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ABSTRACT Coccidiosis, the parasitic disease caused
by Eimeria spp., is controlled during broiler chicken
production through the inclusion of in-feed anticoccidial
medications. Live-coccidiosis vaccination has become an
increasingly common alternative to these medications.
Monitoring infections with Eimeria spp. in flocks can be
accomplished through determining the concentration of
oocysts excreted in the fecal material (i.e., oocysts per
gram; OPG). The purpose of our study was to sample
commercial Ontario broiler chicken flocks at various
times of the year to determine weekly OPG counts for
flocks that use either an in-feed anticoccidial medication
or a live-coccidiosis vaccine.Weekly sampling of 95 flocks
from placement to market permitted documentation of
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oocyst cycling patterns typical of conventional and
antibiotic-free flocks, and variation of these patterns in
summer and winter. Medicated flocks had higher and
later peak oocyst shedding compared with vaccinated
flocks. Flocks reared in the summer peaked in oocyst
shedding earlier than flocks reared in the winter. Despite
what appears to be poorer coccidiosis control in the
medicated flocks, the performance data were similar for
these flocks compared with vaccinated flocks. This is the
first study describing typical patterns of parasite shed-
ding in Ontarian commercial broiler chicken flocks; these
data will provide a baseline of expected Eimeria spp.
infections in Canadian broiler chicken flocks to ensure
optimal coccidiosis prevention.
Key words: broiler chickens, coccidiosis monitoring, oocys
ts per gram, anticoccidial medications, coccidiosis vaccine
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INTRODUCTION

Coccidiosis is an intestinal disease of production ani-
mals caused by parasites in the genusEimeria. Historical-
ly, the disease has been problematic for the poultry
industry, including broiler chicken production
(Chapman et al., 2013). Both clinical and subclinical
disease are responsible for decreasing profitability by
increasing mortality and reducing feed efficiency, while
incurring costs of disease prevention and intervention
(Williams, 1999). The estimated global economic burden
of the disease has been calculated to exceedUSD $3 billion
annually (Williams, 1999; Dalloul and Lillehoj, 2006).
The most popular coccidiosis prevention strategy for
broiler chicken production over the last few decades
has been the addition of anticoccidials in feed (Dalloul
and Lillehoj, 2006; Chapman et al., 2013). Since the
introduction of the first commercial anticoccidial medi-
cations (Grumbles et al., 1948; Chapman, 2009), the an-
imal health industry has continued to respond to the
threat posed by these parasites by developing products
to prevent coccidiosis or reduce the severity of disease.
Anticoccidials are classified into one of 2 categories,
chemicals or ionophores, and are applied using a wide
variety of combinations and timings (Peek and
Landman, 2011; Chapman et al., 2013). The effective-
ness of these anticoccidials led to their near ubiquitous
use in the broiler chicken industry. Not surprisingly,
such widespread and continuous use in the field gener-
ated varying levels of resistance against all commercially
used products (Chapman, 1997; Martin et al., 1997;
Stephan et al., 1997). As the industry shifts toward pro-
ducing poultry without antibiotics, ionophores may no
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longer be acceptable for use because of their impacts on
intestinal microbial communities (Dibner and Richards,
2005; Peek and Landman, 2011).
A number of production programs or marketing

labels, such as raised without antibiotics (RWA in Can-
ada), no antibiotics ever (NAE in USA), or antibiotic-
free (ABF) have been introduced to address the concerns
of scientific and medical communities regarding the
overuse of antibiotics. An alternative coccidiosis preven-
tion strategy used in such programs has been live-
coccidiosis vaccines applied to chicks, which allows for
the development of immunity to the Eimeria spp.
present in the vaccine (Peek and Landman, 2011;
Chapman et al., 2013; Price et al., 2015) after adequate
cycling in the barn (Chapman et al., 2002; Velkers et al.,
2012; Price et al., 2016).
Typically, diagnostic methods for Eimeria spp. are

applied only when clinical coccidiosis is suspected
(Johnson and Reid, 1970; Williams, 2005). In such cases,
the intestinal tracts from a subsample of chickens in the
flock are examined macroscopically for lesions typical of
coccidiosis (Johnson and Reid, 1970). The severity of
coccidiosis is related to the number of oocysts ingested
because the parasites’ life cycles are self-limiting
(McDonald and Shirley, 2009; Price, 2012; Chapman
et al., 2013). In nonclinical cases of coccidiosis, the
severity of infection can be estimated by measuring the
abundance of oocysts that are shed in the feces; this
abundance is expressed as oocysts per gram (OPG)
(Hodgson, 1970; Williams, 2001; Haug et al., 2008;
Oden et al., 2012; Chapman et al., 2016; Parent et al.,
2018).
By collecting samples systematically at predefined in-

tervals, flock-specific shedding patterns have been
sought after to provide detailed insights into the timing
and abundance of Eimeria spp. cycling in each flock
(Haug et al., 2008; Chapman et al., 2016; Parent et al.,
2018).
The overall aim of this study was to document Eime-

ria spp. infection shedding patterns by chickens in com-
mercial broiler production in Ontario, Canada. The
specific objectives were to 1) establish benchmarks for,
and compare OPG patterns in flocks reared under
competing coccidiosis prevention strategies (medicated
or vaccinated), 2) understand how external climate af-
fects oocyst shedding patterns, and 3) determine if there
are differences in performance between medicated and
vaccinated flocks.
MATERIALS AND METHODS

Research Ethics

The University of Guelph Research Ethics Board
approved the on-farm study (REB#16MR013). An
institutional animal utilization protocol was not
required because chickens were not handled or sampled.
All handling of fecal and litter material was conducted in
compliance with Biohazard Permit A-169-01-19-07 is-
sued by the Biosafety Committee, University of Guelph.
Participant Enrollment and Study Duration
for the Cohort (On-Farm) Study

Broiler producers were made aware of the study by
word of mouth; representatives from feed and animal
health companies and neighboring producers were the
primary source of distribution. All commercial broiler
production facilities in southern Ontario that were within
170 km of the University of Guelph, and were facilities
registered with the Chicken Farmers of Ontario (provin-
cial marketing board for chicken), were eligible to partic-
ipate. Participating facilities, defined as those having one
or more flocks sampled during the study period, were
selected on the basis of their coccidiosis prevention pro-
gram (medicated or vaccinated; defined below); facilities
varied in their production inputs, such as size of opera-
tion, hatchery, feed mills and nutrition programs, and
the size of bird grown. The amount of time and resources
available for facility visits dictated the number of flocks
included in the study; however, the sample collection
period was extended to 2 yr to increase the number of
flocks and to ensure that each season (summer and
winter; defined below) was represented more than once.
Participating facilities were required to be registered com-
mercial production facilities (i.e., backyard flocks were
ineligible). Participants were instructed to continue their
normal protocols, and no change in coccidiosis prevention
program or management was requested. A questionnaire
was used to collect data on flock characteristics (breed,
sex, number of birds placed) and performance parameters
(mortality, days to market, feed consumption, live weight
at processing, condemnations) for each flock fromwhich a
complete series of samples was collected; provision of
these data was not a requirement for participation (i.e.,
the questionnaire was optional).

The first on-farm sampling was conducted in May 2016
and the last sampling was completed in April 2018. To
reflect the seasonal differences in external environmental
conditions, samples collected from flocks placed fromMay
until early September were considered to be “summer”
samples and those collected from flocks placed from
December until early March were considered to be
“winter” samples. Summer samples (May to October sam-
plings) were obtained in 2016 and 2017, and winter sam-
ples (December to April samplings) were obtained in
2016–2017 and 2017–2018. Thus, there was a total of 4
sample collection periods during the study: summer
2016 [S16]; winter 2017 [W17]; summer 2017 [S17]; and
winter 2018 [W18]. For each participating facility, only
one flock per sample collection period was included, to a
maximum of 4 flocks if the producer participated for the
entire study period. Producers were free to join or leave
the study at any time; however, during their enrollment,
a full series of samples from each flock was obtained.
Sample Collection for the Cohort Study

Manual collection of 40 fecal droppings (pooled into a
single sample) was performed using a standardized route
for sampling within the barn. The collector walked the



Table 1. Season of collection and anticoccidial programs of Ontario flocks from
which weekly fecal sample collections (n5 95) during the period of May 2016 to
April 2018.

Collection period1 Medicated flocks Vaccinated flocks Total flocks

S16 (05/2016-10/2016) 13 13 26
W17 (12/2016-04/2017) 20 14 34
S17 (05/2017-10/2017) 11 12 23
W18 (12/2017-04/2018) 9 3 12
Totals 53 42 95

Samples collected at 1 to 5 weeks of age consisted of a single pool of 40 manually
collected fresh fecal droppings (n 5 461).

1S16 and S17: flocks placed from May until early September with sample collection
fromMay to October.W17 andW18: flocks placed fromDecember until earlyMarch with
sample collection from December to April.
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length of the barn 4 times, collecting 10 fresh droppings
per pass (litter material and bedding was excluded),
following paths that were approximately equally spaced
across the barn. Both fecal and cecal droppings were ob-
tained. Droppings were placed in either a w236 mL
(8 oz.) wide-mouth plastic jar, or appropriately sized,
robust, resealable bag (e.g., Ziploc freezer bag or similar).
Samples were collected from each flock once per week
(every seventh day) starting the seventh day after the
day of chick placement until 5 wk of age, for a total of 5
pooled samples per flock. At each operation (i.e., farm),
only one facility (i.e., house/barn) was sampled, and if
it was a multistory facility, samples were collected from
the ground floor (i.e., lower level or first floor).

The researcher showed each new participating pro-
ducer how to perform sample collection during the first
flock sampling (i.e., week 1) at that location. Thereafter,
the researcher or participant collected the samples. If
collected by the researcher, fresh samples were trans-
ported back to the University of Guelph in a cooler
with an ice pack. Samples collected by the participants
were stored on-farm until all required samples from the
flock were collected, then shipped together by prepaid
courier to the University of Guelph. If the facility had
a refrigerator available, samples were stored at w4�C
until shipping. If a refrigerator was not available, a pre-
measured volume of 1:50 diluted bleach preservative was
added to the fecal material (approximately 1:1 v/v) and
mixed to reduce bacterial growth (final concentration of
sodium hypochlorite of w500 ppm).
Table 2. Characteristics of Ontario bro
questionnaire was completed by the part

Variable Medicated flocks (n

Breed
Cobb 500 12
Ross 708 18

Sex
Cockerels 6
Mixed 19
Pullets 5

No. of birds placed
Mean 21,785
Median 18,717
Min 7,750
Max 48,849
Sample Processing

Samples were stored at the University of Guelph at
4�C for no more than 7 d after the day of collection
before being processed. Fecal samples were processed
to determine OPG counts through a modified McMas-
ter counting chamber flotation using saturated salt
solution, 100! magnification microscope, and a stan-
dard formula calculation (Long and Rowell, 1975)
adjusted, when necessary, to account for bleach preser-
vative. Some samples required additional dilutions
when oocysts were too numerous to count; for such sam-
ples, up to three 10-fold dilutions using saturated salt
were conducted so that 50 to 500 oocysts were observ-
able within the counting grid. The calculated limit of
detection using standard dilution and McMaster count-
ing chambers was w17 OPG.
Medicated and Vaccinated Flocks

Medicated flocks were defined as those on a conven-
tional feeding program that included the prophylactic
use of antibiotics and anticoccidial medications in the
feed. There was no standard program across these flocks
with respect to the products used or the timing of admin-
istration. All flocks started on one anticoccidial product,
then shuttled to a different product at 2 to 4 wk of age,
depending on the program set by the feed mill.
Vaccinated flocks were defined as those from

participating facilities that reared broilers under an
iler flocks for which a performance
icipating producer (n 5 53).

5 30) Vaccinated flocks (n 5 23)

4
19

1
19
3

26,281
24,888
7,956
54,570
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RWA/NAE/ABF program that used neither in-feed
antibiotics nor in-feed anticoccidials (i.e., none were
on a bioshuttle or similar program that combined
vaccination with anticoccidial medication). These
flocks were vaccinated at the hatchery following stan-
dard industry protocols using one of the 2 commercial
live-coccidiosis vaccines available in Canada: Coccivac
B (Schering Plough, Kenilworth, NJ); or, Immucox III
(Ceva Animal Health, Guelph, ON).
Data Analyses for the Cohort Study

The OPG and questionnaire data were manually
entered into Microsoft Excel (Microsoft Office 2013,
Microsoft Corporation, Redmond,WA), reviewed for ac-
curacy, then uploaded to SAS 9.4 (SAS Institute Inc.,
Cary, NC) for analysis. Line graphs were used to illus-
trate OPG shedding patterns for individual flocks over
the 5-week grow-out period; separate graphs were used
for medicated and vaccinated flocks. In addition, using
aggregated data, line graphs were used to illustrate
OPG shedding patterns over the 5-week grow-out
period, both overall (mean and median), and by season
(summer and winter), for medicated and vaccinated
flocks that were adjusted for facilities that had multiple
flocks sampled.
The PROC MIXED program in SAS 9.4 was used to

determine differences in OPG count data between pre-
vention programs (medicated vs vaccinated) and age
of sample collection (within and between prevention
programs). The OPG data from the 5 weekly sam-
plings (i.e., weeks 1–5) were classified as repeated mea-
sures in the analyses. The participating facility was
classified as a random effect to account for repeated
measures at the facility level (i.e., up to 4 flocks per
facility). The predicted OPG count at the end of
each week of age for the medicated and vaccinated
flocks were estimated using the PROC MIXED pro-
gram in SAS 9.4.
The PROC MIXED program in SAS 9.4 was used to

determine differences in performance parameters (ob-
tained from the questionnaire) between medicated and
vaccinated flocks. The coccidiosis prevention program
was the main effect, participating facility was a random
effect, and flock characteristics and season were covari-
ates. For all analyses, terms with a P-value �0.05 were
considered to be significantly different. Post hoc power
calculations were used to determine whether there was
sufficient power to detect differences between coccidiosis
prevention programs.
Adjusted feed conversion ratio (adj. FCR; Aviagen,

2018) was calculated using the flock-specific FCR and
market weight, and the averaged market weight from
all flocks using the following formula:
Adj: FCRFlock A 5FCRFlock A 1

�
Target W
RESULTS AND DISCUSSION

In a 1970 study, Hodgson (1970) performed analysis
on 100 individual droppings from broiler flocks to deter-
mine 95% confidence intervals for OPG counts and
concluded that OPG counts based on 40 droppings
would accurately represent the level of coccidial infection
experienced by a flock at a given age. Hodgson also sug-
gested that 50 droppings would provide a reliable esti-
mate of flock OPG counts in a barn of 2,000 or more
broilers (Hodgson, 1970). Based on our preliminary sam-
pling methodology experiments (data not shown), and
the experience of Parent et al. (2018), who pooled 20-
25 droppings for each sampling of a flock, 50 droppings
might be unnecessary to generate representative data
in most field situations. The uniformity of broiler chicken
growth and consistency in the barn environment in the
5 decades since Hodgson’s (1970) study makes it possible
that pooling a modest number of droppings may be
appropriate for determining flock OPG counts.

The OPG counts in our study include oocysts of all
Eimeria spp. shed by infected chickens without differen-
tiating the individual species that might be present in
each sample. There was no attempt to quantify individ-
ual Eimeria spp. For samples containing a single species,
oocyst morphometrics can be used to tentatively identify
the Eimeria sp. present (Tyzzer, 1929; Reid and Long,
1979; Mcdougald et al., 1997; Jenkins et al., 2017). How-
ever, in mixed-species infections typical in commercial
flocks (Ogedengbe et al., 2011; Chapman et al., 2016),
identification of most Eimeria spp. is unreliable due to
the variability and overlap of oocyst morphometrics
within and among Eimeria spp. (Joyner and Long,
1974; Long and Joyner, 1984; Ogedengbe et al., 2011).
With typically 2 or more (and possibly up to 7) Eimeria
spp. within a single field sample (Jenkins et al., 2017),
the use of oocyst morphometrics for differentiating
Eimeria spp. in the field samples from our study was
considered unreliable.
Oocyst Shedding From Commercial Flocks

Characteristics of Participating Facilities and
Flocks Sampled A total of 45 facilities participated in
this study. The coccidiosis prevention program of each
participating facility did not change during the study
period, with the exception of 2 facilities that switched
from using coccidiosis vaccines to anticoccidial medica-
tions. From those 45 participating facilities, 95 broiler
flocks (53 medicated; 42 vaccinated) were sampled over
4 sample collection periods (Table 1) to provide 461
pooled fecal samples that were processed to obtain OPG
counts. Facilities received chicks from 4 different
hatcheries, obtained feed from 6 different feed mills, and
eightAvg all flocks2Actual WeightFlock A

4:5

�



Table 3. Summary of the weight of fecal samples (n5 461) collected at the end of the first, second, third, fourth,
and fifth week of age from Ontario broiler flocks.

Broiler age (weeks)
Pooled

Samples (n)
Mean weight of 40
pooled droppings (g) Median (g) Min Max 95% CI

1 89 43.1 35.5 7.9 152.0 65.7
2 90 94.4 92.0 16.7 194.3 66.9
3 95 136.3 127.7 52.0 289.5 68.3
4 94 168.5 158.8 71.6 433.2 611.3
5 93 167.2 163.8 74.4 399.1 611.3

Each pooled sample consisted of a single pool of 40 manually collected fresh fecal droppings.
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often used site-specific flock management, which could
have included preferred barn environmental conditions,
bedding material (i.e., pine-wood shavings or chopped
straw), and feed and water additives. Flock character-
istics (Table 2) and performance data were provided for
53 of 95 flocks. Most (.70%) of these were mixed-sex;
the median flock size at placement was 22,554 birds,
and breeds included Ross 708 and Cobb 500. All facilities
followed Canadian broiler production regulations be-
tween flocks, which includes a complete clean out of all
contaminated litter material after chickens are sent to
market and provision of fresh bedding for the subsequent
flock (Chicken Farmers of Canada, 2018). These regu-
lated procedures result in nearly a complete removal of
oocysts from the barn environment. By contrast, reusing
litter for several consecutive flocks is the norm in
American broiler production, and viable oocysts have
been demonstrated in reused litter of typical American
facilities before chick placement (Jenkins et al., 2019).

The characteristics of the pooled fecal samples
collected at the end of the first, second, third, fourth,
and fifth week of age are summarized in Table 3. The
predicted OPG values obtained from the PROCMIXED
analysis are outlined in Table 4. The values obtained
from the model may not represent values expected
from a production facility but permit the comparison be-
tween production strategies (medicated vs vaccinated
flocks). Medicated flocks were predicted to have lower
OPG counts than vaccinated flocks for weeks 1, 2, 3,
and 4; medicated flocks were predicted to have higher
OPG counts than vaccinated flocks for the fifth week
of production.
Medicated Flocks—OPG Counts Oocyst shedding
(weekly OPG counts) from all medicated flocks is
Table 4.Oocyst per gram (OPG) predicted value
in SAS 9.4 for the 5 ages of medicated or vaccinat
and the P-value.

Age (weeks) Prevention program Predicted O

1 Medicated 10
Vaccinated 816

2 Medicated 166
Vaccinated 13,636

3 Medicated 1,305
Vaccinated 41,433

4 Medicated 5,110
Vaccinated 22,897

5 Medicated 9,962
Vaccinated 2,301
illustrated in Figure 1. At week 1, most medicated
flocks (43 of 47 sampled at week 1) did not have
detectable oocysts. This finding can be explained by the
removal of contaminated litter and addition of fresh
bedding before chick placement. Most of the medicated
flocks had maximal OPG counts at week 4 (45.3% of
flocks) or week 5 (37.7%), whereas a few had maximal
counts at week 3 (9.4%); the remaining 4 flocks (7.6%)
had undetectable oocysts throughout the sample
collection period (Figure 1). Such high oocyst shedding
in medicated flocks shortly before marketing has been
reported previously (Chapman et al., 2016). The
maximal OPG count for each medicated flock (regard-
less of the week at which this maximal count was
attained) ranged from undetectable to 2,220,591 (mean
222,371; median 116,853). In line with Parent et al.
(2018), the range of OPG counts among the medicated
flocks (Figure 1) was much wider than the range for the
vaccinated flocks (Figure 2). Such variability can be
explained by an individual flock’s challenge (number of
oocysts in the litter) and the susceptibility of the oocysts
to the anticoccidial drugs administered to the flock
(Bafundo et al., 2008). Depending on the history of drug
use at a given facility, the degree of resistance of each
Eimeria sp. present in the barn to the anticoccidial drugs
in use could vary widely (McDonald and Shirley, 2009).
Despite continuous in-feed anticoccidial medication,

most medicated flocks (92.4%) showed increased oocyst
shedding from week 3 onward (Figure 1); however, this
varied among these flocks. Notably, the mean medicated
flocks’ OPG count at week 4 was higher than the mean
vaccinated flocks’ OPG counts at any week (Figure 3).
Our finding of delayed, yet high, OPG counts in medi-
cated flocks has been reported previously (Chapman
s obtained from the PROCMIXED analysis
ed flocks including 95% confidence intervals

PG Lower limit Upper limit P-value

5 23 ,0.001
449 1,483
91 302 ,0.001

8,416 22,094
685 2,490 ,0.001

24,885 68,987
28,12 9,287 0.002
14,134 37,093
4,513 21,989 0.0043
1,268 4,176



0

500000

1000000

1500000

2000000

2500000

1 2 3 4 5

Oo
cy

st
s p

er
 G

ra
m

, F
re

sh
 F

ec
es

Weeks of Age

All Medicated Flocks

Figure 1. Individual flock oocyst shedding patterns over the 5-week
grow-out period for flocks on an anticoccidial medication program.
Each line represents the 5 oocyst per gram (OPG) counts obtained
from an individual flock (n 5 53).
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et al., 2002; Williams, 2002; Jenkins et al., 2017; Parent
et al., 2018), suggesting that resistance to anticoccidial
medications is widespread and that at least some Eime-
ria spp. are totally refractory to control by some of the
commonly used in-feed anticoccidials (Jenkins et al.,
2019). Conversely, our observation that 29 of the 49
oocyst-positive medicated flocks had their maximal
OPG count before week 5 suggests that the chickens in
those flocks were developing immunity to the Eimeria
spp. present while being provided anticoccidial medica-
tion (Chapman, 1999; Hu et al., 2000). Ionophorous
anticoccidials have been documented to allow trickle in-
fections to occur that support the development of immu-
nity (Chapman, 1999; Hu et al., 2000), although
protection takes longer to occur than in vaccinated
flocks.
Vaccinated Flocks—OPG Counts Oocyst shedding
(weekly OPG counts) from all vaccinated flocks is illus-
trated in Figure 2. At week 1, most (38 of 42) vaccinated
flocks had detectable oocysts, with OPG counts of up to
13,682. Oocyst shedding by vaccinated chicks at 5 to 8 d
of age has been associated primarily with the ingestion of
viable oocysts following live vaccine application at the
hatchery (Long and Joyner, 1984; Price et al., 2016).
Flocks shedding few or undetectable numbers of oocysts
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Figure 2. Individual flock OPG shedding patterns over the 5-week
grow-out period for flocks on a coccidiosis vaccination program. Each
line represents the 5 oocyst per gram (OPG) counts obtained from an
individual flock (n 5 42).
on day 7 might have been impacted by one of the
following: 1) poor vaccine delivery (Jenkins et al., 2017);
2) poor vaccine ingestion by chicks (Price et al., 2015,
2016); 3) delayed access to feed after vaccination
(Price et al., 2015); 4) administration of oocysts with
greatly reduced or no viability (Cha et al., 2018); or 5)
provision of starter ration containing anticoccidial
medication, although such an event would be rare.

All vaccinated flocks showed an increase in OPG from
week 1 to 2 (Figure 2) confirming that environmental
cycling (Price et al., 2014) was successful; oocysts shed
by vaccinated chicks had sporulated by the end of the
first week and been ingested from the litter. Most vacci-
nated flocks had maximal OPG counts at week 2 (28.6%
of flocks) or week 3 (59.5%), whereas a few had maximal
counts at week 4 (11.9%). None of the vaccinated flocks
had maximal counts at week 5, suggesting that all vacci-
nated flocks had developed at least partial protective
immunity to the Eimeria spp. present by week 5
(Figure 2). The maximal OPG count for each vaccinated
flock (regardless of the week at which this maximal count
was attained) ranged from 11,608 to 307,359 (mean
110,133; median 88,406).
Seasonal Variation in OPG Counts The mean and
median OPG counts at the end of each week from medi-
cated and vaccinated flocks (regardless of season) and
mean counts from summer flocks (i.e., S16 and S17 com-
bined) and winter flocks (i.e., W17 and W18 combined)
are summarized in Figure 3; data are aggregated to the
facility level. These aggregate data do not agree with the
predicted values determined using the PROC MIXED
model results summarized in Table 4; however, these
aggregate data reflect more realistic OPG count shed-
ding patterns expected to be observed by flocks on either
prevention strategy than the model predictions.

Among vaccinated flocks, the mean OPG count was
highest in week 3 for both summer and winter flocks;
however, the mean count in week 2 was almost as high
as week 3 for the summer flocks (Figure 3A). Before
the onset of protective immunity, oocyst shedding is
largely proportional to the number of infective, sporu-
lated oocysts ingested by birds from the environment;
this cycling (Price et al., 2014) is highly dependent on
the environmental conditions in the barn. The external
environment can certainly impact the environment in-
side the barn. Cold winter air holds less moisture than
warm air, and barn heaters could create a dryer environ-
ment in the barn, especially during the first 2 wk after
flock placement. Thereafter, chickens begin generating
more moisture in the barn through respiration and defe-
cation, allowing for more efficient Eimeria spp. cycling.
Dry conditions impact oocyst sporulation success and
shorten oocyst survival in the barn environment
(Williams, 2005), which can thereby reduce the number
of infective oocysts available for ingestion by chicks in
their second week of life; this could explain the 1-week
delay in cycling in the winter flocks.

Among medicated flocks, the mean OPG count was
highest in week 4 for both summer and winter flocks,
and the same general pattern was observed in both
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Mean
(n=22)
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Median 1,256 30,625 63,565 17,249 2,732 Median 0 41 6,292 76,278 42,107

Summer
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6,847
± 1,716
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± 1,358
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± 75,815
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31,861
± 10,552
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(n=15)
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35,703
± 9,258
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3,438
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Winter
(n=20)

11
± 10
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± 3,069

30,262
± 15,397

105,382
± 28,007
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± 20,773

Figure 3. (A) The aggregate data from the 42 flocks (clustered to 25 facilities) on a coccidiosis vaccination program. (B) The aggregate data from
the 53 flocks (clustered to 22 facilities) that were on an anticoccidial medication program. Each graph includes the mean OPG6 SEM for each week of
age, the median OPG count, the mean of the summer flocks, and the mean of the winter flocks. The table below the graph outlines the mean OPG
counts 6 SEM for the respective age and clustering. Abbreviation: OPG, oocyst per gram.
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seasons, in that the count increased from week 2 to 4
then decreased from week 4 to 5, albeit the changes
were much more dramatic in the summer flocks
(Figure 3B). Notwithstanding, the mean count in week
4 was approximately one and a half times higher in sum-
mer flocks compared with winter flocks. The opposite
was observed 1 wk later, in that the mean count in
week 5 was approximately 2 times higher in winter flocks
compared with summer flocks. These observations sug-
gest that, similar to the vaccinated flocks, the drier envi-
ronmental conditions in the winter delayed the cycling of
parasites in the barn. However, owing to the typical sea-
sonal rotation of anticoccidial medications in broiler pro-
duction (Dalloul and Lillehoj, 2006), the medicated
winter flocks would likely have been on a different pro-
gram than the medicated summer flocks. Such a system-
atic change in drug program would have influenced the
OPG counts due to the anticoccidial-specific sensitivity
of the Eimeria spp. isolates (Chapman et al., 2016).

The range of temperatures in Ontario can range from
225�C (213�F) in the winter to 135�C (95�F) in the
Table 5. Flock performance data for medicated and vaccinated flocks

Prevention
strategy Mortality (%) Days to market

Mean weight
at market (kg)

Medicated 3.55 6 0.57 (n 5 20) 40.1 6 0.86 (n 5 20) 2.53 6 0.05 (n 5 2
Vaccinated 5.47 6 0.67 (n 5 18) 38.04 6 0.46 (n 5 18) 2.40 6 0.06 (n 5 1
P value 0.0189 0.085 0.077

Mean values 6 SEM for flocks clustered by facility.
1FCR refers to the unadjusted calculated feed conversion ratio based on feed

at market.
summer (daily lows and daily highs in the respective sea-
son). This wide range of temperatures has certainly
influenced building design for broiler barns in Canada
and, consequently, the environmental conditions within.
Therefore, these external factors must be taken into
consideration when attempting to predict OPG cycling
in broiler production in other climates.
Flock Performance

The results of the regression models (Table 5) showed
that there was only a significant difference inmortality be-
tween medicated and vaccinated flocks after controlling
for facility-level variation and flock and seasonal effects.
Performance data were only available for approximately
half (55.8%) of the 95 flocks; post hoc power calculations
indicated that there was insufficient power (b , 0.80) to
detect differences in performance between coccidiosis pre-
vention programs (data not shown).
Medicated flocks had significantly lower mortality

(3.55%) than vaccinated flocks (5.47%; P 5 0.019). In
for which data were available.

FCR1
Adjusted FCR
(target 2.42 kg) Condemnations (%)

0) 1.681 6 0.023 (n 5 19) 1.693 6 0.021 (n 5 19) 1.17 6 0.15 (n 5 19)
8) 1.694 6 0.030 (n 5 13) 1.721 6 0.03 (n 5 13) 0.98 6 0.05 (n 5 17)

0.886 0.433 0.3696

consumption and the total flock weight (no. of chickens! average weight)
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addition to chemical or ionophore anticoccidials, in-feed
antibiotics (e.g., bacitracin, virginiamycin, avilamycin)
were used in all medicated flocks. The impact of the com-
bination of in-feed antibiotics and ionophores on the
enteric microbiota is likely responsible for the observed
lower mortality in the medicated flocks (Dibner and
Richards, 2005; Thabet et al., 2017; Kogut, 2019).
Despite coccidiosis having a more severe impact on
broiler metabolism in chickens nearing market age
than younger chicks (Teeter et al., 2008; Price, 2012)
and high OPG counts typical of medicated flocks, this
impact was not reflected in increased mortalities.
Medicated flocks had a numerically lower adjusted

FCR (1.693) than vaccinated flocks (1.721; P 5 0.433).
Part of this difference can be explained by the mean mar-
ket weight of the medicated flocks (2.53 kg) that was
higher than the target weight (2.40 kg) used for calcu-
lating the adjusted FCR. The higher mean market
weight of the medicated flocks can be explained in part
by production periods that averaged one and a half
days longer (40 d) than vaccinated flocks (38 d) typically
grown to smaller final body weights (w2.2 kg). Despite
the considerable Eimeria spp. challenge faced by most
medicated flocks during the latter half of the grow-out
period (Teeter et al., 2008; Price, 2012), growth-
promoting in-feed antibiotics and ionophores supported
strong growth performance over the production period.
Our study was designed to understand “where we are

today” with oocyst cycling patterns in conventional
(medicated) and RWA (vaccinated) broiler flocks reared
in Canada; the observed cycling patterns provide a use-
ful benchmark for recognizing desirable cycling patterns
in future poultry production in which routine antimicro-
bial use has been largely eliminated. Our study has
shown that RWA flocks had consistent and early oocyst
output that resolved well before the fifth week of produc-
tion in most cases.
As the market share of alternative production con-

tinues to grow, it will become prudent for the industry
to learn best management practices from producers
that have been successful at rearing RWA chickens,
and from studies designed to investigate alternatives to
antimicrobials in commercial flocks. As the Canadian
broiler industry prepares for the removal of category
III antibiotics for preventative use, both alternative
and conventional flocks will want to continue to monitor
Eimeria spp. infections to reduce the associated threat of
necrotic enteritis.
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