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Abstract
Numerous	studies	have	shown	that	changes	in	environmental	factors	can	significantly	
impact	and	shift	the	structure	of	phytoplankton	communities	in	marine	ecosystems.	
However,	little	is	known	about	the	association	between	the	ecological	stoichiometry	
of	 seawater	nutrients	and	phytoplankton	community	diversity	and	stability	 in	 sub-
tropical	bays.	Therefore,	we	investigated	the	relationship	between	the	phytoplankton	
community	assemblage	and	seasonal	variation	in	the	Beibu	Gulf,	South	China	Sea.	In	
this	study,	we	found	that	the	abundance	of	Bacillariophyceae	in	spring	was	relatively	
greater	than	in	other	seasons,	whereas	the	abundance	of	Coscinodiscophyceae	was	
relatively	low	in	spring	and	winter	but	greatly	increased	in	summer	and	autumn.	Values	
of	the	alpha	diversity	indices	gradually	increased	from	spring	to	winter,	revealing	that	
seasonal	variations	shifted	the	phytoplankton	community	structure.	The	regression	
lines	between	the	average	variation	degree	and	the	Shannon	index	and	Bray–	Curtis	
dissimilarity	values	showed	significantly	positive	correlations,	indicating	that	high	di-
versity	was	beneficial	to	maintaining	community	stability.	In	addition,	the	ecological	
stoichiometry	of	nutrients	exhibited	significantly	positive	associations	with	Shannon	
index	and	Bray–	Curtis	dissimilarity,	demonstrating	that	ecological	stoichiometry	can	
significantly	 influence	 the	 alpha	 and	beta	 diversity	 of	 phytoplankton	 communities.	
The	C:N:P	 ratio	was	not	 statistically	 significantly	 correlated	with	 average	variation	
degree,	 suggesting	 that	 ecological	 stoichiometry	 rarely	 impacted	 the	 community	
stability.	Temperature,	nitrate,	dissolved	inorganic	phosphorous,	and	total	dissolved	
phosphorus	were	the	main	drivers	of	the	phytoplankton	community	assemblage.	The	
results	of	this	study	provide	new	perspectives	about	what	influences	phytoplankton	
community	structure	and	the	association	between	ecological	stoichiometry,	commu-
nity	diversity,	and	stability	in	response	to	environmental	changes.
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1  |  INTRODUC TION

Phytoplankton	are	the	most	important	primary	producers	in	marine	
ecosystems	 and	 play	 a	 crucial	 role	 in	 biogeochemical	 cycling	 and	
food	webs	(Field	et	al.,	1998; Li et al., 2021).	Phytoplankton	are	the	
first	link	in	the	trophic	chain	and	perform	the	significant	function	of	
organic	material	transfer	between	all	abiotic	and	biotic	components	
of	the	oceanographic	environment	(Staniszewska	et	al.,	2015). The 
highly	 diverse	 nature	of	marine	 phytoplankton	helps	maintain	 the	
ocean's	ecological	balance	because	these	species	contribute	to	sta-
bility	 of	material	 and	 energy	 cycling	 in	marine	 ecosystems	 (Kosek	
et al., 2016).

Phytoplankton	freely	live	in	marine	seawater,	and	thus	their	com-
munity	structure	and	diversity	are	easily	susceptible	to	environmen-
tal	perturbations	(Kosek	et	al.,	2016; Li et al., 2021; Liang et al., 2020). 
Temperature	acts	as	an	important	environmental	factor	to	affect	the	
phytoplankton	community	structure.	For	example,	it	could	regulate	
Antarctic	phytoplankton	community	composition	and	size	structure	
(Biggs	et	al.,	2019).	The	general	trend	of	phytoplankton	succession	
and	the	community	were	interrupted	due	to	the	effects	of	elevated	
temperatures	 of	 thermal	 discharge	 from	 a	 power	 plant	 on	 coastal	
waters	of	the	Bohai	Sea	off	Qinhuangdao,	China	(Dong	et	al.,	2021). 
Nutrient	factors	also	play	a	crucial	role	in	affecting	the	phytoplank-
ton	community.	Nutrient	variables	were	found	to	significantly	influ-
ence	the	phytoplankton	community	structure	in	every	season	in	the	
estuary	 around	 Luoyuan	Bay,	China	 (Pan	 et	 al.,	 2017).	Microcosm	
experiments	conducted	 in	Sanya	Bay	 in	 the	northern	South	China	
Sea	revealed	that	enhancement	of	dissolved	organic	carbon	(DOC)	
content	could	 lead	to	a	shift	 in	the	phytoplankton	community	and	
composition	(Liao	et	al.,	2019).	Seasonal	variability	of	nitrogen	con-
tent	 influenced	and	regulated	phytoplankton	community	structure	
in	 the	 eastern	Arabian	 Sea	 (Shetye	 et	 al.,	2019).	 Therefore,	water	
temperature	 and	 nutrient	 content	 jointly	 influenced	 the	 marine	
phytoplankton	 community	 structure	 (Fu	 et	 al.,	 2016;	 Patoucheas	
et al., 2021; Zhang et al., 2016).

These	 shifts	 in	 phytoplankton	 composition	 and	 structure	 in	
response	 to	 environmental	 disturbance	 result	 in	 two	 main	 types	
of	 deterministic	 and	 stochastic	 processes	 in	 aquatic	 ecosys-
tems	 (Bandyopadhyay	 et	 al.,	 2008;	 Jang	&	Allen,	2015;	Mandal	&	
Banerjee,	2013;	Xue	et	al.,	2018).	The	community	stability	has	been	
attributed	principally	to	species	diversity	because	the	general	con-
sensus	 is	 that	 biodiversity	 has	 positive	 effects	 on	 the	 community	
stability	 (Loreau	&	de	Mazancourt,	2013; Vallina et al., 2017;	Xun	
et al., 2021).	The	community	stability	can	be	evaluated	using	average	
variation	degree	(AVD),	which	is	calculated	as	the	degree	of	deviation	

from	the	average	value	of	the	relative	abundance	of	normally	distrib-
uted	operational	taxonomic	units	(OTUs)	in	variable	environmental	
conditions,	and	a	low	AVD	value	represents	high	community	stabil-
ity	 (Xun	et	al.,	2021).	Similarly,	phytoplankton	community	stability	
might	be	primarily	determined	by	phytoplankton	species	diversity,	
which	requires	evaluation	of	the	relationship	between	phytoplank-
ton	diversity	and	stability	in	marine	ecosystems.	Meanwhile,	assess-
ment	 of	 ecological	 stoichiometry	 (ES)	mainly	 focuses	 on	 chemical	
elements	 (carbon	 (C),	 nitrogen	 (N),	 and	 phosphorous	 (P))	 in	 com-
ponents	 as	well	 as	 interactions	 and	 processes	 in	 ecosystems,	 and	
it	 is	beneficial	 for	understanding	the	effect	of	human	activities	on	
the	balance	and	biogeochemical	cycling	of	bio-	elements	in	oceano-
graphic	ecosystems	(Babbin	et	al.,	2014; Bradshaw et al., 2012; Chen 
et al., 2021).	Consequently,	the	number	of	ES	studies	has	increased	
rapidly	in	recent	years	(Sardans	et	al.,	2021).	For	example,	Hillebrand	
et	 al.	 (2013)	 found	 that	N:P	 ratios	of	 phytoplankton	decreased	 as	
their	 growth	 rate	 increased	and	variance	decreased,	which	means	
that	fast-	growing	phytoplankton	contained	more	P	and	had	a	simpler	
elemental	composition	(Hillebrand	et	al.,	2013;	Sardans	et	al.,	2021). 
However,	little	is	known	about	the	association	between	the	ecologi-
cal	stoichiometry	of	seawater	nutrients	and	phytoplankton	commu-
nity	diversity	and	stability	in	subtropical	bays.

To	better	understand	the	key	factors	that	regulate	shifts	in	phy-
toplankton	 structure	 and	 community	 stability	 at	 spatio-	temporal	
scales,	 this	 study	 analyzed	 seawater	 samples	 from	 the	 subtropi-
cal	 coastal	 waters	 of	 Beibu	 Gulf	 during	 four	 seasons	 using	 high-	
throughput	sequencing	technology	in	order	to	(a)	evaluate	changes	
in	 the	 community	 structure	 of	marine	 phytoplankton	 among	 sea-
sons,	(b)	elucidate	the	potential	relationships	between	phytoplank-
ton	community	stability	and	various	environmental	factors,	and	(c)	
uncover	the	key	factors	that	impact	phytoplankton	community	sta-
bility	in	this	subtropical	bay.	Our	hypothesis	was	that	the	ecological	
stoichiometry	of	seawater	nutrients	might	influence	phytoplankton	
community	diversity	and	stability	in	the	subtropical	bays.

2  |  MATERIAL S AND METHODS

2.1  |  Study area and sample collection

The	study	was	carried	out	 in	Maowei	Sea,	which	 is	 located	 in	 the	
coast	of	Beibu	Gulf,	 northwest	of	South	China	Sea	with	 subtropi-
cal	climate.	Figure	S1	shows	the	specific	 locations	of	the	sampling	
sites.	GPS	co-	ordinates	of	five	sampling	sites	are	M1	(108°32′38″	E,	
21°50′8″	N),	M2	(108°32′33″	E,	21°49′20″	N),	M3	(108°32′30″	E,	
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21°48′7″	N),	M4	(108°33′33″	E,	21°44′34″	N),	and	M5	(108°34′27″	
E,	21°44′11″	N).	Surface	seawater	samples	used	in	this	study	were	
collected	from	a	water	depth	of	0.5	m	in	the	Maowei	Sea	using	a	ro-
sette	of	Niskin	bottles	on	10	July,	2017	(summer),	9	September,	2017	
(autumn),	11	December,	2017	(winter),	and	10	March,	2018	(spring).	
Five	seawater	samples	were	collected	at	each	of	the	five	sampling	
sites.	 In	total,	100	surface	seawater	samples	were	collected	 in	the	
Maowei	Sea	during	the	study.	Water	temperature,	pH,	and	salinity	
of	 each	 sample	were	measured	using	a	portable	meter	 (556	MPS;	
YSI,	Yellow	Springs,	OH,	USA).	Following	collection,	samples	were	
stored	on	 ice	 for	 transport	 to	the	 laboratory.	For	DNA	extraction,	
5	L	of	surface	seawater	were	filtered	sequentially	through	a	200 μm	
nuclepore	polycarbonate	 filter	 to	 remove	debris	and	 larger	organ-
isms	followed	by	a	0.22-	μm	Millipore	filter.	The	0.22-	μm	filters	were	
stored	at	−20°C	for	subsequent	analysis.

2.2  |  Environmental factors and nutrient analysis

Concentrations	 of	 nitrate	 (NO−

3
),	 nitrite	 (NO−

2
),	 ammonium	 (NH+

4
 ),	

and	 phosphate	 (PO4
3−)	 were	 measured	 using	 spectrophotomet-

ric	 and	 colorimetric	methods	 (Han	et	 al.,	2012). The chlorophyll a 
(Chl-	a)	 concentration	 was	 measured	 using	 spectrophotometry	
(American	 Public	Health	 Association	 (APHA),	1999). Total organic 
carbon	 (TOC)	 content	was	measured	 using	 a	 TOC	 analyzer	 (TOC-	
VCPH).	 Chemical	 oxygen	 demand	 (COD)	 was	 detected	 using	 the	
alkaline KMnO4	 method.	 Dissolved	 oxygen	 (DO)	 was	 measured	
by	 the	Winkler	method	using	 a	digital	DO	meter	 (HQ30d,	HACH,	
USA)	 (Shriwastav	et	al.,	2017).	Total	dissolved	nitrogen	 (TDN)	and	
total	dissolved	phosphorus	(TDP)	contents	were	determined	using	a	
Lachat	Quickchem	8500	flow	injection	analyzer	(HACH).	Dissolved	
inorganic	 nitrogen	 (DIN)	 content	 was	 calculated	 by	 summing	 the	
concentrations	of	NO−

2
, NO−

3
, and NH+

4
. Dissolved inorganic phospho-

rus	(DIP)	level	was	estimated	using	the	concentration	of	PO4
3−-	P	(Lai	

et al., 2014; Li et al., 2020).	Seawater	ES,	including	the	ratios	of	C:N,	
C:P,	N:P,	and	C:N:P,	was	calculated	as	molar	ratios	based	on	the	TOC,	
TDN,	and	TDP.	The	results	for	the	measured	environmental	param-
eters	are	shown	in	Table	S1.

2.3  |  DNA extraction, PCR amplification, and high- 
throughput sequencing

Total	 DNA	was	 extracted	 from	 the	 filters	 using	 a	 DNeasy	 Power	
Water	 Kit	 (Qiagen)	 according	 to	 the	 manufacturer's	 proce-
dures.	 DNA	 yield	 and	 purity	 were	 measured	 using	 a	 NanoDrop	
Spectrophotometer	 (Thermo	Fisher	Scientific).	Phytoplankton	 rbcL 
gene	 fragments	 (550	 base	 pairs	 [bp])	 were	 amplified	 with	 previ-
ously	published	 rbcL	primers	 (F:5′-	GATGATGARAAYATTAACTC-	3′;	
R:5′-	ATTTGDCCACAGTGDATACCA-	3′)	 (John	 et	 al.,	 2007;	 Xu	
et al., 2015).	For	PCR,	2	μl	of	template	DNA	were	aliquoted	into	il-
lustraTM	 PuReTaq	 Ready-	To-	GoTM	 PCR	 Beads	 (GE	 Healthcare,	
Waukesha,	WI,	USA)	with	21.5	μl	of	PCR-	grade	molecular	water	and	

1.5 μl	of	primer	for	a	total	reaction	volume	of	25 μl.	PCR	was	con-
ducted	on	a	Bio-	Rad	 thermocycler	 (Hercules,	CA,	USA)	under	 the	
following	 conditions:	 1	min	 initial	 denaturation	 at	 95°C,	 35 cycles	
of	30 s	denaturation	at	95°C,	30 s	annealing	at	52°C,	1	min	elonga-
tion	at	72°C,	and	a	final	extension	for	10	min	at	72°C.	Throughout	
the	DNA	extraction	 process,	 ultrapure	water,	 instead	of	 a	 sample	
solution,	 served	as	a	negative	control	 to	exclude	the	possibility	of	
false-	positive	 PCR	 results.	 Three	 technical	 replicates	 of	 the	 PCR	
reaction	were	conducted	for	each	sample	and	prepared	for	MiSeq	
sequencing.	 The	 PCR	 products	 were	 purified	 using	 AMPure	 XT	
beads	 (Beckman	 Coulter	 Genomics).	 The	 reaction	 products	 were	
confirmed	with	2%	agarose	gel	electrophoresis	and	with	a	Nanodrop	
2000	Spectrophotometer	(Thermo	Fisher	Scientific).	The	PCR	prod-
ucts	for	sequencing	were	prepared	using	a	TruSeq	DNA	kit	(Illumina)	
according	to	the	manufacturer's	instructions.	The	products	from	all	
samples	were	mixed	at	equal	molar	amounts	and	sequenced	using	
an	Illumina	Miseq	sequencer	at	Lianchuan-	Bio-	Technology	Co.,	Ltd.

Raw	 sequences	 were	 processed	 and	 verified	 using	 the	 soft-
ware	package	QIIME2	 (Quality	 Insights	 Into	Microbial	 Ecology)	 to	
remove	sequences	with	primer	mismatches	or	length < 275 bp,	low-	
quality	reads	(quality	scores	<30),	primers,	and	barcode	sequences	
(Caporaso	et	al.,	2010; Rai et al., 2019).	Chimeric	 sequences	were	
identified	 and	 eliminated	 using	 UCHIME	 (Edgar	 et	 al.,	 2011). The 
software	was	 further	 subjected	 to	OTU	 clustering	 based	 on	 97%	
sequence	similarity.	The	representative	sequences	were	annotated	
using	a	local	blastn	program	and	the	ribosomal	database	project	da-
tabase	 (Release	 11)	 (Cole	 et	 al.,	2014).	 Taxonomic	 assignments	 of	
phytoplankton	 were	 performed	 using	 an	 available	 rbcL	 sequence	
database	 generated	 from	 GenBank	 data.	 Sequencing	 data	 were	
obtained	from	all	100	samples,	and	a	total	of	1,687,350	sequences,	
with	a	mean	of	16,874 ± 21,756	in	each	sample,	were	retained	after	
removing	 low-	quality	reads	 (Table	S2).	The	mean	number	of	OTUs	
per	 sample	was	298 ± 242	 (Table	S2).	The	coverage	of	 sequencing	
samples	was	mostly	>98%	 (Table	 S2).	All	 phytoplankton	 sequenc-
ing	data	in	FASTQ	format	were	deposited	in	GenBank	under	access	
numbers	 ranging	 from	 SAMN20371288	 to	 SAMN20371387	 and	
Bioproject	number	PRJNA749375.

2.4  |  Data and statistical analyses

To	 illustrate	the	scope	of	phytoplankton	diversity,	Good's	cover-
age	 (C)	was	 calculated	 as	 [1	 –		 (n/N)],	 where	 n	 is	 the	 number	 of	
OTUs	that	was	observed	once	and	N	is	the	total	number	of	OTUs	in	
the	sample.	The	statistical	analyses	in	this	study	were	mainly	per-
formed	in	R	with	the	vegan,	picante,	pheatmap,	and	psych'	pack-
ages.	Alpha	and	beta	diversity,	analysis	of	similarities	 (ANOSIM),	
and	permutational	multivariate	analysis	of	variance	(PERMANOVA)	
analyses	were	conducted	using	the	vegan	package,	and	the	psych	
package	 was	 used	 for	 data	 correlation	 analysis.	 The	 difference	
analyses	 were	 conducted	 using	 one-	way	 ANOVA.	 Correlation	
analyses	were	 performed	 using	 Spearman's	 rank	method.	 Alpha	
diversity	was	estimated	using	the	Shannon,	Simpson,	Chao1,	and	
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observed	number	indices.	Community	comparison	of	phytoplank-
ton	assemblages	(beta	diversity)	was	conducted	using	Bray–	Curtis	
distance	and	principal	coordinate	analysis	(PCoA).	Phytoplankton	
community	stability	was	evaluated	by	AVD,	which	was	calculated	
using	the	degree	of	deviation	from	the	mean	of	the	relative	abun-
dance	of	normally	distributed	OTUs	among	different	seasons	(Xun	
et al., 2021).	 Significant	 differences	 were	 defined	 as	 p < .05	 or	
p < .01.

3  |  RESULTS

3.1  |  Abundance and spatial distribution of 
phytoplankton communities in Beibu gulf during four 
seasons

The	 abundance	 of	 phytoplankton	 taxa	 in	 the	 communities	 was	
analyzed	at	 the	class	 level	 (Figure	S2).	For	all	 samples	and	all	 four	
seasons, Bacillariophyceae, Coscinodiscophyceae, Mediophyceae, 
Bangiophyceae,	 and	 Fragilariophyceae	 were	 the	 main	 abun-
dant	 species	 and	 primarily	 constituted	 the	 phytoplankton	 com-
munity	 structure	 in	 the	 Beibu	 Gulf.	 However,	 the	 phytoplankton	
composition	 showed	 characteristic	 changes	 in	 structure	 dur-
ing	 the	 different	 seasons.	 The	 abundance	 of	 Bacillariophyceae	 in	
spring was relatively greater than in other seasons, in which only 
some	 sampled	 sites	 displayed	 high	 abundance.	 The	 abundance	 of	
Coscinodiscophyceae	 in	 spring	 and	 winter	 was	 relatively	 low	 but	
greatly	increased	in	summer	and	autumn,	with	mean	percentages	of	
44.9 ± 25.6%	and	36.8 ± 35.3%,	respectively.	The	mean	abundance	
of	Fragilariophyceae	during	the	spring	was	relatively	greater	than	in	
other	 seasons.	The	abundance	of	Bangiophyceae	was	significantly	

higher	in	the	winter,	with	a	mean	of	10.2 ± 11.9%,	compared	with	the	
other	seasons.	 In	addition,	 the	mean	abundance	of	Mediophyceae	
in	autumn	and	winter	was	relatively	greater	than	in	spring	and	sum-
mer.	Interestingly,	a	relatively	high	abundance	of	Eustigmatophyceae	
(19.5%)	was	observed	station	SP1	in	the	spring	(Figure	S2).

When	analyzing	alpha	diversity,	the	Shannon	diversity	index	of	
phytoplankton	varied	greatly	from	5.15	to	0.23,	with	a	mean	value	
of	 3.07 ± 1.11,	 among	 all	 of	 the	 samples	 (Table	 S2).	 Values	 of	 the	
Simpson	diversity	index	varied	from	0.98	to	0.07,	with	a	mean	value	
of	 0.78 ± 0.22,	 among	 all	 samples	 (Table	 S2).	 The	mean	 value	 and	
range	 of	 the	 Chao	 1	 index	were	 393.14 ± 282.32	 and	 1126.63	 to	
44.00,	respectively	(Table	S2).	The	Shannon	and	Chao	1	index	values	
were	 relatively	 high,	 demonstrating	 that	 phytoplankton	 communi-
ties	 in	different	sampling	areas	were	quite	abundant.	 Interestingly,	
the	 alpha	 diversity	 values	 for	 the	 Shannon,	 Simpson,	 and	 Chao	 1	
indices	were	highest	 in	winter	 (Table	S2).	Moreover,	 all	 four	alpha	
diversity	indices	had	the	highest	median	value	in	winter,	which	grad-
ually	decreased	from	winter	to	spring	(Figure 1).

The	 first	 two	principal	 coordinates,	PCo1	and	PCo2,	explained	
30.11%	 and	 23.61%	 of	 the	 total	 variance,	 respectively	 (Figure 2). 
The	ANOSIM	(R = 0.595, p =	.001)	and	PERMANOVA	(R2 =	0.289,	
p =	.001)	tests	also	showed	significant	differences	in	phytoplankton	
community	structure	among	the	four	seasons.

3.2  |  Relationship between AVD and Shannon 
index and Bray– Curtis dissimilarity in Beibu gulf 
during seasonal shifts

The	relationships	between	AVD	and	the	Shannon	index	and	Bray–	
Curtis	 dissimilarity	 are	 shown	 as	 Figure 3.	 AVD	 was	 strongly	

F I G U R E  1 Alpha	diversity	indices	
(Shannon,	Simpson,	Chao1,	and	observed	
number)	for	samples	collected	in	spring,	
summer,	autumn,	and	winter.	The	values	
represent	the	mean	of	five	samples	for	
each	group.
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positively	correlated	with	Shannon	index	values	(p < .001),	and	delta	
AVD	was	positively	correlated	with	Bray–	Curtis	dissimilarity	values	
(p < .001).	These	results	show	that	AVD	might	be	closely	related	to	
these	metrics	for	the	phytoplankton	community.

3.3  |  Ecological stoichiometry effects on the 
phytoplankton community

The	mean	values	of	ES	ratios	(C:N,	C:P,	N:P,	and	C:N:P)	were	high-
est	in	summer,	and	they	gradually	decreased	from	summer	to	spring	
to	 their	 lowest	 values	 (Table	 S1).	 The	 Shannon	 index	 values	were	
significantly	positively	correlated	with	all	four	ratios	as	follows:	C:N	
(p < .05),	C:P	(p < .05),	N:P	and	C:N:P	(p < .01)	(Figure 4).	All	four	ratios	
also	were	significantly	positively	correlated	with	Bray–	Curtis	dissim-
ilarity	values	 (p < .001)	 (Figure 5).	 In	 contrast,	AVD	was	negatively	
correlated	with	all	 four	ratios,	but	the	correlation	was	only	signifi-
cantly	negative	for	C:N	(p < .05)	(Figure	S3).

3.4  |  Environmental factors that explain spatial 
variability in phytoplankton communities

The	Mantel	test	and	partial	Mantel	test	revealed	that	environmental	
and	biogeochemical	factors	and	ratios	of	ES	were	significantly	cor-
related	with	beta	diversity	of	phytoplankton	communities	(Table 1). 
Salinity	and	TDP	were	significantly	positively	correlated	with	phy-
toplankton	community	beta	diversity	at	the	whole	combined	sam-
ple	 level	 and	 at	 the	 individual	 seasonal	 sampling	 level	 (Table 1). 
Generally,	TDP,	NO−

3
,	DIP,	and	temperature	were	the	main	factors	

that	drove	the	phytoplankton	community	diversity	(Table 1).
Seawater	properties	(temperature,	pH,	salinity,	Chl-	a, dissolved 

oxygen,	and	COD),	nutrients	(NO−

2
, NO−

3
, NH+

4
,	DIN,	TDN,	DIP,	TDP,	

and	TOC),	 and	 ratios	of	C:N,	C:P,	N:P,	 and	C:N:P	were	able	 to	ex-
plain	 approximately	 75%	 of	 phytoplankton	 community	 variations	
(Figure 6).	 In	addition,	seawater	properties,	nutrient	variables,	and	
ratio	 values	 could	 independently	 account	 for	 15%,	 25%,	 and	13%	
of	the	total	variation,	respectively.	Additionally,	mutual	interactions	

F I G U R E  2 PCoA	results	showing	the	phytoplankton	community	variations	based	on	Bray–	Curtis	distance	matrices.	Samples	from	spring,	
summer,	autumn,	and	winter	are	labeled	with	red	dots,	green	squares,	blue	rhombi,	and	purple	triangles,	respectively
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between	 seawater	properties	 and	nutrient	 variables	were	 respon-
sible	 for	12%	of	 the	variation,	which	was	much	higher	 than	 those	
between	nutrients	and	ES	ratios	(2%)	and	seawater	properties	and	
ES	ratios	(3%).

4  |  DISCUSSION

In	 this	 study,	 we	 investigated	 variations	 in	 phytoplankton	 com-
munity	structure	in	the	subtropical	Beibu	Gulf	area.	We	assessed	
phytoplankton	community	stability	in	response	to	environmental	
changes	and	identified	the	main	drivers	of	the	observed	changes	
community	 structure.	 Bacillariophyceae,	 Coscinodiscophyceae,	
Mediophyceae, Fragilariophyceae, and Bangiophyceae were the 
dominant	 phytoplankton	 classes.	 Diatoms	 represent	 the	 richest	
group	 of	 autotrophic	 phytoplankton	 present	 in	 fresh,	 brackish,	
and	marine	waters	worldwide,	 and	 they	may	 be	 responsible	 for	
20%	 of	 global	 photosynthetic	 carbon	 fixation	 in	marine	 ecosys-
tems	 (Mann	et	 al.,	 2017).	 In	our	 study,	 the	 greatest	mean	 abun-
dance	of	Bacillariophyceae	occurred	 in	 spring	 and	winter,	which	
might	be	due	 to	 the	 relatively	 lower	water	 temperature	 in	 these	
seasons	 in	the	Beibu	Gulf	area.	Gogoi	et	al.	 (2021) also reported 
a	 negative	 correlation	 between	 Bacillariophyceae	 and	 water	
temperature	 in	 Sundarban	 waters.	 Interestingly,	 we	 found	 that	
mean	abundance	of	Coscinodiscophyceae	was	higher	 in	 summer	
and	autumn	when	 the	 seawater	 temperature	was	elevated	com-
pared	 with	 other	 seasons.	 Similarly,	 in	 their	 study	 of	 the	 vari-
ations	 of	 phytoplankton	 community	 diversity	 in	 four	 different	
seasons	in	the	coastal	East	China	Sea,	Xu	et	al.	(2015)	found	that	
Coscinodiscophyceae	 diatoms	 dominated	 the	 summer	 samples.	
Thus,	 relatively	 high	 water	 temperature	 might	 be	 most	 suitable	

for	 the	 growth	 of	Coscinodiscophyceae.	 Phytoplankton	 commu-
nity	structure	and	diversity	were	governed	by	dominant	species	as	
long	as	 these	species	were	not	 influenced	by	environmental	dis-
turbances.	Compensatory	growth	of	rare	species	occurred	when	
environmental	 perturbations	 inhibited	 the	 growth	 of	 dominant	
species	(Flöder	et	al.,	2010).	Abundances	of	these	dominant	spe-
cies	 in	our	study	varied	 in	different	seasons	due	 to	 the	environ-
mental	changes,	which	impacted	the	phytoplankton	structure	and	
community	stability	of	the	ecosystem	(Flöder	et	al.,	2010).

Values	 of	 all	 four	 of	 the	 alpha	 diversity	 indices	 gradually	 in-
creased	from	spring	to	winter	and	exhibited	the	highest	values	in	
winter.	Similarly,	the	Shannon	index	values	for	phytoplankton	di-
versity	were	highest	 in	November	during	four	seasons	 in	coastal	
waters	of	the	Bohai	Sea	off	Qinhuangdao,	China	(Dong	et	al.,	2021). 
Yu	et	al.	(2019)	also	found	that	the	Shannon	and	Chao1	index	val-
ues	were	both	highest	in	November	among	seasonal	groups	in	the	
North	China	Sea,	indicating	the	highest	diversity	during	the	win-
ter.	Consistently,	seawater	samples	from	the	East	China	Sea	had	a	
low	Shannon	index	in	spring,	and	the	lowest	value	was	observed	in	
summer	(Xu	et	al.,	2015).	Gao	et	al.	(2013) also reported that the 
Shannon	 index	values	 for	 the	phytoplankton	communities	 in	 the	
southern	Yellow	Sea	were	lowest	in	spring.	The	highest	Shannon	
index	value	occurred	in	winter	in	the	subtropical	Beibu	Gulf	area	
and	in	autumn	in	the	coastal	East	China,	possibly	because	the	sea	
temperatures	 during	winter	 in	 Beibu	Gulf	 and	 autumn	 in	 higher	
latitude	 East	 China	were	 similar	 and	 suitable	 for	 phytoplankton	
growth	 and	 reproduction	 (Xu	 et	 al.,	2015).	 In	 our	 study,	 the	 di-
versity	of	the	phytoplankton	community	sharply	decreased	from	
winter	to	spring	as	the	temperature	decreased,	which	might	be	be-
cause	some	phytoplankton	could	not	grow	or	survive	at	relatively	
low	temperatures	 in	 the	Beibu	Gulf	area	 (Yu	et	al.,	2019). These 

F I G U R E  3 Results	of	linear	regression	analysis	of	AVD	vs.	Shannon	index	values	(a)	and	of	delta	AVD	vs.	Bray–	Curtis	dissimilarity	values	
(b).	Straight	lines	represent	linear	relationships,	and	p-	values	indicate	significant	differences
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results	demonstrate	that	phytoplankton	community	structure	dis-
plays	 specific	 characteristics	 and	 variations	 during	 the	 seasonal	
transformation	in	the	Beibu	Gulf.

Understanding	 the	 relationship	 between	 community	 diversity	
and	stability	under	environmental	perturbations	in	ecosystems	is	a	
crucial	issue	and	is	the	subject	of	a	long-	standing	debate	(Guelzow	
et al., 2017;	 Loreau	&	de	Mazancourt,	2013).	Although	 there	may	
be	 a	 single-	species	 group	 that	 shows	 unstable	 dynamic	 changes	
in	 a	 diverse	 community,	 the	 consensus	 is	 that	 that	 diversity	 en-
hances	community	stability	in	ecosystems	(McCann,	2000;	Ptacnik	
et al., 2008).	 For	marine	 phytoplankton,	 species	 composition	 and	
richness	were	important	for	increases	of	phytoplankton	community	
stability	(Corcoran	&	Boeing,	2012;	Guelzow	et	al.,	2017).	Thus,	our	
results	 indicated	 that	 higher	 alpha	 and	 beta	 diversity	was	 benefi-
cial	 to	 improving	 phytoplankton	 community	 stability	 in	 the	 Beibu	
Gulf	 area,	 as	 a	 more	 diverse	 phytoplankton	 community	 allowed	

more	 variable	 compositional	 responses	 to	 environmental	 fluctu-
ations	 (Allan	 et	 al.,	2011;	 Loreau	 &	 de	Mazancourt,	2013; Vallina 
et al., 2017).

Ecological	 stoichiometry	 is	 a	 powerful	 tool	 that	 allowed	 us	 to	
analyze	basic	biogeochemical	patterns	and	cycling	in	marine	ecosys-
tems	 (Pujo-	Pay	et	 al.,	2011).	Our	 results	 demonstrate	 that	ES	 can	
significantly	influence	alpha	and	beta	diversity	of	the	phytoplankton	
community	and	that	it	was	the	main	influence	of	the	phytoplankton	
community	assemblage	in	the	subtropical	Beibu	Gulf.	In	contrast,	He	
et	al.	(2013)	found	that	the	N:P	ratio	was	negatively	correlated	with	
the	phytoplankton	diversity	index	in	the	spring	near	Weizhou	Island	
in	the	northern	South	China	Sea.	N:P	ratios	were	also	negatively	cor-
related	with	species	 richness	of	 the	entire	phytoplankton	commu-
nity	in	the	Cau	Hai	Lagoon	in	Vietnam	(Nhu	et	al.,	2019).	A	possible	
explanation	for	these	inconsistent	results	is	that	the	positive	correla-
tion	between	the	N:P	ratio	and	phytoplankton	diversity	in	our	study	

F I G U R E  4 Results	of	linear	regression	analysis	between	the	Shannon	index	values	and	nutrient	ES	of	seawater.	(a)	Shannon	index	vs.	C:N;	
(b)	Shannon	index	vs.	C:P;	(c)	Shannon	index	vs.	N:P;	(d)	Shannon	index	vs.	C:N:P.	straight	lines	represent	linear	relationships,	and	p-	values	
indicate	significant	differences
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was	based	on	evaluation	of	samples	collected	on	a	spatio-	temporal	
scale	 (different	 sites,	 four	 seasons),	 whereas	 the	 results	 from	 the	
other	studies	were	obtained	during	one	individual	season	or	several	
months	within	 a	 short	 time	 period.	 Additionally,	 the	 high	 level	 of	
anthropogenic	activities	in	Beibu	Gulf	intensively	accelerates	nutri-
ent	inputs	into	the	coastal	ecosystems,	resulting	in	a	eutrophication	
problem	(Li	et	al.,	2020).	Therefore,	studies	that	consider	different	
environmental,	 nutrient,	 and	 spatio-	temporal	 scales	 in	 different	
areas	should	be	conducted.	In	our	study,	we	also	found	that	ratios	
of	C:N,	C:P,	N:P,	and	C:N:P	were	highest	in	summer,	which	may	have	
been	because	the	high	growth	rate	of	phytoplankton	generated	high	
biomass	production	under	relatively	high	temperatures	and	because	
the	massive	amount	of	nutrients	in	the	seawater	were	absorbed	and	
utilized	by	the	phytoplankton	community	(Zhou	et	al.,	2021).	We	also	
found	that	the	C:N	ratio	was	significantly	negatively	correlated	with	
AVD,	whereas	the	negative	correlations	of	C:P,	N:P,	and	C:N:P	ratios	
with	AVD	were	not	statistically	significant.	This	result	suggests	that	

ES	rarely	impacted	the	stability	of	the	phytoplankton	community	in	
the	Beibu	Gulf	area.

Phytoplankton	 communities	 are	 susceptible	 to	 environmental	
disturbance.	Temperature	 is	an	 important	environment	 factor	 that	
influences	 phytoplankton	 growth,	 metabolism,	 production,	 and	
community	structure	 (Dong	et	al.,	2021).	Similar	 to	our	 results,	Lv	
et	 al.	 (2014)	 and	Gogoi	 et	 al.	 (2021)	 both	 found	 that	 temperature	
was	one	of	the	crucial	deterministic	parameters	impacting	the	phy-
toplankton	community	structure.	The	Netravathi–	Gurupura	estuary	
surrounded	by	several	river	inlets	is	similar	with	our	study	area	and	
therefore	 is	 easily	 influenced	by	discharges	and	effluent	nutrients	
from	the	rivers	(Kumar	et	al.,	2020).	In	agreement	with	our	results,	
a	significant	positive	correlation	between	phytoplankton	composi-
tion and NO−

3
	 content	was	also	observed,	 indicating	 that	NO−

3
 was 

an	important	driver	of	phytoplankton	community	structure	(Kumar	
et al., 2020).	DIP	is	frequently	the	limiting	nutrient	for	phytoplank-
ton	growth	 in	marine	 ecosystems	 and	 therefore	 is	 a	 key	driver	of	

F I G U R E  5 Results	of	linear	regression	analysis	between	Bray–	Curtis	dissimilarity	values	and	nutrient	ES	of	seawater.	(a)	Bray–	Curtis	
dissimilarity	vs.	the	delta	ratio	of	C:N;	(b)	Bray–	Curtis	dissimilarity	vs.	the	delta	ratio	of	C:P;	(c)	Bray–	Curtis	dissimilarity	vs.	the	delta	ratio	
of	N:P;	(d)	Bray–	Curtis	dissimilarity	vs.	the	delta	ratio	of	C:N:P.	straight	lines	represent	linear	relationships,	and	p-	values	indicate	significant	
differences.
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phytoplankton	 community	 variation	 (Yuan	 et	 al.,	 2018; Zhang 
et al., 2020).	Overall,	 our	 results	 demonstrate	 that	 these	environ-
mental	and	nutrient	factors	are	essential	to	phytoplankton	growth,	
metabolism,	 and	 biomass	 production	 and	 therefore	 could	 signifi-
cantly	shape	the	pattern	of	phytoplankton	communities	in	the	sub-
tropical	Beibu	Gulf.

5  |  CONCLUSIONS

Our	 results	 demonstrate	 that	 phytoplankton	 community	 structure	
undergoes	 seasonal	 variations	 in	 the	 Beibu	 Gulf.	 The	 low	 water	
temperatures	 in	 winter	 and	 spring	 seem	 to	 favor	 the	 growth	 of	
Bacillariophyceae,	 whereas	 the	 high	 temperatures	 in	 summer	 and	
autumn	 seem	 to	 favor	 Coscinodiscophyceae	 growth.	 Furthermore,	
values	of	 all	 four	of	 the	alpha	diversity	 indices	gradually	 increased	
from	spring	to	winter,	indicating	that	the	seasonal	change	shifted	the	
community	structure.	The	significantly	positive	correlations	between	
AVD	and	Shannon	 index	and	Bray–	Curtis	dissimilarity	values	dem-
onstrated	that	a	more	diverse	phytoplankton	community	conferred	
more	flexible	compositional	responses	to	environmental	fluctuations.	
Significant	positive	associations	between	Shannon	index	and	Bray–	
Curtis	dissimilarity	values	and	ratios	of	C:N:P	indicated	that	the	nutri-
ent	ES	of	seawater	could	significantly	 influence	the	alpha	and	beta	
diversity	of	the	phytoplankton	community.	Additionally,	temperature	
and	NO3

−,	DIP,	and	TDP	contents	were	the	main	environmental	and	
nutrient	drivers	of	 the	phytoplankton	community	assemblages	and	
patterns	 in	the	subtropical	Beibu	Gulf.	More	studies	of	the	mecha-
nisms	underlying	the	relationships	between	community	stability	and	

diversity	and	how	environmental	and	nutrient	factors	influencing	the	
phytoplankton	community	assemblages	are	necessary.
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