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Abstract
Numerous studies have shown that changes in environmental factors can significantly 
impact and shift the structure of phytoplankton communities in marine ecosystems. 
However, little is known about the association between the ecological stoichiometry 
of seawater nutrients and phytoplankton community diversity and stability in sub-
tropical bays. Therefore, we investigated the relationship between the phytoplankton 
community assemblage and seasonal variation in the Beibu Gulf, South China Sea. In 
this study, we found that the abundance of Bacillariophyceae in spring was relatively 
greater than in other seasons, whereas the abundance of Coscinodiscophyceae was 
relatively low in spring and winter but greatly increased in summer and autumn. Values 
of the alpha diversity indices gradually increased from spring to winter, revealing that 
seasonal variations shifted the phytoplankton community structure. The regression 
lines between the average variation degree and the Shannon index and Bray–Curtis 
dissimilarity values showed significantly positive correlations, indicating that high di-
versity was beneficial to maintaining community stability. In addition, the ecological 
stoichiometry of nutrients exhibited significantly positive associations with Shannon 
index and Bray–Curtis dissimilarity, demonstrating that ecological stoichiometry can 
significantly influence the alpha and beta diversity of phytoplankton communities. 
The C:N:P ratio was not statistically significantly correlated with average variation 
degree, suggesting that ecological stoichiometry rarely impacted the community 
stability. Temperature, nitrate, dissolved inorganic phosphorous, and total dissolved 
phosphorus were the main drivers of the phytoplankton community assemblage. The 
results of this study provide new perspectives about what influences phytoplankton 
community structure and the association between ecological stoichiometry, commu-
nity diversity, and stability in response to environmental changes.
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1  |  INTRODUC TION

Phytoplankton are the most important primary producers in marine 
ecosystems and play a crucial role in biogeochemical cycling and 
food webs (Field et al., 1998; Li et al., 2021). Phytoplankton are the 
first link in the trophic chain and perform the significant function of 
organic material transfer between all abiotic and biotic components 
of the oceanographic environment (Staniszewska et al., 2015). The 
highly diverse nature of marine phytoplankton helps maintain the 
ocean's ecological balance because these species contribute to sta-
bility of material and energy cycling in marine ecosystems (Kosek 
et al., 2016).

Phytoplankton freely live in marine seawater, and thus their com-
munity structure and diversity are easily susceptible to environmen-
tal perturbations (Kosek et al., 2016; Li et al., 2021; Liang et al., 2020). 
Temperature acts as an important environmental factor to affect the 
phytoplankton community structure. For example, it could regulate 
Antarctic phytoplankton community composition and size structure 
(Biggs et al., 2019). The general trend of phytoplankton succession 
and the community were interrupted due to the effects of elevated 
temperatures of thermal discharge from a power plant on coastal 
waters of the Bohai Sea off Qinhuangdao, China (Dong et al., 2021). 
Nutrient factors also play a crucial role in affecting the phytoplank-
ton community. Nutrient variables were found to significantly influ-
ence the phytoplankton community structure in every season in the 
estuary around Luoyuan Bay, China (Pan et al.,  2017). Microcosm 
experiments conducted in Sanya Bay in the northern South China 
Sea revealed that enhancement of dissolved organic carbon (DOC) 
content could lead to a shift in the phytoplankton community and 
composition (Liao et al., 2019). Seasonal variability of nitrogen con-
tent influenced and regulated phytoplankton community structure 
in the eastern Arabian Sea (Shetye et al.,  2019). Therefore, water 
temperature and nutrient content jointly influenced the marine 
phytoplankton community structure (Fu et al.,  2016; Patoucheas 
et al., 2021; Zhang et al., 2016).

These shifts in phytoplankton composition and structure in 
response to environmental disturbance result in two main types 
of deterministic and stochastic processes in aquatic ecosys-
tems (Bandyopadhyay et al.,  2008; Jang & Allen,  2015; Mandal & 
Banerjee, 2013; Xue et al., 2018). The community stability has been 
attributed principally to species diversity because the general con-
sensus is that biodiversity has positive effects on the community 
stability (Loreau & de Mazancourt,  2013; Vallina et al.,  2017; Xun 
et al., 2021). The community stability can be evaluated using average 
variation degree (AVD), which is calculated as the degree of deviation 

from the average value of the relative abundance of normally distrib-
uted operational taxonomic units (OTUs) in variable environmental 
conditions, and a low AVD value represents high community stabil-
ity (Xun et al., 2021). Similarly, phytoplankton community stability 
might be primarily determined by phytoplankton species diversity, 
which requires evaluation of the relationship between phytoplank-
ton diversity and stability in marine ecosystems. Meanwhile, assess-
ment of ecological stoichiometry (ES) mainly focuses on chemical 
elements (carbon (C), nitrogen (N), and phosphorous (P)) in com-
ponents as well as interactions and processes in ecosystems, and 
it is beneficial for understanding the effect of human activities on 
the balance and biogeochemical cycling of bio-elements in oceano-
graphic ecosystems (Babbin et al., 2014; Bradshaw et al., 2012; Chen 
et al., 2021). Consequently, the number of ES studies has increased 
rapidly in recent years (Sardans et al., 2021). For example, Hillebrand 
et al.  (2013) found that N:P ratios of phytoplankton decreased as 
their growth rate increased and variance decreased, which means 
that fast-growing phytoplankton contained more P and had a simpler 
elemental composition (Hillebrand et al., 2013; Sardans et al., 2021). 
However, little is known about the association between the ecologi-
cal stoichiometry of seawater nutrients and phytoplankton commu-
nity diversity and stability in subtropical bays.

To better understand the key factors that regulate shifts in phy-
toplankton structure and community stability at spatio-temporal 
scales, this study analyzed seawater samples from the subtropi-
cal coastal waters of Beibu Gulf during four seasons using high-
throughput sequencing technology in order to (a) evaluate changes 
in the community structure of marine phytoplankton among sea-
sons, (b) elucidate the potential relationships between phytoplank-
ton community stability and various environmental factors, and (c) 
uncover the key factors that impact phytoplankton community sta-
bility in this subtropical bay. Our hypothesis was that the ecological 
stoichiometry of seawater nutrients might influence phytoplankton 
community diversity and stability in the subtropical bays.

2  |  MATERIAL S AND METHODS

2.1  |  Study area and sample collection

The study was carried out in Maowei Sea, which is located in the 
coast of Beibu Gulf, northwest of South China Sea with subtropi-
cal climate. Figure S1 shows the specific locations of the sampling 
sites. GPS co-ordinates of five sampling sites are M1 (108°32′38″ E, 
21°50′8″ N), M2 (108°32′33″ E, 21°49′20″ N), M3 (108°32′30″ E, 
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21°48′7″ N), M4 (108°33′33″ E, 21°44′34″ N), and M5 (108°34′27″ 
E, 21°44′11″ N). Surface seawater samples used in this study were 
collected from a water depth of 0.5 m in the Maowei Sea using a ro-
sette of Niskin bottles on 10 July, 2017 (summer), 9 September, 2017 
(autumn), 11 December, 2017 (winter), and 10 March, 2018 (spring). 
Five seawater samples were collected at each of the five sampling 
sites. In total, 100 surface seawater samples were collected in the 
Maowei Sea during the study. Water temperature, pH, and salinity 
of each sample were measured using a portable meter (556 MPS; 
YSI, Yellow Springs, OH, USA). Following collection, samples were 
stored on ice for transport to the laboratory. For DNA extraction, 
5 L of surface seawater were filtered sequentially through a 200 μm 
nuclepore polycarbonate filter to remove debris and larger organ-
isms followed by a 0.22-μm Millipore filter. The 0.22-μm filters were 
stored at −20°C for subsequent analysis.

2.2  |  Environmental factors and nutrient analysis

Concentrations of nitrate (NO−

3
), nitrite (NO−

2
), ammonium (NH+

4
 ), 

and phosphate (PO4
3−) were measured using spectrophotomet-

ric and colorimetric methods (Han et al.,  2012). The chlorophyll a 
(Chl-a) concentration was measured using spectrophotometry 
(American Public Health Association (APHA),  1999). Total organic 
carbon (TOC) content was measured using a TOC analyzer (TOC-
VCPH). Chemical oxygen demand (COD) was detected using the 
alkaline KMnO4 method. Dissolved oxygen (DO) was measured 
by the Winkler method using a digital DO meter (HQ30d, HACH, 
USA) (Shriwastav et al., 2017). Total dissolved nitrogen (TDN) and 
total dissolved phosphorus (TDP) contents were determined using a 
Lachat Quickchem 8500 flow injection analyzer (HACH). Dissolved 
inorganic nitrogen (DIN) content was calculated by summing the 
concentrations of NO−

2
, NO−

3
, and NH+

4
. Dissolved inorganic phospho-

rus (DIP) level was estimated using the concentration of PO4
3−-P (Lai 

et al., 2014; Li et al., 2020). Seawater ES, including the ratios of C:N, 
C:P, N:P, and C:N:P, was calculated as molar ratios based on the TOC, 
TDN, and TDP. The results for the measured environmental param-
eters are shown in Table S1.

2.3  |  DNA extraction, PCR amplification, and high-
throughput sequencing

Total DNA was extracted from the filters using a DNeasy Power 
Water Kit (Qiagen) according to the manufacturer's proce-
dures. DNA yield and purity were measured using a NanoDrop 
Spectrophotometer (Thermo Fisher Scientific). Phytoplankton rbcL 
gene fragments (550 base pairs [bp]) were amplified with previ-
ously published rbcL primers (F:5′-GATGATGARAAYATTAACTC-3′; 
R:5′-ATTTGDCCACAGTGDATACCA-3′) (John et al.,  2007; Xu 
et al., 2015). For PCR, 2 μl of template DNA were aliquoted into il-
lustraTM PuReTaq Ready-To-GoTM PCR Beads (GE Healthcare, 
Waukesha, WI, USA) with 21.5 μl of PCR-grade molecular water and 

1.5 μl of primer for a total reaction volume of 25 μl. PCR was con-
ducted on a Bio-Rad thermocycler (Hercules, CA, USA) under the 
following conditions: 1 min initial denaturation at 95°C, 35 cycles 
of 30 s denaturation at 95°C, 30 s annealing at 52°C, 1 min elonga-
tion at 72°C, and a final extension for 10 min at 72°C. Throughout 
the DNA extraction process, ultrapure water, instead of a sample 
solution, served as a negative control to exclude the possibility of 
false-positive PCR results. Three technical replicates of the PCR 
reaction were conducted for each sample and prepared for MiSeq 
sequencing. The PCR products were purified using AMPure XT 
beads (Beckman Coulter Genomics). The reaction products were 
confirmed with 2% agarose gel electrophoresis and with a Nanodrop 
2000 Spectrophotometer (Thermo Fisher Scientific). The PCR prod-
ucts for sequencing were prepared using a TruSeq DNA kit (Illumina) 
according to the manufacturer's instructions. The products from all 
samples were mixed at equal molar amounts and sequenced using 
an Illumina Miseq sequencer at Lianchuan-Bio-Technology Co., Ltd.

Raw sequences were processed and verified using the soft-
ware package QIIME2 (Quality Insights Into Microbial Ecology) to 
remove sequences with primer mismatches or length < 275 bp, low-
quality reads (quality scores <30), primers, and barcode sequences 
(Caporaso et al., 2010; Rai et al., 2019). Chimeric sequences were 
identified and eliminated using UCHIME (Edgar et al.,  2011). The 
software was further subjected to OTU clustering based on 97% 
sequence similarity. The representative sequences were annotated 
using a local blastn program and the ribosomal database project da-
tabase (Release 11) (Cole et al.,  2014). Taxonomic assignments of 
phytoplankton were performed using an available rbcL sequence 
database generated from GenBank data. Sequencing data were 
obtained from all 100 samples, and a total of 1,687,350 sequences, 
with a mean of 16,874 ± 21,756 in each sample, were retained after 
removing low-quality reads (Table S2). The mean number of OTUs 
per sample was 298 ± 242 (Table S2). The coverage of sequencing 
samples was mostly >98% (Table  S2). All phytoplankton sequenc-
ing data in FASTQ format were deposited in GenBank under access 
numbers ranging from SAMN20371288 to SAMN20371387 and 
Bioproject number PRJNA749375.

2.4  |  Data and statistical analyses

To illustrate the scope of phytoplankton diversity, Good's cover-
age (C) was calculated as [1 –  (n/N)], where n is the number of 
OTUs that was observed once and N is the total number of OTUs in 
the sample. The statistical analyses in this study were mainly per-
formed in R with the vegan, picante, pheatmap, and psych' pack-
ages. Alpha and beta diversity, analysis of similarities (ANOSIM), 
and permutational multivariate analysis of variance (PERMANOVA) 
analyses were conducted using the vegan package, and the psych 
package was used for data correlation analysis. The difference 
analyses were conducted using one-way ANOVA. Correlation 
analyses were performed using Spearman's rank method. Alpha 
diversity was estimated using the Shannon, Simpson, Chao1, and 
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observed number indices. Community comparison of phytoplank-
ton assemblages (beta diversity) was conducted using Bray–Curtis 
distance and principal coordinate analysis (PCoA). Phytoplankton 
community stability was evaluated by AVD, which was calculated 
using the degree of deviation from the mean of the relative abun-
dance of normally distributed OTUs among different seasons (Xun 
et al.,  2021). Significant differences were defined as p < .05 or 
p < .01.

3  |  RESULTS

3.1  |  Abundance and spatial distribution of 
phytoplankton communities in Beibu gulf during four 
seasons

The abundance of phytoplankton taxa in the communities was 
analyzed at the class level (Figure S2). For all samples and all four 
seasons, Bacillariophyceae, Coscinodiscophyceae, Mediophyceae, 
Bangiophyceae, and Fragilariophyceae were the main abun-
dant species and primarily constituted the phytoplankton com-
munity structure in the Beibu Gulf. However, the phytoplankton 
composition showed characteristic changes in structure dur-
ing the different seasons. The abundance of Bacillariophyceae in 
spring was relatively greater than in other seasons, in which only 
some sampled sites displayed high abundance. The abundance of 
Coscinodiscophyceae in spring and winter was relatively low but 
greatly increased in summer and autumn, with mean percentages of 
44.9 ± 25.6% and 36.8 ± 35.3%, respectively. The mean abundance 
of Fragilariophyceae during the spring was relatively greater than in 
other seasons. The abundance of Bangiophyceae was significantly 

higher in the winter, with a mean of 10.2 ± 11.9%, compared with the 
other seasons. In addition, the mean abundance of Mediophyceae 
in autumn and winter was relatively greater than in spring and sum-
mer. Interestingly, a relatively high abundance of Eustigmatophyceae 
(19.5%) was observed station SP1 in the spring (Figure S2).

When analyzing alpha diversity, the Shannon diversity index of 
phytoplankton varied greatly from 5.15 to 0.23, with a mean value 
of 3.07 ± 1.11, among all of the samples (Table  S2). Values of the 
Simpson diversity index varied from 0.98 to 0.07, with a mean value 
of 0.78 ± 0.22, among all samples (Table  S2). The mean value and 
range of the Chao 1 index were 393.14 ± 282.32 and 1126.63 to 
44.00, respectively (Table S2). The Shannon and Chao 1 index values 
were relatively high, demonstrating that phytoplankton communi-
ties in different sampling areas were quite abundant. Interestingly, 
the alpha diversity values for the Shannon, Simpson, and Chao 1 
indices were highest in winter (Table S2). Moreover, all four alpha 
diversity indices had the highest median value in winter, which grad-
ually decreased from winter to spring (Figure 1).

The first two principal coordinates, PCo1 and PCo2, explained 
30.11% and 23.61% of the total variance, respectively (Figure  2). 
The ANOSIM (R = 0.595, p = .001) and PERMANOVA (R2 = 0.289, 
p = .001) tests also showed significant differences in phytoplankton 
community structure among the four seasons.

3.2  |  Relationship between AVD and Shannon 
index and Bray–Curtis dissimilarity in Beibu gulf 
during seasonal shifts

The relationships between AVD and the Shannon index and Bray–
Curtis dissimilarity are shown as Figure  3. AVD was strongly 

F I G U R E  1 Alpha diversity indices 
(Shannon, Simpson, Chao1, and observed 
number) for samples collected in spring, 
summer, autumn, and winter. The values 
represent the mean of five samples for 
each group.

Autumn Winter

1
2

3
4

5
Sh

an
no

n a
a

a

b

Summer Spring Winter

0.
2

0.
4

0.
6

0.
8

1.
0

Si
m

ps
on

a ab a b

Summer

Spring Winter

20
0

40
0

60
0

80
0

C
ha

o1

ac

a

bc

b

Summer  Spring   Winter

0
20

0
40

0
60

0
80

0
10

00
O

bs
er

ve
d 

N
um

be
r

ab a
b

c

  Summer

Spring Autumn

Autumn Autumn



    |  5 of 12XU et al.

positively correlated with Shannon index values (p < .001), and delta 
AVD was positively correlated with Bray–Curtis dissimilarity values 
(p < .001). These results show that AVD might be closely related to 
these metrics for the phytoplankton community.

3.3  |  Ecological stoichiometry effects on the 
phytoplankton community

The mean values of ES ratios (C:N, C:P, N:P, and C:N:P) were high-
est in summer, and they gradually decreased from summer to spring 
to their lowest values (Table  S1). The Shannon index values were 
significantly positively correlated with all four ratios as follows: C:N 
(p < .05), C:P (p < .05), N:P and C:N:P (p < .01) (Figure 4). All four ratios 
also were significantly positively correlated with Bray–Curtis dissim-
ilarity values (p < .001) (Figure 5). In contrast, AVD was negatively 
correlated with all four ratios, but the correlation was only signifi-
cantly negative for C:N (p < .05) (Figure S3).

3.4  |  Environmental factors that explain spatial 
variability in phytoplankton communities

The Mantel test and partial Mantel test revealed that environmental 
and biogeochemical factors and ratios of ES were significantly cor-
related with beta diversity of phytoplankton communities (Table 1). 
Salinity and TDP were significantly positively correlated with phy-
toplankton community beta diversity at the whole combined sam-
ple level and at the individual seasonal sampling level (Table  1). 
Generally, TDP, NO−

3
, DIP, and temperature were the main factors 

that drove the phytoplankton community diversity (Table 1).
Seawater properties (temperature, pH, salinity, Chl-a, dissolved 

oxygen, and COD), nutrients (NO−

2
, NO−

3
, NH+

4
, DIN, TDN, DIP, TDP, 

and TOC), and ratios of C:N, C:P, N:P, and C:N:P were able to ex-
plain approximately 75% of phytoplankton community variations 
(Figure 6). In addition, seawater properties, nutrient variables, and 
ratio values could independently account for 15%, 25%, and 13% 
of the total variation, respectively. Additionally, mutual interactions 

F I G U R E  2 PCoA results showing the phytoplankton community variations based on Bray–Curtis distance matrices. Samples from spring, 
summer, autumn, and winter are labeled with red dots, green squares, blue rhombi, and purple triangles, respectively
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between seawater properties and nutrient variables were respon-
sible for 12% of the variation, which was much higher than those 
between nutrients and ES ratios (2%) and seawater properties and 
ES ratios (3%).

4  |  DISCUSSION

In this study, we investigated variations in phytoplankton com-
munity structure in the subtropical Beibu Gulf area. We assessed 
phytoplankton community stability in response to environmental 
changes and identified the main drivers of the observed changes 
community structure. Bacillariophyceae, Coscinodiscophyceae, 
Mediophyceae, Fragilariophyceae, and Bangiophyceae were the 
dominant phytoplankton classes. Diatoms represent the richest 
group of autotrophic phytoplankton present in fresh, brackish, 
and marine waters worldwide, and they may be responsible for 
20% of global photosynthetic carbon fixation in marine ecosys-
tems (Mann et al.,  2017). In our study, the greatest mean abun-
dance of Bacillariophyceae occurred in spring and winter, which 
might be due to the relatively lower water temperature in these 
seasons in the Beibu Gulf area. Gogoi et al.  (2021) also reported 
a negative correlation between Bacillariophyceae and water 
temperature in Sundarban waters. Interestingly, we found that 
mean abundance of Coscinodiscophyceae was higher in summer 
and autumn when the seawater temperature was elevated com-
pared with other seasons. Similarly, in their study of the vari-
ations of phytoplankton community diversity in four different 
seasons in the coastal East China Sea, Xu et al. (2015) found that 
Coscinodiscophyceae diatoms dominated the summer samples. 
Thus, relatively high water temperature might be most suitable 

for the growth of Coscinodiscophyceae. Phytoplankton commu-
nity structure and diversity were governed by dominant species as 
long as these species were not influenced by environmental dis-
turbances. Compensatory growth of rare species occurred when 
environmental perturbations inhibited the growth of dominant 
species (Flöder et al., 2010). Abundances of these dominant spe-
cies in our study varied in different seasons due to the environ-
mental changes, which impacted the phytoplankton structure and 
community stability of the ecosystem (Flöder et al., 2010).

Values of all four of the alpha diversity indices gradually in-
creased from spring to winter and exhibited the highest values in 
winter. Similarly, the Shannon index values for phytoplankton di-
versity were highest in November during four seasons in coastal 
waters of the Bohai Sea off Qinhuangdao, China (Dong et al., 2021). 
Yu et al. (2019) also found that the Shannon and Chao1 index val-
ues were both highest in November among seasonal groups in the 
North China Sea, indicating the highest diversity during the win-
ter. Consistently, seawater samples from the East China Sea had a 
low Shannon index in spring, and the lowest value was observed in 
summer (Xu et al., 2015). Gao et al. (2013) also reported that the 
Shannon index values for the phytoplankton communities in the 
southern Yellow Sea were lowest in spring. The highest Shannon 
index value occurred in winter in the subtropical Beibu Gulf area 
and in autumn in the coastal East China, possibly because the sea 
temperatures during winter in Beibu Gulf and autumn in higher 
latitude East China were similar and suitable for phytoplankton 
growth and reproduction (Xu et al.,  2015). In our study, the di-
versity of the phytoplankton community sharply decreased from 
winter to spring as the temperature decreased, which might be be-
cause some phytoplankton could not grow or survive at relatively 
low temperatures in the Beibu Gulf area (Yu et al., 2019). These 

F I G U R E  3 Results of linear regression analysis of AVD vs. Shannon index values (a) and of delta AVD vs. Bray–Curtis dissimilarity values 
(b). Straight lines represent linear relationships, and p-values indicate significant differences
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results demonstrate that phytoplankton community structure dis-
plays specific characteristics and variations during the seasonal 
transformation in the Beibu Gulf.

Understanding the relationship between community diversity 
and stability under environmental perturbations in ecosystems is a 
crucial issue and is the subject of a long-standing debate (Guelzow 
et al.,  2017; Loreau & de Mazancourt,  2013). Although there may 
be a single-species group that shows unstable dynamic changes 
in a diverse community, the consensus is that that diversity en-
hances community stability in ecosystems (McCann, 2000; Ptacnik 
et al.,  2008). For marine phytoplankton, species composition and 
richness were important for increases of phytoplankton community 
stability (Corcoran & Boeing, 2012; Guelzow et al., 2017). Thus, our 
results indicated that higher alpha and beta diversity was benefi-
cial to improving phytoplankton community stability in the Beibu 
Gulf area, as a more diverse phytoplankton community allowed 

more variable compositional responses to environmental fluctu-
ations (Allan et al.,  2011; Loreau & de Mazancourt,  2013; Vallina 
et al., 2017).

Ecological stoichiometry is a powerful tool that allowed us to 
analyze basic biogeochemical patterns and cycling in marine ecosys-
tems (Pujo-Pay et al.,  2011). Our results demonstrate that ES can 
significantly influence alpha and beta diversity of the phytoplankton 
community and that it was the main influence of the phytoplankton 
community assemblage in the subtropical Beibu Gulf. In contrast, He 
et al. (2013) found that the N:P ratio was negatively correlated with 
the phytoplankton diversity index in the spring near Weizhou Island 
in the northern South China Sea. N:P ratios were also negatively cor-
related with species richness of the entire phytoplankton commu-
nity in the Cau Hai Lagoon in Vietnam (Nhu et al., 2019). A possible 
explanation for these inconsistent results is that the positive correla-
tion between the N:P ratio and phytoplankton diversity in our study 

F I G U R E  4 Results of linear regression analysis between the Shannon index values and nutrient ES of seawater. (a) Shannon index vs. C:N; 
(b) Shannon index vs. C:P; (c) Shannon index vs. N:P; (d) Shannon index vs. C:N:P. straight lines represent linear relationships, and p-values 
indicate significant differences
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was based on evaluation of samples collected on a spatio-temporal 
scale (different sites, four seasons), whereas the results from the 
other studies were obtained during one individual season or several 
months within a short time period. Additionally, the high level of 
anthropogenic activities in Beibu Gulf intensively accelerates nutri-
ent inputs into the coastal ecosystems, resulting in a eutrophication 
problem (Li et al., 2020). Therefore, studies that consider different 
environmental, nutrient, and spatio-temporal scales in different 
areas should be conducted. In our study, we also found that ratios 
of C:N, C:P, N:P, and C:N:P were highest in summer, which may have 
been because the high growth rate of phytoplankton generated high 
biomass production under relatively high temperatures and because 
the massive amount of nutrients in the seawater were absorbed and 
utilized by the phytoplankton community (Zhou et al., 2021). We also 
found that the C:N ratio was significantly negatively correlated with 
AVD, whereas the negative correlations of C:P, N:P, and C:N:P ratios 
with AVD were not statistically significant. This result suggests that 

ES rarely impacted the stability of the phytoplankton community in 
the Beibu Gulf area.

Phytoplankton communities are susceptible to environmental 
disturbance. Temperature is an important environment factor that 
influences phytoplankton growth, metabolism, production, and 
community structure (Dong et al., 2021). Similar to our results, Lv 
et al.  (2014) and Gogoi et al.  (2021) both found that temperature 
was one of the crucial deterministic parameters impacting the phy-
toplankton community structure. The Netravathi–Gurupura estuary 
surrounded by several river inlets is similar with our study area and 
therefore is easily influenced by discharges and effluent nutrients 
from the rivers (Kumar et al., 2020). In agreement with our results, 
a significant positive correlation between phytoplankton composi-
tion and NO−

3
 content was also observed, indicating that NO−

3
 was 

an important driver of phytoplankton community structure (Kumar 
et al., 2020). DIP is frequently the limiting nutrient for phytoplank-
ton growth in marine ecosystems and therefore is a key driver of 

F I G U R E  5 Results of linear regression analysis between Bray–Curtis dissimilarity values and nutrient ES of seawater. (a) Bray–Curtis 
dissimilarity vs. the delta ratio of C:N; (b) Bray–Curtis dissimilarity vs. the delta ratio of C:P; (c) Bray–Curtis dissimilarity vs. the delta ratio 
of N:P; (d) Bray–Curtis dissimilarity vs. the delta ratio of C:N:P. straight lines represent linear relationships, and p-values indicate significant 
differences.
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phytoplankton community variation (Yuan et al.,  2018; Zhang 
et al.,  2020). Overall, our results demonstrate that these environ-
mental and nutrient factors are essential to phytoplankton growth, 
metabolism, and biomass production and therefore could signifi-
cantly shape the pattern of phytoplankton communities in the sub-
tropical Beibu Gulf.

5  |  CONCLUSIONS

Our results demonstrate that phytoplankton community structure 
undergoes seasonal variations in the Beibu Gulf. The low water 
temperatures in winter and spring seem to favor the growth of 
Bacillariophyceae, whereas the high temperatures in summer and 
autumn seem to favor Coscinodiscophyceae growth. Furthermore, 
values of all four of the alpha diversity indices gradually increased 
from spring to winter, indicating that the seasonal change shifted the 
community structure. The significantly positive correlations between 
AVD and Shannon index and Bray–Curtis dissimilarity values dem-
onstrated that a more diverse phytoplankton community conferred 
more flexible compositional responses to environmental fluctuations. 
Significant positive associations between Shannon index and Bray–
Curtis dissimilarity values and ratios of C:N:P indicated that the nutri-
ent ES of seawater could significantly influence the alpha and beta 
diversity of the phytoplankton community. Additionally, temperature 
and NO3

−, DIP, and TDP contents were the main environmental and 
nutrient drivers of the phytoplankton community assemblages and 
patterns in the subtropical Beibu Gulf. More studies of the mecha-
nisms underlying the relationships between community stability and 

diversity and how environmental and nutrient factors influencing the 
phytoplankton community assemblages are necessary.
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