D

4 
in

 a
irw

ay
s,

 %

100

120

0

20

40

60

80

LT
D

4 
in

 a
irw

ay
s,

 %

100

120

0 1 210 20 30 40 50

Time, day Time, day

60 70 80 90 100

0
0

20

40

60

80

E
O

s 
co

un
t, 

%

100

120

0

20

40

60

80

E
O

s 
co

un
t, 

%

100

120

0 1 210 20 30 40 50

Time, day Time, day

60 70 80 90 100

0
0

2

4

6

8

10

12

14

16

18

20

F
E

V
1,

 %

10 20 30 40 50

Time, day

0 0.125 0.25
0

2

4

6

8

10

12

14

16

18

F
E

V
1,

 %

Time, day

60 70 80 90 100

a

b

c



www.nature.com/psp

Understanding 5-Lipoxygenase Action Using Systems Pharmacology Modeling
Demin et al.

5

effect for montelukast is broadly in line with a meta-analysis,21 
which indicated bronchodilation in the 5–10% range for mon-
telukast doses of 10–50 mg q.d. Reported bronchodilation for 
zileuton is lower than predicted2–4 (15-20%), presumably due 
to the assumptions regarding the role of eosinophils as the 
sole inflammatory cells in the airways. Furthermore, recently 
Kubavat et al.22 have shown in a head-to-head trial that zileuton 
1,200 mg twice daily is a more effective bronchodilator (mea-
sured by peak expiratory flow rate), than montelukast 10 mg, 
supporting the model prediction. Therefore, even though the 
model predictions are semi-quantitative, in the absence of a 
large database of clinical data, this analysis was able to provide 
an initial comparison of these two targets’ potential efficacy.

The AA system has been extensively studied; hence there 
are sufficient data in literature to help develop this model. How-
ever, for many novel targets, there is often limited information 
on the link among target modulation, biomarker changes, and 
ultimate clinical effect. Indeed, this has often been cited as a 
key reason for not investing in QSP model-based approaches 
early during drug research and development. Our model sug-
gests that in such situations where mechanistic information 
is sparse, investment in in vitro, in vivo, or human tissue 
assays to generate mechanistic data can provide benefits by 
enabling such a model-based analysis. This approach is pref-
erable to the often-existing philosophy of running experiments 
to “confirm” the efficacy of the target in poorly understood 
animal “disease models”. Development of such mechanis-
tic information to enrich our knowledge of the pathways of 

interest should be an important goal of translational research 
and systems models such as these can provide a quantitative 
framework for making sense of such complex data.

In conclusion, we have developed a QSP model to help 
understand the complex behavior of zileuton a 5LO inhibitor. 
The model provides a number of insights into the AA–LT mech-
anism causing bronchodilation–it is able to explain the complex 
PKPD behavior of zileuton; it suggests that zileuton is more effi-
cacious than montelukast at currently marketed doses; it also 
indicates that improvements in target affinity are more likely 
to be useful for LTR antagonists than for 5LO inhibition. Our 
results illustrate how QSP techniques can form a key compo-
nent of quantitative drug discovery and development strategy.

METHODS

The QSP model of the 5LO system is an ensemble model 
consisting of six components, describing (i) intracellular LT 
biosynthesis, (ii) extracellular conversion of LT, (iii) distribu-
tion model describing transport of molecules between com-
partments, (iv) cell dynamics model, (v) biophysical model 
describing the link between LT levels and bronchial tone, and 
(vi) PK model. The main stages of model construction are 
outlined in Table 2. The final system of ODEs, experimental 
facts and assumptions underlying the model structure, rate 
laws of each process, values of model parameters, and exper-
imental/clinical data used to identify them are presented in 
Supplementary Materials online. The final system consisted 

Figure 3  Simulated response to administration of high dosages of zileuton (ZL) and montelukast (ML) presented over chronic and acute 
time scales. Dependence of FEV1 (% from baseline) on time under condition of (a) ZL q.i.d. and (b) ML q.d. administration: blue, red, green, 
and violet curves correspond to 400, 600, 800, 1,000 mg of ZL and 10, 50, 250, 1,250 mg of ML, respectively. Vertical blue and green arrows 
indicate time of administration of ZL during the first day of therapy and ML during two initial days of therapy, respectively. FEV1, forced 
expiratory volume in 1 s; q.d., once daily; q.i.d., four times a day.
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Table 2  Description of stages of model construction

Step number Description of step Type of data used in the step Parameter identification

1 Development, verification, and validation of 
submodel of intracellular LT biosynthesis and 
mechanism of action of zileuton (presented in 
details in paper (b1); for brief description see 
Supplementary Materials (section B) online)

(i) Experimental facts underlying structure  
of the processes involved in intracellular  
biosynthesis of LTs and their regulations

Most parameter values were taken from  
previously developed model (b1). Few  
parameters were fitted to data on intracellular 
metabolite concentrations

(ii) In vitro experimental data on kinetics of 
enzymes involved in intracellular  
biosynthesis of LTC4

(iii) In vivo data on concentration of intracellular 
metabolites

2 Development and verification of submodel  
of extracellular conversion of LT (presented 
in details in Supplementary Materials  
(section C) online)

(i) Experimental facts underlying structure  
of the processes involved in extracellular LTs 
conversion

Most parameter values were fitted against  
human and monkey in vivo and ex vivo data. 
Few parameters were taken from the literature

(ii) In vitro experimental data on kinetics  
of enzymes involved in extracellular conversion 
of LTs

(iii) Human in vivo and ex vivo data on  
dynamics of LTs conversion

(iv) Monkey ex vivo data on dynamics of LTs 
conversion

3 Development and verification of submodel of  
distribution describing transport of molecules 
(LTs, Hn, and IL-5) between compartments 
(presented in details in Supplementary  
Materials (section D) online)

(i) Physicochemical properties of the  
molecules

Most parameter values were taken from the  
literature or calculated on the basis of data  
available in literature. Parameters responsible 
for IL-5 distribution between compartments 
were fitted against human in vivo data

(ii) Physiological properties of the living  
system

(iii) Human in vivo data measured for  
asthmatic patients

4 Development, verification, and validation 
of submodel of the link between LT and 
histamine levels and bronchial tone  
(presented in Supplementary Materials  
(section F) online)

(i) Ex vivo experimental data measured for 
guinea pigs

Most parameter values were taken from the 
literature or calculated/estimated on the basis  
of data available in literature. Several param-
eters were identified via fitting against human 
in vivo data and guinea pigs ex vivo data

(ii) Physiological properties of human

(iii) Human in vivo data measured for healthy 
subjects and asthmatic patients

5 Development and verification of the PK  
submodel describing pharmacokinetics and  
distribution of zileuton and montelukast  
(presented in details in Supplementary  
Materials (section G) online)

(i) Physicochemical properties of zileuton  
and montelukast

Some parameter values were taken from the 
literature or calculated/estimated on the basis 
of data available in literature. Several param-
eters were identified via fitting against human 
PK data

(ii) Physiological properties of the living  
system

(iii) Human PK data

6 Development of submodel of cell dynamics  
(presented in details in Supplementary  
Materials (section E) online)

Experimental facts underlying structure of the 
processes and their regulations

7 Integration of submodel of cell dynamics with 
submodels of intracellular LT biosynthesis,  
extracellular conversion of LT, and submodel  
of distribution. Identification of parameters of  
cell dynamics model and parameters  
responsible for IL-5 transport from airways to 
blood and to bone marrow (presented in  
details in Supplementary Materials  
(section E) online)

(i) Ex vivo data measured for healthy subjects Most parameter values were fitted against 
ex vivo and in vivo human data. Several pa-
rameter values were taken from the literature 
or calculated/estimated on the basis of data 
available in literature

(ii) In vivo experimental data measured for  
asthmatic patients and healthy subjects

8 Merge of the model obtained at previous  
stage (stage 7) with the PK submodel and 
submodel of the link between LT and histamine 
levels and bronchial tone to form QSP model 
of 5LO system. Population of the model with 
data describing volume of tissues and volume 
of distributions (presented in details in  
Supplementary Materials (section A) online)

(i) Physicochemical properties of the molecules Volumes of tissues were taken from the litera-
ture. Volumes of distributions were calculated/
estimated on the basis of data available in 
literature

(ii) Physiological properties of human being

9 Validation of QSP model of 5LO system 
against clinical data

Zileuton and montelukast clinical data

10 Simulations/predictions with QSP model of  
5LO system

Hn, histamine; IL-5, interleukin-5; LT, leukotrienes; PK, pharmacokinetics; QSP, quantitative systems pharmacology; 5LO, 5-lipoxygenase.
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of 33 ODEs, 64 rate laws, and 113 parameters, of which 26 
were estimated using literature data and the rest directly 
taken from literature-reported estimates. Below, we will briefly 
describe each of the component submodel (i–vi). Submod-
els (i–iv) are shown in Supplementary Materials (section A, 
Figure A1) online; submodels (v) and (vi) are shown in the 
Supplementary Materials (sections F and G) online.

Submodel of intracellular LT biosynthesis. This submodel rep-
resents ODE system describing intracellular LTC4 biosynthesis 
from AA. The model includes reactions catalyzed by 5LO, cyto-
solic phospholipases A2, glutathione peroxidase, 5-hydroxye-
icosanoid dehydrogenase, and processes of LTA4 degradation 
and LTC4 excretion from eosinophils located in blood plasma 
(processes 1–10) and airways interstitium (processes 31–40). 
Rate laws of the processes and parameter values of the sub-
model have been taken from Karelina et al.5 (and references 
contained therein). Intracellular concentration of LTC4 in 
eosinophils of healthy subjects was obtained from Bandeira-
Melo et al.23 The ODE system describing intracellular LT biosyn-
thesis, rate equations, and values of parameters are presented 
in Supplementary Materials (sections A and B) online.

Submodel of extracellular conversion of LT. This submodel rep-
resents ODE system describing conversion of LTC4 to LTD4 
and further to LTE4 catalyzed by γ-glutamyl transpeptidase 
and dipeptidase located in blood plasma (see processes 11 
and 12 in Supplementary Materials (section A, Figure A1)  
online) and airway interstitium (processes 41 and 42), cor-
respondently. All three CysLTs are exposed to degradation 
in blood plasma (processes 13–15) and airway interstitium 
(processes 55–57). Parameters of the model have been iden-
tified on the basis of in vitro data,24 ex vivo experimental data 
measured for blood of healthy subjects,25 and in vivo experi-
mental data (time series of radiolabeled LTs after intravenous 
infusion) measured for monkey.26 The ODE system describ-
ing extracellular conversion of LT, rate equations, and values 
of parameters are presented in Supplementary Materials 
(sections A and C) online.

Submodel of distribution. This submodel describes transport 
of LTC4, LTD4, LTE4, and histamine between blood and air-
way (processes 43, 44, 45, 52), and transport of IL-5 between 
airway and blood (process 54) and blood and bone marrow 
(process 28). The submodel describing distribution of the mol-
ecules is based on physiologically based PK approach,27 on 
the one hand, and is simplified as much as possible to meet 
the compartmental structure of QSP model of 5LO system. All 
parameters of the submodel can be divided into three groups. 
First group consists of parameters and those values are cal-
culated on the basis of physicochemical properties of the mol-
ecule (for example, tissue partition coefficients, logP, pKa, etc). 
Values of the parameters have been taken from literature.28,29 
Second group includes parameters characterizing physiological 
properties of the living system (for example, hematocrit, lymph 
flow rates, blood flow rates, etc). Values of the parameters have 
been taken from literature.30 Third group includes only two 
parameters: effective permeability constants of blood to airway 
and blood to bone marrow transport of IL-5. The values of the 
parameters have been identified via fitting of the model against 
in vivo data measured in asthmatic patients.31 The ODE system 

describing distribution of LTC4, LTD4, LTE4, histamine, and 
IL-5, rate equations, and values of parameters are presented in 
Supplementary Materials (sections A and D) online.

Submodel of cell dynamics. This submodel represents ODE 
system describing maturation, migration, death, and activation 
of the eosinophils with LTD4 and LTC4 as well as processes 
associated with the cells such as production/degradation of 
IL-5 and histamine (see processes 16–27, 29 and 30, 46–51, 
53, 58 and 59 in Supplementary Materials (section A, 
Figure A1) online). Parameters of the model have been iden-
tified on the basis of the ex vivo and in vivo experimental data 
measured for asthmatic patients and healthy subjects.18,31–35 
ODE system describing cell dynamics of eosinophils, rate 
equations, and values of parameters are presented in 
Supplementary Materials (sections A and E) online.

Submodel of the link among LT, histamine levels, and 
bronchial tone. This submodel allows us to couple LTD4, 
LTC4, and histamine concentrations produced by eosinophils 
with clinically measured endpoint such as FEV1. The sub-
model represents several algebraic expressions (Supple-
mentary Materials (section F) online) empirically describing 
level of bronchial smooth muscle contraction as a function 
of concentration of bronchoconstrictors such as LTD4, LTC4, 
and histamine. Parameters of the model have been identified 
on the basis of the ex vivo experimental data measured for 
guinea pigs and healthy subjects.36–38

The PK submodel. PK submodel parameters for zileuton and 
montelukast were estimated using data from refs. 39–41. The 
plasma PK of zileuton was described by a simple two-compart-
ment model. The plasma PK of montelukast was described 
by an one-compartment model. It has been assumed that 
intracellular concentration of zileuton is equal to that of free 
unbound concentration in plasma or airway interstitium. It 
has been also assumed that free unbound concentration of 
montelukast in airway interstitium is equal to that in plasma. 
The ODE system describing PK of zileuton and montelukast, 
rate equations, and values of parameters are presented in 
Supplementary Materials (sections A and G) online.

All parameters were estimated using Hooke–Jeeves method 
implemented in the DBSolve Optimum package (Institute for 
Systems Biology SPb, Moscow, Russia).42 Parameter identi-
fication was performed individually for each submodel by fit-
ting to literature data sets pertinent to the part of the system 
described by the submodel. The 95% confidential intervals 
were calculated for fitted parameters using method described 
by Motulsky43 (see Supplementary Materials online).
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