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Abstract

Soils lie at the interface between the atmosphere and the subsurface and are a key compo-
nent that control ecosystem services, food production, and many other processes at the
Earth’s surface. There is a long-established convention for identifying and mapping soils by
texture. These readily available, georeferenced soil maps and databases are used widely in
environmental sciences. Here, we show that these traditional soil classifications can be
inappropriate, contributing to bias and uncertainty in applications from slope stability to
water resource management. We suggest a new approach to soil classification, with a
detailed example from the science of hydrology. Hydrologic simulations based on common
meteorological conditions were performed using HYDRUS-1D, spanning textures identified
by the United States Department of Agriculture soil texture triangle. We consider these com-
mon conditions to be: drainage from saturation, infiltration onto a drained soil, and combined
infiltration and drainage events. Using a k-means clustering algorithm, we created soil clas-
sifications based on the modeled hydrologic responses of these soils. The hydrologic-pro-
cess-based classifications were compared to those based on soil texture and a single
hydraulic property, K. Differences in classifications based on hydrologic response versus
soil texture demonstrate that traditional soil texture classification is a poor predictor of hydro-
logic response. We then developed a QGIS plugin to construct soil maps combining a clas-
sification with georeferenced soil data from the Natural Resource Conservation Service.
The spatial patterns of hydrologic response were more immediately informative, much sim-
pler, and less ambiguous, for use in applications ranging from trafficability to irrigation man-
agement to flood control. The ease with which hydrologic-process-based classifications can
be made, along with the improved quantitative predictions of soil responses and visualiza-
tion of landscape function, suggest that hydrologic-process-based classifications should be
incorporated into environmental process models and can be used to define application-spe-
cific maps of hydrologic function.
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Introduction

The organization of objects into classes is a fundamental exercise at the core of many scientific
fields [1]. Taxonomy or classification of plants and animals has been traced back to the early
Greeks and Romans and was later codified by Linnaeus in the Genera Plantarum in 1737 [2, 3].
There were attempts by Mendeleyev in the 1860s and Zubin in 1938 to use classification out-
side biology, but it was in the mid-20th century when the application of classification expanded
rapidly [4]. It was advances in computer technology and formalization of classification tech-
niques that led to modern unsupervised learning techniques such as cluster analysis [1, 4].
Classification has been used in biology for numerical taxonomy [5, 6] and cladistics [7, 8].
Social sciences has applied classification for behavior patterns and culture analysis [9, 10]. In
earth sciences, it is used for earthquake detection [11] and land use patterns [12]. The medical
sciences have implemented it for microorganism characterization [13] and genomics [2], engi-
neering sciences for pattern recognition [14], and information and decision sciences for invest-
ment and economic research [15, 16]. While these applications vary widely, they share
common tenets of classification: forming groups within populations based on similar charac-
teristics or behaviors can improve understanding of interrelationships among members and
can simplify the definition of characteristics for individual group members. However, there
exists the possibility for misapplication of classification, leading to erroneous or even injurious
associations. Ultimately, regardless of the application, effective classification requires that the
application is appropriately and sufficiently linked to the basis used for clustering.

Soil classification first appeared internationally with Atterberg [17] and with the United
States Department of Agriculture (USDA) [18]. In the late 1920s, the international and USDA
systems were accepted formally and led to the soil classification systems in wide use today [19,
20]. The most common classifications (e.g. USDA/Food and Agricultural Organization, Inter-
national Soil Science Society/International Union of Soil Sciences, Canadian, German) rely on
relative fractions of soil particles of different sizes to establish soil textural class boundaries.
These traditional classifications are convenient because grain size distributions can be mea-
sured relatively easily and can be estimated quickly and accurately in the field. Currently, soil
texture classification is used commonly within agricultural, geotechnical, hydrological, and
other related disciplines.

Previous work in the use of soil classification for hydrologic prediction has focused on man-
ual classification of soils on the catchment scale using conceptual subsurface models. In partic-
ular, the work by Boorman, et. al. [21] was shown to improve upon standard textural
classifications. In that study, the authors suggest that a more rigorous scientific approach to
soil classification would be to use hydrologically relevant physical soil properties, such as
hydraulic conductivity, and storage capacity in combination with a model to estimate hydro-
logic soil response. The authors state that this approach was not used because of the challenges
of availability and coverage of physical soil property data. Our work follows on this suggestion
and demonstrates the benefits of basing soil classifications on modeled hydrologic outcomes.

We focus on the use of soil texture as a proxy for soil hydraulic properties [22]. This has
become increasingly common with the growth in coverage and detail of global circulation
models, which require spatially distributed soil properties over large areas [23, 24]. Specifically,
soil maps are used to identify boundaries within a landscape within which hydraulic properties
are assumed to be constant. In addition to providing guidance for parameterization of numeri-
cal models, these soil maps are used to visualize landscape function [25]. That is, the maps
guide the formulation of conceptual models of hydrologic processes that underlie model devel-
opments and guide land use, in part because of the hydrologic responses associated with differ-
ent soil textures. Soil maps were developed primarily as a diagnostic tool for soil surveying and
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an early study by Bormann [26] suggests that using soil texture classifications may be accept-
able for environmental modeling applications. The objective of this study was to examine
whether soil textural classifications are useful proxies for hydraulic properties over a range of
hydrologic conditions and, further, to develop an alternative approach to soil classification that
can improve both quantitative analyses and visual interpretations of landscape function.

Materials and Methods

Previous researchers have proposed the use of cluster analysis for grouping soils based on phys-
ical properties [27, 28]. Twarakavi et al. [29] showed that soil hydraulic properties map onto
grain size distributions with boundaries that are similar to USDA soil textural classification.
However, further research [30] showed that the responses of soils subjected to specific hydro-
logic conditions did not agree with soil-texture-based classifications. We extend the work of
Bormann [30], introducing the concept of clustering soils based on hydrologic function. Specif-
ically, we consider different sets of hydrologic processes for a range of soil conditions, consti-
tuting a range of hydrologic settings. We refer to the resulting soil types as hydrologic-
processes-based soil texture classifications. From this basis, we quantify the ambiguity that can
be introduced into hydrologic analyses when using texture-based soil classifications and dem-
onstrate the advantages of hydrologic-process-based soil textural classifications for quantitative
analyses and for generating hypotheses related to landscape-scale hydrologic function.

For ease of comparison with the widely-used USDA soil textural classification, which was
based on the mechanical limits of soil particles, we categorize soils into twelve clusters and dis-
play the cluster boundaries together with the USDA soil textural definitions on a texture trian-
gle (Fig 1). Soils on the triangle can be identified by their respective fractions of sand, silt, and
clay particles. Note that for ease of implementation, most USDA soil texture boundaries are
defined by a small number of constant percentages of sand, silt or clay (straight lines, parallel
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Fig 1. USDA Soil Texture Triangle.
doi:10.1371/journal.pone.0131299.g001
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to the edges of the triangle). That is, standard soils are bounded by simple polygons that allow
for ready soil texture definition.

Our goal is to determine whether a range of hydrologic processes can be predicted more
accurately using hydrologic-process-based soil textural classifications. To examine this, while
maintaining generality, we consider three basic sets of hydrologic processes that, collectively,
describe the full range of hydrologic forcings. These conditions are: drainage from a fully satu-
rated medium,; infiltration after a soil has been drained for an extended period to field capacity;
and infiltration into a medium drained to field capacity followed by drainage (note that the
condition preceding drainage is not full saturation throughout the profile for all soils for this
case). These three conditions broadly represent subsurface hydrologic responses after a flood-
ing event, during a rainfall event that follows a prolonged period without rain, and throughout
a rainfall event onto a soil initially at field capacity immediately followed by a drying event,
respectively. To demonstrate the proposed approach, we focus only on changes in water stored
within a surface layer (0-30 cm depth). The target that we have chosen could represent the irri-
gation status in a shallow root zone, or it could represent soil conditions that control whether a
field will support traftic by heavy machinery. However, depending upon the application of
interest, any depth interval, hydrologically relevant state, or integration time could be specified
for classification.

Simulation Methodology

Following the approaches of Twarakavi et al. [29] and Bormann [30], we used an extensive
database of soil properties compiled into ROSETTA, a neural-network based pedotransfer
function [31], to relate sand, silt, and clay fractions to parameters in the van Genuchten [32]
and Mualem [33] hydraulic relationships. These relationships describe the dependence of the
volumetric water content on soil water pressure and the dependence of the soil hydraulic con-
ductivity on the water content, respectively. By varying each soil particle size fraction on 2%
intervals, 1326 unique soils were identified on the textural triangle. The hydrologic responses
of each soil were modeled using HYDRUS-1D [34] in response to the three environmental con-
ditions described above. A k-means clustering was then applied to the modeled responses of
interest (time-averaged change in water storage in the shallowest 30 cm) to classify the 1326
soils into 12 classes for each of the three environmental conditions. We refer to this direct clus-
tering on hydrologic function as hydrologic-process-based soil textural classification.

Only sand, silt, and clay percentages were considered in this analysis. We inferred hydrauilc
properties using the H2 model of ROSETTA, which results in parameters that vary continu-
ously with respect to texture. However, our proposed method allows for inclusion of any other
available data, such as bulk density [31], or any other pedotransfer function. It is important to
recognize that our proposed hydrologic-process-based soil textural classifications will not be
exact. There is uncertainty in the translation of sand, silt, and clay percentages to hydraulic
parameters. In our case, we have used a widely accepted pedotransfer function, ROSETTA.
But, even this model has uncertainties due to the limited number of samples in the training set.
Similarly, numerical flow models are subject to uncertainties due to the equations embedded in
the numerical model and in our conceptualization of the flow system. We have used a widely
accepted detailed model based on Richards equation (HYDRUS-1D). But, even this model can-
not be expected to predict hydrologic outcomes exactly. While our proposed approach is
dependent upon the underlying models, it is also able to incorporate any future improvements
in these models. The focus of this study is to examine how the underlying concept of process-
based soil textures represents an improvement over standard soil textures. For all comparisons
presented, both classifications are interpreted through the same pedotransfer function and
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hydrologic model. A follow on study will quantify how errors in pedotransfer functions propa-
gate through these soil classification schemes.

Environmental Simulation Flow Conditions

Drainage was simulated using a zero flux top boundary condition, indicating that neither pre-
cipitation nor evaporation was occurring. Infiltration at the ground surface was represented by
a brief transition from a slightly negative to zero pressure head, producing infiltration at the
maximum rate that would not generate runoff. An initial prolonged drainage state in the col-
umn was represented by a constant water pressure head of -360 cm throughout the profile; this
condition is commonly referred to as field capacity and represents the conditions for which
gravity driven drainage approaches zero.

Each condition was modeled for a homogeneous 200 cm column of each soil. The bottom
boundary was modeled as free drainage, reducing the impacts of conditions at depth in the tar-
get region of 0-30 cm depth. The profile was discretized into 1 cm intervals. Total simulation
duration was four days for drainage, one day for infiltration, and five days for infiltration fol-
lowed by drainage. The time step, however, was allowed to vary in response to the number of
iterations needed for convergence in the previous time step (adaptive time stepping). The ini-
tial time step was 0.001 seconds. Although adaptive time-stepping was used, results from the
simulation were recorded at predefined simulation times to obtain equally spaced model out-
put throughout the simulation period. The reporting time steps were chosen to produce 160
water content profiles during drainage, 40 during infiltration, and 200 for the combined
processes.

The data used for clustering was the time-averaged change in length of water stored, AL, , in
the upper 30 cm of the profile. As stated previously and discussed in more detail below, the
choice of hydrologic responses can be modified to tune the hydrologically-based soil classifica-
tion scheme to the conditions and predictions of interest.

K-means Clustering

Following the approach of Bormann [30], we used clustering based on the k-means algorithm
[35] to classify soils based on hydrologic function. Twarakavi et al. [29] and Bormann [30] pro-
vide detailed descriptions of k-means clustering; a brief overview is provided here. The k-
means clustering algorithm is a centroid-based approach using cluster distortion to organize
data points into similar groups [36]. For our application, the data were one-dimensional,
defined by the time-averaged change in length of water over a depth of 30 cm for each soil,
AL, = 3% (A0,). For the conditions representing only infiltration or infiltration followed by
drainage, the time averaged change in water content, A0, is defined as 0, — 0, where 0, is the
average water content in each layer, and 6y is the soil-dependent water content at field capacity.
For drainage, 0, is defined as 0, — 0, where 0, is the water content of the soil at full saturation,
which is equal to the porosity.

Any user-specified prediction of interest could be selected to formulate a soil classification
that is most relevant for any specific application. We chose a simple metric: the time averaged
water content over the duration of the simulation within the shallowest 30 cm. While the soil
parameters, such as 6 and 6, are constant with depth and time, the water content varies both
temporally and with depth. The use of the average change in length of water simply allows for
clustering on a single outcome, which allows for simpler explanation of the clustering proce-
dure. In fact, there is no limit to the dimensionality of the prediction of interest, ranging from a
single value to every value of multiple states through space and time.
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With our prediction of interest, infiltration and infiltration followed by drainage would be
useful measures of the infiltration capacity (and water holding capacity) of a soil. As such, they
may have applicability for predictions related to irrigation timing or slope stability. The defini-
tion used for drainage focuses on the ability of a soil to release water after flooding, with appli-
cations in trafficability. This range of possible applications demonstrates one of the key
attributes of process-based clustering: the high degree of flexibility to define representative soil
texture data in ways that are most directly applicable for specific applications.

Clustering is performed for each set of hydrologic process based on AL, for all of the soils.
The algorithm initially proposes a set of 12 randomly chosen AL, values as potential cluster
centroids. The AL, value calculated for each soil is assigned membership to the closest cen-
troid. Then, the mean of all the AL, values for the members in each cluster is calculated to
define 12 updated centroid values. The algorithm repeats these steps until no further improve-
ments to the centroids can be made [36]. Improvement or convergence is defined by a reduc-
tion in a defined distortion metric. Typically, the metric is defined as the sum of squared
distances between the data points and their representative centroid. For our analyses, the k-
means algorithm was terminated when the sum of the standard Euclidean, squared normal dis-
tances was less than 10~ for whitened data. Since the k-means algorithm does not guarantee a
globally minimized distortion, 100 repetitions of the algorithm were performed. The initializa-
tion with the lowest final sum of squared distances from the means was selected. Bormann [30]
discusses the impacts of distance metrics and numbers of clusters in more detail.

Cluster Visualization

The hydrologic-process-based soil textural classifications are presented in two forms. First,
they are plotted on the USDA soil textural triangle. This provides a basis for direct comparison
of the USDA and hydrologic-process-based textural classifications, following the approach of
Bormann [30]. This visualization also supports improved understanding of the relationship
between particle size distributions and hydraulic behavior. Second, the classifications are used
to create revised soil maps for a study site, retrieved from the Natural Resources Conservation
Service (NRCS) online database [37]. This visualization is novel to this investigation and
underscores the practical and scientific benefits of hydrologic-process-based classification for
hypothesis generation.

Python (www.python.org) was used to plot the hydrologic-process-based classifications on
the soil textural triangle. Open-source GIS software, QGIS [38], was used to generate maps for
visualizing and comparing the hydrologic response for an area north east of Fairfax, OK. Raster
data files containing soil unit boundaries and the Microsoft Access database files containing
soil texture information were downloaded from the NRCS Web Soil Survey for the study area
(S1 Data). The area chosen was 15 x 21 km centered at (36.6121°N, 96.5895°W, mean elevation
311 m) and covers 315 km?. The region is representative of the coverage of and variation in soil
data that is available from the NRCS Web Soil Survey.

A plugin was developed for creating the soils maps in the open-source QGIS Python based
framework (S1 Plugin). It includes a collection of functions for combining and manipulating
the spatial and texture data from the NRCS Web Soil Survey. Basic functions were written to
update a raster file attribute table to include soil texture data from the Microsoft Access data-
base provided by the NRCS Web Soil Survey. Only the dominant soil texture in the top layer of
each soil unit was considered for this study. Other functions were written to match each soil
unit to a soil from an existing classification and shade the map units with respect to the
assigned cluster in the classification.
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Fig 2. Example Water Content Profiles. Water content profiles through time for a clay soil examined in response to: (a.) drainage, (b.) infiltration, and (c.)
infiltration followed by drainage. Horizontal dashed lines show the surface layer depth. (d.) AL, for a-c. Horizontal dashed lines show the time-averaged
changeinL,,.

doi:10.1371/journal.pone.0131299.9002

Results and Discussion

The total number of simulations performed was 3978, one for each soil and each set of hydro-
logic processes. Despite the relatively large number of simulations, the modeling could be com-
pleted in 15 minutes on a 64-bit Windows 7 desktop computer with an Intel Core i7 3.47 GHz
6 core processor and 12 GB DDR3 RAM. A similar analysis could be performed for any set of
environmental conditions and predictions of interest without unreasonable computational
demand. Even though the classifications are hydrologic-process specific, they are still universal
with respect to spatial soil texture characteristics. This means that the classifications are inde-
pendent of the field scale or resolution of soil data and can be applied to any location or hydro-
logic model if the hydrologic conditions are comparable to those used to define the clusters. In
other words, once the hydrologic-process-based classifications are defined, the plugin provided
makes it trivial to produce maps for any location with an available soil map.

Fig 2a-2c, show soil moisture profiles during each set of hydrologic processes for a clay soil
selected from the set of 1326 soils analyzed. A horizontal dashed line shows the depth of the
shallow target layer selected for this study. Fig 2d shows the change in length of water in the
root zone from the initial condition, as described above, associated with the profiles shown on
panels a-c. The time-averaged change in length of water for each set of processes is shown as a
dashed horizontal line on Fig 2d. Clustering based on the hydrologic model results required
less than a minute of computational time using the computing resources described above.

The USDA soil textural triangle is shown in Fig 3a and classification based on a hydraulic
parameter, obtained from ROSETTA, is shown in Fig 3b. The hydrologic-process-based clus-
ters for the three sets of processes considered are shown in Fig 3c-3f. The USDA clusters are
defined to be contiguous and to generally coincide with constant values of sand, silt, or clay.
These characteristics make it simpler to use USDA clusters for rapid textural mapping in the
field. In contrast, the clusters defined based on Kj are irregularly shaped and, in some cases, dis-
continuous, as are the hydrologic-process-based clusters. While the irregularity and disconti-
nuity of the hydrologic-process-based clusters may make it more difficult to identify clusters
from qualitative measures of particle size distributions, the actual classification information
shown on the triangle relates directly to the simulated condition. That is, the hydrologically-
based clusters are explicitly informed by the simulated hydrologic environmental conditions of
each soil. As a result, interpretations of hydrologic response based on these classifications will
be inherently more reliable than those based on classifications based on less directly related
properties. This reduces the likelihood of misapplication of the cluster information.

PLOS ONE | DOI:10.1371/journal.pone.0131299 June 29, 2015 7/17



el e
@ ' PLOS ’ ONE Hydrologic Soil Texture Classification and Soil Maps

clay

silty clay

sandy clay

silty clay loam
clay loam
sandy clay loam
si

N
cm/day

sandy loam
loamy sand
sand

Drainage

100,

SENNWA SR ND

SNNONOWODNWE

ONROSTRON=2O©O®
cm

Sohbbobbanad

WBROAIAD ANWON

RONNTOND2HH®
cm

SENNNOWWWS RS

QONNOONBNODN

ONOO-BOhOoOWN
cm

CooR=SmNNNW

WO = WD D o

BABRL2RRIEEI
cm

Fig 3. Soil Classifications Plotted on the USDA Texture Triangle. Soil classifications plotted based on (a.)
USDA soil classification, (b.) hydraulic conductivity (Ks) and AL,, for: (c.) infiltration, (d.) drainage, (e.)
infiltration followed by drainage, and (f.) summation of AL,, from only infiltration and only drainage. The USDA
triangle is shaded by soils texture, the remaining panels are shaded by AL, over the simulated period in the
uppermost 30 cm.

doi:10.1371/journal.pone.0131299.g003

General insight can be gleaned from the patterns of hydrologic-process-based clusters. For
example, examining the infiltration clusters, Fig 3¢, and drainage clusters, Fig 3d, it is apparent
that clay-rich soils have low infiltration capacity (red on the infiltration plot, Fig 3c), and low
drainage capacity (blue on the drainage plot, Fig 3d). The opposite is true for low-clay soils.
The general patterns for infiltration (Fig 3c) and for drainage (Fig 3d) have similar magnitudes,
but opposite signs. The magnitude of infiltration and drainage in Fig 3e resulted in low net
change in available water in clay-rich soils compared to clay-poor soils. Also, there is a region
of low net change in available water for soils with low clay content and approximately equal
sand and silt. We also created a classification based on the summation of the separate AL, val-
ues for infiltration (Fig 3c) and drainage (Fig 3d). This result is referred to as “Infiltration
+ Drainage” (Fig 3f). Interestingly, the pattern of clustering based on the summation of the
infiltration-only and drainage-only results (Fig 3f) shows strong similarities with clustering on
infiltration followed by drainage (Fig 3e¢). These results suggest that it may be possible to cluster
soils based on a relatively small number of key sets of hydrologic processes and then to use
combinations of these classifications to analyze more complex environmental conditions. This
hypothesis is examined further below. Finally, we include Fig 3b. The lack of similarity between
classifications based on K and those based on the results of modeling hydrologic processes
demonstrates that hydraulic conductivity alone is insufficient for inferring hydrologic behavior.
No other parameter or set of parameters was found to produce patterns that matched those of
the hydrologic-process-based clusters.
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The classification patterns produced by Bormann [30] based on hydraulic parameters are
similar to the USDA classification and similar to those created by Twarakavi [29], which were
also based on hydraulic parameters and characteristics. However, the simple polygons pro-
duced by those classifications differ from those shown here based on hydrologic responses,
which have patterns that are much more irregular and discontinuous. Bormann [30] produced
classifications based on mean annual water balance; these too are different than the classifica-
tions shown here based on hydrologic response in terms of change in length of water. Assum-
ing that soil textures will be used for hydrologic prediction, the lack of agreement between the
classifications based on hydraulic parameters or texture with those based directly on hydrologic
response demonstrates that other approaches to soil classification will not result in optimal
interpretation of hydrologic function.

Twarakavi, et. al. [29], demonstrated that specific collections of parameters and soil charac-
teristics can be chosen that reflect classification patterns similar to the USDA soil texture classi-
fication. However, we contend that it is impossible to define a single set of parameters that will
lead to clusters that are relevant for a range of hydrologic predictions. Simply stated, some pro-
cesses depend more strongly on storage capacity, others on permeability, and still others on a
more equal combination of the two. Furthermore, for any given soil, both storage capacity and
permeability depend on the water content. Therefore, each of these parameters depends on
both the average flux through the system and the variation in flux through time. Our simple
premise is that the best way to determine how different soils will behave under a set of applied
conditions is to model the responses and then redefine the soils based on those hydrologic
outcomes.

To compare the performance of the USDA and hydrologic-process-based clusters, we make a
simple proposal: the utility of a clustering scheme can be assessed by the uniqueness of predic-
tions among clusters. That is, an effective scheme will have predictions of interest that are more
similar within a cluster than between clusters. Fig 4 demonstrates this test in terms of the skill of
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Fig 4. Predictive Effectiveness for each Classification. Time averaged AL,, values within each cluster.
The symbol shows the mean value and the bars represent minimum and maximum values within the cluster.
Classifications are labeled as in Fig 3

doi:10.1371/journal.pone.0131299.g004
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predicting the change in AL, to a depth of 30 cm for the third environmental condition having
one day of infiltration followed by four days of drainage. Each panel shows the range of predic-
tions (shown as a bar) and the mean prediction (shown as a symbol) for each cluster. The vertical
axis is labeled using the cluster centroid from Fig 3, except for the USDA texture triangle (panel
a) where the soil name is used. The mean prediction is identical to the centroid for the cluster-
based results in Fig 4e. In addition, we also show the results of clustering on K; to allow for com-
parison with parameter-based clustering such as shown by Twarakavi et al. [29].

The ultimate practical objective of soil mapping for hydrologic applications is to provide an
unambiguous and easily interpreted representation of the spatial distribution of the hydrologic
process or processes that are important for a given application. We contend that this is best
achieved by clustering as closely as possible on the hydrologic outcome as calculated using a
process model and the use of a pedotransfer function. In our synthetic case, with perfect infor-
mation about mapping sand, silt, and clay to hydraulic properties and perfect knowledge of the
forcings, we can generate clusters with no overlap (no ambiguity). This is shown in Fig 4e. We
do not mean to imply that the lack of overlap indicates that hydrologic-process-based classifi-
cation results in perfect predictions. Rather, the lack of overlap in Fig 4e should be seen as the
theoretically optimal outcome. Deviations from this unambiguous clustering demonstrate limi-
tations of other clustering approaches. It should be reiterated that all analyses presented here
benefit form perfect mapping of soil properties onto sand, silt, and clay fractions and correct
hydrologic model structures and forcings. The propagation of uncertainties in the underlying
pedotransfer function through process-based clustering will be the subject of a follow on study.

Clustering on AL, for infiltration and drainage (Fig 4¢) produces predictions with little to
no overlap among clusters. That is, each cluster has a unique meaning with respect to the pre-
diction of interest. This is one of the benefits of and motivations for hydrologic-process-based
clustering. In stark contrast, the USDA soil textural classification (Fig 4a) shows a high degree
of overlap in prediction ranges. Furthermore, there is no clear relationship between the mean
and the order of clusters or textures as typically listed from sand to clay. Fig 4c and 4d show the
ability of hydrologic-process-based clustering when the basis for clustering is different than the
processes being predicted. Although general trends appear across the means of the clusters,
they still lack the degree of uniqueness that is present in Fig 4e. This suggests that a single
hydrologic-process-based classification may not be sufficient for defining hydrologically rele-
vant soil textures across a wide range of hydrologic processes: hydrologic-process-based soil
textures are not universal, they are application specific. Finally, we examine the quality of pre-
dictions based on clustering on the summation of the AL, for infiltration and drainage, as
shown in Fig 3f. In this case, the trend in increasing net change in available water is reasonably
well represented, but the results lack the uniqueness of the classification based on infiltration
and drainage (Fig 3e). The balance between the improved uniqueness of predictions offered by
more process-specific clusters with the reduced effort offered by combining the clusters from a
sequence of single processes will also be a topic of future research.

In hydrologic sciences and atmospheric sciences, soil hydraulic properties are often consid-
ered the most useful properties for classifying soils. To examine this assumption, we considered
clustering based on the saturated hydraulic conductivity, K, (Fig 3b), which is a fundamental
measure of the ease with which water can move through a soil under water saturated condi-
tions. Interestingly, this clustering shows even less skill than the USDA classification. In partic-
ular, many of the K;-based clusters have very large within-cluster variations. In addition, there
is no clear correlation between increasing K; and increasing AL,. This supports the conclusion
by Norris [39] that generalization of soils based on only a few parameters is not advisable. Nor-
ris suggests that different generalizations would result for comparisons made between single
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properties because of high parameter interaction. It may be surprising that this key hydraulic
property (K;) fails to provide information about hydrologic processes. This highlights the com-
plex interactions among multiple soil properties and dependence on boundary and initial con-
ditions that make direct inferences based soil hydraulic properties challenging. In other words,
model simulations are able to reliably capture behaviors that parameters alone cannot. Even
consideration of multiple hydraulic properties is unlikely to improve on the USDA classifica-
tions, given that Twarakavi et al. [29] demonstrated that clusters based on collective soil prop-
erties are comparable to the USDA classification, which do a poor job of predicting hydrologic
outcomes (Fig 4a). We contend that this result is a direct indication of improvement in predic-
tive skill that can be achieved by using clustering based on hydrologic processes rather than on
hydraulic properties or by using standard soil textures.

To evaluate the skill of prediction for the different classification schemes more quantita-
tively, we considered several defining characteristics. First, we examined the trend of the cluster
means with the cluster order (Fig 4). As Fig 4e shows, infiltration followed by drainage has the
smoothest increasing trend behavior and has a strong correlation between the prediction cen-
troid and the actual AL,. This trend highlights the continuous pattern of clusters in Fig 3e and
is also present in Fig 3c-3d. This is followed closely by the addition of infiltration and drainage.
Although the means for infiltration alone and drainage alone show a general trend, the trend is
not as consistent as seen for clusters that consider both infiltration and drainage. The USDA
classification and hydraulic conductivity-based clustering show very poor trends with cluster
order. (It is difficult to quantify the trend for the USDA classification because the order of the
classes is based on descriptive labels rather than a numerical value, but the trend is clearly dis-
continuous with the soil textures in the order commonly presented).

To provide more quantitative performance measures of the clustering approaches, we exam-
ine the uniqueness of the correlation of the prediction of interest with the clusters (and vice
versa). First, we evaluate the performance of the classifications based on the sum of squared
distances of the cluster members from their centroids. This calculation is similar to the conver-
gence criteria for the k-means algorithm. Next we consider the uniqueness with which soil
members map onto the clusters. In this case, the uniqueness is based on the change in length of
water per unit area. That is, how many different clusters could be associated with each value of

AL, ? We refer to this as outcome-cluster uniqueness, or OC uniqueness. The average value of
this metric across all clusters ranges from 1 (best possible performance, all outcomes values are
unique to single clusters) to the total number of clusters (12 in our case, meaning that every
cluster spans all possible outcomes). Lastly, given the range of AL, values included within a
cluster, what fraction of the soil members that fall within this range are not members of that
cluster? We refer to this as cluster range uniqueness, or CR uniqueness. The average value over
all of the clusters ranges from 0 (best possible performance) to 1. Table 1 summarizes the
results for the clustering approaches presented above and ranks the performance of the metrics
from 1 (best performance) to 6 (poorest performance).

These results (Table 1) show that application specific clustering (Infiltration followed by
Drainage, I & D) is clearly superior, ranking first in all three categories. All of the other
approaches have uniqueness measures that are very close to one another (within: 0.23 for
RMSE, 2.8 for OC and 0.11 for CR) and also perform poorly (greater than: 0.37 for RMSE, 5.5
for OC and 0.79 for CR). To put these performance metric values in context, they suggest that
it is at least as likely that any given outcome will be miscategorized as correctly categorized.
Clusters based on drainage alone or infiltration alone result in clusters of infiltration and drain-
age predictions that are more distinct than hydraulic conductivity classification. Interestingly,
even though the visual pattern of clusters based on the addition of infiltration and drainage is
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Table 1. Performance Metrics When Predicting Infiltration & Drainage.

RMSE rank oC rank CR rank
1&D 0.12 1 1.0 1 0.00 1
1+D 0.41 3 7.0 4 0.84 5
USDA 0.37 2 5.5 2 0.83 4
Ks 0.60 6 8.3 6 0.90 6
| 0.47 4 6.5 3 0.79 2
D 0.58 5 7.7 5 0.80 3

OC is outcome-cluster uniqueness and CR is cluster-range uniqueness.

doi:10.1371/journal.pone.0131299.t001

very similar to clustering directly on infiltration followed by drainage, I + D does not perform
well when assessed quantitatively. It is also interesting to note that the USDA clustering is,
arguably, as good or better than any of the clustering approaches except for the clearly superior
I&D. The superiority of clusters based on the specific hydrologic processes of interest, together
with the fact that the clustering analysis can be performed with relatively little computational
effort, suggests that classifications should be as process-specific as possible.

In practice, soils are categorized for many purposes, including vehicle trafficability; vegeta-
tive productivity; erodibility; dust generation capacity; and flood susceptibility. Given that the
spatial patterns of soils on a landscape impact many of these processes, it is valuable to produce
maps that show the spatial organization of soil function [25]. Fig 5 shows four different visuali-
zations of soil hydrologic function.

In Fig 5a, the landscape is represented using the USDA soil textural classification. Soil maps
like this are widely available and used commonly to characterize agricultural soils at field and
watershed scales. The question that we aimed to address is: can a map based on soil texture

S elay
% silty clay
{ lsandy clay
silty clay loam

7 | clay loam
sandy clay loam
| silt loam
silt

loam

sandy loam

loamy sand

c) Infiltration

Fig 5. Classification Soil Maps. Soil maps based on (a.) USDA soil classification; and hydrologic-process-
based classifications based on AL, (b.) for infiltration & drainage; (c.) infiltration and, (d.) drainage.

doi:10.1371/journal.pone.0131299.g005
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help to generate useful hypotheses about patterns of hydrologic processes across a landscape?
Further, can more insight be gained by applying hydrologic-process-based classifications? The
results of clustering on hydrologic processes are shown in Fig 5b-5d. Fig 5¢c shows that there is
very little variation (3.55-4.97 cm) in infiltration capacity across the landscape compared to
the range of possible values across the I&D soil types (1.19 cm to 8.48 cm). Similarly, there are
relatively few areas that show significant drainage (Fig 5d); in general, drainage rates are low
over the entire site, below -2.65 cm, with very low rates in the southeastern part of the domain.

Finally, the net increase in water storage (dark blue on Fig 5b) after a cycle of infiltration
and drainage is limited to a relatively small region in the southeast corner of the domain. There
is also a band of moderately low net infiltration (light red) that trends from the northeast to the
southwest across the domain. Given the variance in predictions of infiltration and drainage
within the USDA clusters (Fig 4¢), both of these features would be difficult if not impossible to
identify from the USDA map, even for someone who is very familiar with the hydraulic proper-
ties of different soils. In contrast, important patterns are immediately apparent on the hydro-
logic-process-based soil maps. For example, following a flooding event, Fig 5d would clearly
identify areas that are likely to be slow to drain, leading to low trafficability for emergency or
agricultural equipment. Fig 5¢, on the other hand, predicts areas that may be good candidates
for intentional routing of water for rapid infiltration during intense rainstorms. Lastly, plant
community establishment efforts could benefit from understanding the spatial patterns of
water holding capacity of soils as described by Fig 5b.

While Fig 5 shows the expected hydrologic response on different soil texture definitions,
this does not present a complete measure of the utility of these hydrologic function maps. It is
also necessary to understand the level of uncertainty of the results shown. The panels in Fig 6
show the predicted infiltration and drainage maps based on the USDA classification (first col-
umn) and a classification based on infiltration and drainage (second column). These maps are
created from the data shown in Fig 5. The mean value of the change in length of water for the
cluster (texture- or process-based) is shown for each soil feature on the maps in the top row of
Fig 6. For the bottom row in Fig 6, two standard deviations of the change in length of water
within the cluster is shown. For clarity, the color scale is limited to the range of values seen on
both maps. Both approaches (USDA clustering and hydrologic-process-based clustering) show
considerable variability in the hydrologic response, making it difficult to choose which is more
useful. However, the uncertainty of the predictions due solely to the classification approach
(both approaches use the identical pedotransfer function and hydrologic model) is consider-
ably higher through most of the domain for the USDA classifications. This is our main finding:
the use of hydrologic-process-based classification can produce less ambiguous, more practically
useful plots that can be used more quantitatively by experts and interpreted reliably by non-
experts.

In summary, we suggest that models should be run for a very wide range of soils for the
expected forcings (those that represent the expected hydrologic conditions at a given location
that are most relevant for a specific application of interest). Then, soil “types” should be defined
based on outcomes of the models rather than on sand, silt, and clay percentages, other physical
properties, or hydraulic parameters. The resulting maps, will be less ambiguous and more read-
ily interpreted than soil texture maps.

Conclusions

The objective of this work was to examine the effectiveness of soil textural based classifications
at capturing hydrologic response and to consider an alternative approach to classification that
could capture hydrologic response. We have shown that soil-texture-based (e.g. USDA) and
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Fig 6. Soil Map Prediction Variation. Soil maps showing the range of AL,, following infiltration and drainage based on the classification of (a.) USDA soil
texture and (b.) infiltration and drainage. Soil maps showing two standard deviations of the values of change in length of water following infiltration and
drainage based on the classification of (c.) USDA soil texture and (d.) infiltration and drainage.

doi:10.1371/journal.pone.0131299.9006

parameter-based [29] classifications do not provide accurate predictions of responses to hydro-
logic conditions. Specifically, the patterns of clustering on the soil texture triangle, quantitative
measures of cluster effectiveness, and maps produced to improve understanding of soil func-
tion on the landscape perform poorly when based on the USDA textures or the saturated
hydraulic conductivity. Our results suggest that greater insight into hydrologic behavior will
result from clusters based directly on relevant hydrologic processes.

Our analysis is based on a simple set of common hydrologic conditions. We examined
whether these basic hydrologic processes could be combined rather than clustering on a spe-
cific boundary condition time series. While the resulting clusters are visually similar, quantita-
tive measures of cluster performance suggest that combining data from individual and separate
processes is not as accurate as creating application-specific clusters for sets of relevant hydro-
logic forcings. The Natural Resource Conservation Service itself has long acknowledged that
classifications were designed for specific uses and that it should not only be possible to con-
struct libraries of classifications as the need arises, especially as technology and knowledge
allows [29]. Our results amplify this finding, suggesting that no globally optimal soil textural
classification is likely to exist. For this reason and because minimal computational time and
effort are required, we suggest that hydrologic-process-based clusters be calculated to form
application-specific soil texture classifications.
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Our work has confirmed the conclusions reached by Bormann [30] and has shown how
their approach can be extended to a wide range of applications that rely on prediction of hydro-
logic response. In particular, echoing the finding of Bormann [30], we find that there is clear
benefit in defining soil “types” based on application-specific hydrologic responses. This would
lead to a new concept of soil type—one that is not universal across all applications, but rather,
is based on a common framework for application-specific definition.

We suggest that the use of soil maps to generate hypotheses of soil function across a land-
scape is greatly hindered by the use of USDA soil textures. This is supported by the extensive
differences in texture maps based on hydraulic function compared to those based on soil tex-
ture and the large uncertainties associated with texture-base hydrologic-function maps. Hydro-
logic-process-based classifications produce maps that are easily interpreted, lacking the errors
and ambiguity that would result from inference of landscape function based on the USDA clas-
sifications. While we have focused on hydrologic applications, the underlying concept of pro-
cess-specific clustering presented could be applied using any set of predictions of interest with
corresponding geospatially referenced data and appropriate pedotransfer functions.
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