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Although dementia with Lewy bodies (DLB) have Parkinsonism in common

with Parkinson’s disease (PD) or PD dementia (PDD), they have di�erent

neuropathologies that underlie Parkinsonism. Altered brain functional

connectivity that may correspond to neuropathology has been reported

in PD while never been studied in DLB. To identify the characteristic

brain connectivity of Parkinsonism in DLB, we compared the resting state

metabolic connectivity in striato-thalamo-cortical (STC) circuit, nigrostriatal

pathway, and cerebello-thalamo-cortical motor (CTC) circuit in 27 patients

with drug-naïve DLB and 27 age- and sex-matched normal controls

using 18F-fluoro-2-deoxyglucose PET. We derived 118 regions of interest

using the Automated Anatomical Labeling templates and the Wake Forest

University Pick-Atlas. We applied the sparse inverse covariance estimation

method to construct the metabolic connectivity matrix. Patients with DLB,

with or without Parkinsonism, showed lower inter-regional connectivity

between the areas included in the STC circuit (motor cortex–striatum,

midbrain–striatum, striatum–globus pallidus, and globus pallidus–thalamus)

than the controls. DLB patients with Parkinsonism showed less reduced

inter-regional connectivity between the midbrain and the striatum than those

without Parkinsonism, and higher inter-regional connectivity between the

areas included in the CTC circuit (motor cortex–pons, pons–cerebellum, and

cerebellum–thalamus) than those without Parkinsonism and the controls. The

resting state metabolic connectivity in the STC circuit may be reduced in DLB.

In DLB with Parkinsonism, the CTC circuit and the nigrostriatal pathway may

be activated to mitigate Parkinsonism. This di�erence in the brain connectivity

may be a candidate biomarker for di�erentiating DLB from PD or PDD.
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dementia with Lewy bodies, Parkinsonism, metabolic connectivity, positron emission

tomography, neurodegenerative disease
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Introduction

Dementia with Lewy bodies (DLB) and Parkinson’s disease

dementia (PDD) together represent the second most common

cause of dementia (1). About 30% of patients with Parkinson’s

disease (PD) have cognitive symptoms at initial diagnosis and

as many as 80% will develop cognitive symptoms at some point

in their disease (2). About 25–50% of patients with DLB show

Parkinsonism at initial diagnosis and as many as 80% eventually

develop Parkinsonism as the disease progresses (3). Since PDD

commonly shows core diagnostic features of DLB, it can be

diagnosed when Parkinsonian motor symptoms start at least 1

year earlier than cognitive or perceptual symptoms. In DLB,

cognitive symptoms appear before, or at the same time, as

motor symptoms (4). However, this 1-year rule has logical and

practical limitations. For example, it is impossible to distinguish

PD from DLB on the 1-year rule when they are prodromal. It

is also difficult to determine whether PD with mild cognitive

impairment (MCI) would be PDD or DLB (5).

Although PDD and DLB have Parkinsonism in common,

DLB shows more rigidity and bradykinesia than resting tremors

and shows the symptoms more symmetrically than dose PDD

(6). Although both diseases have Lewy pathology in common,

it takes place from the brainstem in PD (7) while from the

neocortex or limbic system in DLB (4). Therefore, we may

differentiate PD or PDD from DLB on this different motor

pathology even when non-motor symptoms such as cognitive

impairment or hallucination are not accompanied.

In PD, nigrostriatal dopaminergic degeneration may

produce rigidity and bradykinesia by impairing the striato-

thalamo-cortical (STC) motor circuit (8). In previous resting

state functional MRI (fMRI) studies, PD showed reduced

connectivity between the substantia nigra and the putamen

(9) while enhanced connectivity between the motor cortex

and the striatum (10, 11) and between the motor cortex and

the cerebellum (12). Since the severity of Parkinsonism

was positively correlated with the connectivity of the

cerebello-thalamo-cortical (CTC) motor circuit (12), the

cerebellum and possibly the motor cortex may play a

compensatory role to maintain a better motor function in

PD (13).

Since DLB has more Lewy pathology in the striatum and

the neocortex (4, 14), DLB may have different resting state

brain connectivity patterns in STC motor circuit from PD.

However, the resting state brain connectivity in STC motor

circuit has never been investigated in DLB. The resting-state

brain connectivity can be obtained using the temporal coherence

of BOLD signals between different brain regions measured with

fMRI during the resting state as in the PD study presented above.

It can also be obtained through the covariation of the 18F-fluoro-

2-deoxyglucose PET (FDG-PET) glucose uptake value between

the brain regions of the subjects, which is called metabolic

connectivity. Brain metabolic connectivity measured through

FDG-PET data examines functional interactions in brain regions

and can provide valuable insights into understanding the

pathophysiology of neurodegenerative disease (15). In this

study, we investigated the connectivity of STC and CTC circuits

and nigrostriatal pathway in DLB by comparing the resting

state metabolic connectivity between patients with DLB and

their age- and sex-matched cognitively normal controls (NC)

using FDG-PET.

Materials and methods

Subjects

We enrolled 27 patients with DLB from visitors to

the dementia clinic of Seoul National University Bundang

Hospital (SNUBH) from 2006 to 2017 and their 27 age- and

sex-matched cognitively NC from visitors to the dementia

clinic of SNUBH from 2006 to 2017 and the participants

of the Korean Longitudinal Study on Cognitive Aging

and Dementia (KLOSCAD). The KLOSCAD is an ongoing

nationwide population-based prospective cohort study on

cognitive aging and dementia of elderly Koreans launched

in 2009 (16). All subjects were community-dwelling Koreans

aged 60 years or older. All patients with DLB were naïve

from anti-Parkinsonian or antipsychotic medications and did

not take any antidepressants or prokinetics known to act on

dopamine receptors. In addition, they had no other comorbid

major psychiatric or neurologic diseases. We summarized the

characteristics of the study participants in Table 1.

Geriatric psychiatrists, with expertise in dementia research,

administered a standard diagnostic face-to-face interview,

including recording detailed medical histories and conducting

physical and neurological examination of each participant,

using the Korean version of the Consortium to Establish a

Registry for Alzheimer’s Disease Assessment Packet (CERAD-K)

Clinical Assessment Battery (17) and the Korean version of Mini

International Neuropsychiatric Interview (MINI) (18). They

evaluated Parkinsonian symptoms using the Extrapyramidal

Dysfunction in AD (EPDAD) scale included in the CERAD-

K (19). A research neuropsychologist or trained research

nurse conducted neuropsychological assessments, including the

CERAD-K Neuropsychological Assessment Battery (17), the

Digit Span Test (20), and the frontal assessment battery (FAB)

(21). We also conducted laboratory tests, including complete

blood cell counts, chemical profiles, serologic tests for syphilis,

and typing of apolipoprotein E genes. We diagnosed DLB with

the revised consensus criteria proposed by McKeith et al. (4).

Among the 27 patients with DLB, 10 either had rigidity or

bradykinesia, but no tremor (P+DLB group), but 17 did not

have any of the above symptoms (P-DLB group).
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Image acquisition and preprocessing

We acquired brain 18F-FDG-PET images at the diagnosis

from a dedicated PET scanner (Allegro; Philips Medical System,

Cleveland, OH, USA) (22) in 54 participants (27 DLB and

27 NC). The amount of intravenous administration of 18F-

FDG was 4.8 MBq/kg for the PET scanner. We instructed

the participants to fast for at least 6 h before scanning. After

the fasting period, we checked that the blood sugar level of

the participants was below 180 mg/dl. We then injected 18F-

FDG intravenously in a quiet, dimly lit waiting room, and

allowed the participants to lie comfortably for a 40-min FDG

equilibration period. After the equilibrium period, we led the

participants to the adjacent imaging suite and aligned their head

to the canthomeatal line in the scanner. From the Allegro PET

scanner, we obtained 10-min emission scans and attenuation

maps, using a Cs-137 transmission source. We reconstructed the

attenuation-corrected images using the PET data and a 3D row-

action maximum-likelihood algorithm with a 3D image filter of

128× 128× 90 matrices and a pixel size of 2× 2× 2 mm.

We preprocessed the image data using the

Statistical Parametric Mapping 8 (SPM8) software

(www.fil.ion.ucl.ac.uk/spm/) based on MATLAB 2014a

(www.mathworks.com). We aligned the FDG-PET images

of each subject to standard Montreal Neurological Institute

(MNI) space by spatial normalization and resampled them to a

2-mm isovoxel resolution (23). We smoothed all the spatially

normalized PET images using a Gaussian kernel of 8-mm full

width at half maximum (FWHM) to increase the signal-to-

noise ratio and to minimize the individual differences in the

uncorrected brain cortex. We derived 116 regions of interest

(ROIs) consisting of 90 cortical and subcortical regions and 26

cerebellar regions, using the Automated Anatomical Labeling

(AAL) templates (24) and 2 ROIs consisting of the brainstem,

using the Wake Forest University PickAtlas Tailarach Daemon

(25). We calculated the regional standard uptake value ratio

(SUVR) of each ROI by normalizing to activity in mean values

of the bilateral postcentral gyrus as a reference region because

the postcentral area is a relatively preserved area in DLB (26).

We defined the 116 ROIs identified above as the nodes

and made up the network, with the frontal, motor cortex,

parietal, occipital, temporal, insular, thalamus, basal ganglia,

brainstem, and cerebellum as 10 subdivisions (Figure 1). We

excluded the bilateral postcentral gyrus, which was used as

the reference region. To analyze the connectivity of the STC

and CTC circuits, we estimated the resting state metabolic

connectivity between seven subdivisions: including the motor

cortex, striatum, globus pallidus, midbrain, thalamus, pons, and

cerebellum. We constructed a subject-by-node matrix (number

of subjects × 116 regions) from each diagnostic group using

the SUVR. We applied the sparse inverse covariance estimation

(SICE) method to the subject-by-node matrices (27) using the

GraphVar toolbox (28) to construct the metabolic connectivity
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matrix, in which 0 and 1 represent the absence and the presence

of connections (significant partial correlation between two

nodes) at a specific density, respectively. The SICE method we

used to estimate metabolic connectivity has been previously

used in other FDG-PET studies (29, 30) because the brain

connectivity model can be reliably provided by SICE even if

the sample size is equal or even smaller than the number of

nodes selected (27). Since SICE does not provide information on

strength of metabolic connectivity, we obtained a quasi-measure

of the strength by summing the unweighted binary matrices

estimated at several different density levels (0.03, 0.05, 0.07, 0.09,

0.12) (27) for visualization purposes (Figure 1L). We visualized

the metabolic connectivity matrix on a 3D brain template using

the BrainNet toolbox (31) (Figure 1R).

Statistical analysis

We compared the characteristics between diagnostic groups

using the chi-squared tests for categorical variables and the

independent t-tests or ANOVA for continuous variables.

To compare the brain connectivity in each group, we

calculated the number of connections at a specific threshold

(0.03) (27). The number of connections was referred to the

number of nodes marked 1 in the metabolic connection matrix.

We defined the number of connections between the different

subdivisions as inter-regional connectivity and the number of

connections in each subdivision as intra-regional connectivity.

For statistical analysis, we extracted 1,000 bootstrap samples

from each subject group, with replacement. For each of the

bootstrap samples, we calculated the number of connections

in intra- and inter-subdivisions, as described above (27).

We compared the inter-regional connectivities (motor cortex–

striatum, midbrain–striatum, striatum–globus pallidus, globus

pallidus–thalamus, thalamus–motor cortex, motor cortex–

pons, pons–cerebellum, and cerebellum–thalamus) between

P+DLB, P-DLB, and NC groups using ANOVA with the

Bonferroni post-hoc comparisons. We also compared the

intra-regional connectivities (motor cortex, midbrain, striatum,

globus pallidus, thalamus, pons, and cerebellum) between

P+DLB, P-DLB, and NC groups using ANOVA with the

Bonferroni post-hoc comparisons. We performed all statistical

analysis using the IBM SPSS version 20 (32).

Result

The intra- and inter-regional connectivity matrices of the

P+DLB, P-DLB and NC groups are shown in Figure 1. The

inter-regional connectivity in the STC and CTC circuits was

different between the NC, P+DLB, and P-DLB groups; motor

cortex–striatum connectivity (F2,2997 = 1,021.02, p < 0.001,

η² = 0.405), midbrain–striatum connectivity (F2,2997 = 153.91,

p < 0.001, η² = 0.093), striatum–globus pallidus connectivity

(F2,2997 = 7210.17, p < 0.001, η² = 0.828), globus pallidus–

thalamus connectivity (F2,2997 = 989.52, p < 0.001, η² =

0.398), thalamus–motor cortex connectivity (F2,2997 = 314.80,

p < 0.001, η² = 0.174), motor cortex–pons connectivity

(F2,2997 = 7.04, p < 0.001, η² = 0.005), pons–cerebellum

connectivity (F2,2997 = 148.81, p < 0.001, η² = 0.090), and

cerebellum–thalamus connectivity (F2,2997 = 1,248.15, p <

0.001, η²= 0.454).

Post-hoc comparisons showed that the inter-regional

connectivities within the STC circuit were lower in both

P+DLB and P-DLB than in NC. The motor cortex–striatum

and striatum–globus pallidus connectivities of P+DLB were

comparable to those of P-DLB (Figures 2A,E), while the globus

pallidus–thalamus and midbrain–striatum connectivities of

P+DLB were higher than those of P-DLB (Figures 2D,F). The

inter-regional connectivities within the CTC circuit (motor

cortex–pons, pons–cerebellum, and cerebellum–thalamus

connectivities) of P+DLB were higher than those of P-DLB, as

well as those of NC. P-DLB showed comparable connectivity

between the motor cortex, pons, cerebellum, and thalamus to

NC (Figures 2C,G,H). The thalamus–motor cortex connectivity,

which is shared by the STC and CTC circuits, was highest in

P+DLB, followed by NC and P-DLB (Figure 2B).

As shown in Figure 3, intra-regional connectivity was

different between P+DLB, P-DLB, and NC groups in the

motor cortex (F2,2997 = 199.18, p < 0.001, η² = 0.117),the

striatum (F2,2997 = 3,125.38, p < 0.001, η² = 0.676), the

globus pallidus (F2,2997 = 103.65, p < 0.001, η² = 0.065), the

thalamus (F2,2997 = 736.23, p < 0.001, η² = 0.337), and the

cerebellum (F2,2997 = 371.61, p < 0.001, η² = 0.199). In these

subdivisions, both P+DLB and P-DLB groups showed lower

intra-regional connectivity than the NC group. P+DLB group

showed comparable intra-regional connectivity to P-DLB in the

motor cortex, striatum and globus pallidus (Figures 3A–C) but

higher intra-regional connectivity in the thalamus (Figure 3D)

and lower intra-regional connectivity in the cerebellum than P-

DLB (Figure 3E). Intra-regional connectivities in the pons and

the midbrain were comparable between the three groups.

Discussion

In this study, patients with DLB, with or without

Parkinsonism, showed lower resting metabolic connectivities

between the subdivisions included in the STC circuit than the

normal controls. Compared to the NC group, both P+DLB and

P-DLB groups showed lower inter-regional connectivity

between motor cortex–striatum, midbrain–striatum,

striatum–globus pallidus, and globus pallidus–thalamus

(Figures 2A,D–F), and lower intra-regional connectivity

in the motor cortex, the striatum, and the globus pallidus

(Figures 3A–C), indicating that the STC circuit may be
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FIGURE 1

Intra- and inter-regional connectivity matrices of the (A) P+DLB, (B) P-DLB, and (C) NC groups. Full connectivity matrices in the left column

were obtained from 116 nodes. The color bar represents the strength of connectivity, with red representing stronger connectivity, and blue

representing weaker connectivity. Each box represents the 10 subdivisions, which are F, MC, P, O, T, I, TH, BG, BS, and CB. The color of each

subdivision matches the color of the node in the brain template in the right column. We display connectivity matrices on 3D brain templates on

the right column. P+DLB, dementia with Lewy bodies with parkinsonism; P-DLB, dementia with Lewy bodies without parkinsonism; NC, normal

controls; F, frontal; MC, motor cortex; P, parietal; O, occipital; T, temporal; I, insular; TH, thalamus; BG, basal ganglia; BS, brainstem; CB,

cerebellum.
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FIGURE 2

Comparison of the number of inter-regional connections among P+DLB, P-DLB, and NC groups. Box plots of the mean number of connections

between (A) MC–ST; (B) TH-MC, (C) MC-PN, (D) MB-ST, (E) ST-GP, (F) GP-TH, (G) CB-TH, and (H) PN-CB. The solid lines represent the median

value and dashed lines represent the mean value. *indicate significantly di�erent group means at p <0.001. P+DLB, dementia with Lewy bodies

with parkinsonism; P-DLB, dementia with Lewy bodies without parkinsonism; NC, normal controls; MC, motor cortex; ST, striatum; PN, pons;

TH, thalamus; MB, midbrain; GP, globus pallidus; CB, cerebellum.

FIGURE 3

Comparison of the number of intra-regional connections among P+DLB, P-DLB, and NC groups. Box plots of the mean number of connections

between (A) MC, (B) ST, (C) GP, (D) TH, and (E) CB. The solid lines represent the median value and the dashed lines represent the mean value.

*indicate significantly di�erent group means at p <0.001. P+DLB, dementia with Lewy bodies with parkinsonism; P-DLB, dementia with Lewy

bodies without parkinsonism; NC, normal controls; MC, motor cortex; ST, striatum; GP, globus pallidus; TH, thalamus; CB, cerebellum.
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disrupted in DLB, regardless of the presence of Parkinsonism.

Additionally, P+DLB group showed higher connectivity

between midbrain–striatum than the P-DLB group (Figure 2D)

and higher motor cortex–pons, pons–cerebellum, and

cerebellum–thalamus inter-regional connectivity than P-DLB

and NC groups (Figures 2C,G,H), which may be compensatory

hyperactivation to mitigate Parkinsonism.

These patterns of resting state brain connectivity of STC

circuit and nigrostriatal pathway in DLB contrasted from

those reported previously in PD. In previous resting state

connectivity studies using FDG-PET and fMRI, PD showed

reduced connectivity between the substantia nigra-putamen (9)

and among the lower brainstem-pons-midbrain which include

the substantia nigra pars compacta (30) while enhanced inter-

regional connectivity between the motor cortex and the striatum

(10, 11) and intra-regional connectivity in the motor cortex (33).

This suggests that the relatively preserved motor cortex

may compensate the dysfunctional nigrostriatal dopaminergic

pathway in PD (34). The different patterns of brain connectivity

observed between DLB and PD seem to reflect the different

neuropathologies between the two diseases. In DLB, Lewy

pathology is prominent in the neocortex, while in the substantia

nigra in PD (4, 7, 14). Considering that striatal D2 receptor

upregulation was observed in PD (35) but not in DLB (36), the

activation of the nigrostriatal dopaminergic projection may play

a role in mitigating Parkinsonism in DLB.

This study also found that connectivity in the CTC circuit

was enhanced in the P+DLB group as was in PD. In PD,

compensatory CTC circuit activation was found both at rest and

during motor tasks (13, 37, 38) and was positively correlated

with the severity of Parkinsonism (12). The P+DLB group

also showed higher motor cortex–pons, pons–cerebellum, and

cerebellum–thalamus inter-regional connectivity than the P-

DLB and NC groups (Figures 2C,G,H). In DLB, the CTC circuit

may be activated only when Parkinsonism develops to mitigate

hypokinetic symptoms as in akinesia/rigidity-type PD (12, 37).

Although the mechanism that increased connectivity of

CTC circuits compensates for Parkinsonism symptoms of

DLB is not known, previous studies suggest that it will play

a complementary role through functional and anatomical

connections of STC and CTC circuits.

In the previous PD study, putamen-motor cortex and

putamen-cerebellar connectivities were increased in PD

compared to normal groups, where the motor performance

was negatively correlated with the connectivity of the

putamen-motor cortex and positively correlated with

the putamen-cerebellum (39). These results support the

compensatory mechanism of the CTC circuit in PD (40). In

addition, in probable DLB, the strategic binding ratio (SBR),

which means the degree of dopamine active transporter (DAT)

binding, has a negative correlation with the UPDRS score (41),

similar to the early and mid-term PD (42). Although there is

a difference in the propagation direction of Lewy pathology

in DLB and PD (4, 7, 14), dopamine deposition in the striatal

appears in common, supporting the argument that increased

connectivity of the CTC circuits in P+DLB can compensate for

dysfunction of the STC circuits.

We can also consider the effect of the anatomic connection

of STC circuit and CTC circuit on motor dysfunction

composition through di-synaptic connection of the cerebellum

and the basal ganglia. Previous studies confirmed the presence

of a disynaptic anatomical connection between the basal ganglia

and the cerebellum in both animals (43) and humans (44).

Abnormal neural activity in the subthalamic nucleus can be

transmitted to the cerebellum via the pons (43). According to the

“super-integrator theory,” the basal ganglia and cerebellar motor

thalamus territories assimilate motivational and proprioceptive

motor information previously integrated into the cortico-

basal ganglia and cortico-cerebellar networks, respectively, to

develop sophisticated motor signals that are transmitted in

parallel pathways to cortical areas for optimal generation of

motor programs (45). If this is the case, hyperactivation of

the cortico-cerebellar network may mitigate Parkinsonism in

DLB or PD by affecting the overall STC circuit through

integration in the motor thalamus. This may be why the P+DLB

group showed higher GP-TH connectivity than the P-DLB

group in the current study (Figure 2F). Therefore, considering

that the positive correlation with motor performance and

the cerebellum of CTC circuit in the PD study (39) have

various anatomical pathways, the compensation mechanism

in P+DLB can be considered, and it is necessary to confirm

the correlation with the motor performance of DLB in

future studies.

This is the first study to see metabolic connectivity according

to Parkinsonism symptoms of DLB. Therefore, it was not

possible to compare the results of previous reports conducted

in the same way as our study. There were several previous

studies comparing the resting state connectivity between DLB

and NC using FDG-PET. One have shown that the loss

of metabolic connection between striatum–prefrontal cortex,

striatum–sensorimotor cortex, and striatum–supplementary

motor region in the DLB was more severe than in the

NC (29), which is consistent with our results and shows

the dysfunction of the STC motor circuit in DLB. Another

metabolic connectivity study reported that the connectivity

of the prefrontal region in the DLB increased compared

to the NC (46). Since previous studies have reported that

the prefrontal cortex plays a comprehensive role in motor

system dysfunction (47–49), increased connectivity of the

prefrontal cortex in DLB may be interpreted as compensating

for motor dysfunction in DLB. The other study comparing

the metabolic connectivity according to the stage of DLB

with the normal group, DLB of early stage, shows increased

inter and intra-regional connectivities in the basal ganglia

and limbic system but shows decreased connectivity in the

later stage (50). This suggests that the metabolic connectivity
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may vary depending on the severity of the disease, and it

is necessary to study in the future whether the connectivity

varies depending on the severity of the disease along with the

motor symptom.

Resting metabolic connectivity reflects the energy

consumption at the metabolic level and reflects synaptic brain

metabolism, while the BOLD signal from the functional MRI

reflects the ongoing neural synchronization (51). Therefore,

the metabolic connectivity obtained from FDG-PET may

better reflect the synaptic dysfunction of neurodegenerative

diseases rather than functional connectivity obtained from

fMRI. In addition, FDG-PET has better signal-to-noise ratio

than fMRI (15). However, this study has several limitations

to be noted. First, this study was cross-sectional, and the

sample size was small. In future research, the metabolic

connectivity of DLB with or without Parkinsonism with

larger sample should be tested. Second, the spatial resolution

of FDG-PET was not sufficient to separate brain regions

into nuclear levels (52), for example, to separate the globus

pallidus into an internal part and an external part. Third,

the correlation between the severity of Parkinsonism and the

metabolic connectivities in the STC and CTC circuits and

nigrostriatal pathway was not investigated. It is also necessary

to review whether the fact that the MMSE score of P-DLB was

significantly higher than P+DLB did not affect the results.

However, previous studies showed that there was no correlation

between the motor symptom severity and the MMSE score

in patients with DLB (6). Therefore, the significant difference

in MMSE scores between the two groups simply indicates

the stage of cognitive decline and cannot be considered to

have affected the connectivity of the motor circuit according

to the presence or absence of Parkinson’s disease symptoms.

On the other hand, since there are studies showing that the

MMSE score affects the global connectivity of DLB (53), it

is necessary to proceed with further research to confirm the

correlation of the part related to the cognitive function, not the

motor circuit.

In patients with DLB, the resting state metabolic

connectivity in the STC circuit was reduced regardless of the

presence of Parkinsonism. In DLB patients with Parkinsonism,

the resting state metabolic connectivity was less reduced in the

nigrostriatal pathway than those without Parkinsonism. DLB

with Parkinsonism may possibly be differentiated from PD or

PDD using the resting state metabolic connectivities of STC and

nigrostriatal pathway even when non-motor symptoms appear

in DLB.
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