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Abstract

Both anatomically modern humans and the gastric pathogen Helicobacter pylori originated in Africa, and both species have
been associated for at least 100,000 years. Seven geographically distinct H. pylori populations exist, three of which are
indigenous to Africa: hpAfrica1, hpAfrica2, and hpNEAfrica. The oldest and most divergent population, hpAfrica2, evolved
within San hunter-gatherers, who represent one of the deepest branches of the human population tree. Anticipating the
presence of ancient H. pylori lineages within all hunter-gatherer populations, we investigated the prevalence and
population structure of H. pylori within Baka Pygmies in Cameroon. Gastric biopsies were obtained by esophagogas-
troduodenoscopy from 77 Baka from two geographically separated populations, and from 101 non-Baka individuals from
neighboring agriculturalist populations, and subsequently cultured for H. pylori. Unexpectedly, Baka Pygmies showed a
significantly lower H. pylori infection rate (20.8%) than non-Baka (80.2%). We generated multilocus haplotypes for each H.
pylori isolate by DNA sequencing, but were not able to identify Baka-specific lineages, and most isolates in our sample were
assigned to hpNEAfrica or hpAfrica1. The population hpNEAfrica, a marker for the expansion of the Nilo-Saharan language
family, was divided into East African and Central West African subpopulations. Similarly, a new hpAfrica1 subpopulation,
identified mainly among Cameroonians, supports eastern and western expansions of Bantu languages. An age-structured
transmission model shows that the low H. pylori prevalence among Baka Pygmies is achievable within the timeframe of a
few hundred years and suggests that demographic factors such as small population size and unusually low life expectancy
can lead to the eradication of H. pylori from individual human populations. The Baka were thus either H. pylori-free or lost
their ancient lineages during past demographic fluctuations. Using coalescent simulations and phylogenetic inference, we
show that Baka almost certainly acquired their extant H. pylori through secondary contact with their agriculturalist
neighbors.
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Introduction

Helicobacter pylori is a major gastric pathogen that infects more

than half the world’s human population. Infection is almost always

life-long, generally acquired during early childhood and results in

gastric inflammation, which remains asymptomatic in most

individuals. 10–15% of infected individuals develop gastric or

duodenal ulcers, and infection with H. pylori is also a cause of

gastric cancer and mucosa-associated lymphoid tissue (MALT)

lymphoma [1]. Transmission within families plays a dominant role

in areas with better sanitary conditions, but extra-familial

horizontal transmission is typical in rural areas of the developing

world [2,3]. As a result, developing countries have infection rates

that are much higher than the global average, reaching .90% in

many areas [4–7].

The association of H. pylori with humans is ancient, dating back

at least 100,000 years (100 kyr) [4]. Africa is the ancestral home of

humans and H. pylori alike, and three distinct African populations
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have been identified within this bacterial species [8]. Infected

anatomically modern humans carried H. pylori with them when

they left Africa about 60,000 years ago (60 kya) [8], and diverse

demographic and selective pressures subsequently resulted in four

additional, geographically-associated populations in Eurasia,

Sahul and the Americas [8–10]. The genetic diversity of H. pylori

reflects historical human demographic events, including the

peopling of the Pacific [10], the colonization of the Americas [9]

and migrations in Iran [11], northern India [12], Malaysia [13]

and Southeast Asia [14,15]. Until recently, however, little

attention was paid to demographic movements during early

human history in Africa. The three H. pylori populations that are

indigenous to Africa have been designated hpNEAfrica, hpA-

frica1, and hpAfrica2 [8,9] (Figure 1A). hpAfrica1 has been

subdivided into two subpopulations: hspSAfrica, found mainly in

South Africa, and hspWAfrica, which is found in both West and

South Africa. hpNEAfrica was isolated from Nilo-Saharan

speakers in Ethiopia, Somalia, Sudan, Nigeria and Algeria.

hpAfrica2, the most genetically distinct of all H. pylori populations,

was isolated only from individuals in South Africa, Namibia and

southern Angola [4,9,16].

The existence of these multiple populations of H. pylori reflects

diversification in Africa after its initial acquisition by humans at

least 100 kya. Thereafter, H. pylori diverged into two super-

lineages, one which became hpAfrica2, and a second which

eventually diversified into all other extant populations. hpAfrica2

evolved within the click-speaking San [4], a group of hunter-

gatherers indigenous to southern Africa who represent one of the

deepest branches of the human population tree [17–22]. Genome-

wide analyses of numerous human populations have revealed that

other hunter-gatherer populations such as Pygmies, Sandawe and

Hadza also branched early in African prehistory, suggesting a

common and ancient origin for hunter-gatherers [20,23,24].

Pygmy hunter-gatherers diverged from the ancestors of contem-

porary agriculturalist Africans about 56–70 kya [25,26]. Popula-

tion splits within each hunter-gatherer group, however, are more

recent. Molecular data suggest that the San split into two groups

only 32–47 kya [4,27] whereas Pygmies separated into ancestral

Western and Eastern populations ,20 kya [25] (see Figure S1).

From a bacterial perspective, only the hpAfrica2 super-lineage

has been found to be associated with hunter-gatherers thus far.

The populations hpNEAfrica and hpAfrica1 comprise the

African component of the second H. pylori super-lineage, sharing

a common ancestor 36–52 kya [4]. Therefore they may reflect

more recent human demographic events in Africa. We find

hpNEAfrica to be endemic among eastern Nilo-Saharan

speakers in northeast Africa [8]. This language group is thought

to have originated in northeast Africa, expanding westward

during the humid Holocene period (6–9 kya) when the central

Sahara and beyond was inundated with rivers and wetlands [28]

(Figure S1). Since only few hpNEAfrica strains have been

isolated from elsewhere in Africa, it has remained unclear

whether hpNEAfrica strains from Nigeria and Algeria represent

an ancient westward expansion of Nilo-Saharans or modern

migrations. hpAfrica1 appears to be associated with the more

recent sub-Saharan migrations of a highly successful group of

agriculturalists whose languages belong to a closely related

language family commonly referred to as Bantu - officially the

Benue-Congo subfamily of the Niger-Congo language family.

Population expansions of Bantu speakers from their homeland

in modern Cameroon/Nigeria spread their languages and

agriculture through most of sub-Saharan Africa in the last 3–

6 kyr [29]. Bantu speakers are thought to have migrated in two

waves that skirted the dense tropical rainforests, down the west

coast towards southern Africa and to the eastern side of Africa

followed by further southward migrations [30,31] (Figure S1),

although the details remain controversial [31,32]. The west and

south African subpopulations within hpAfrica1 might parallel

these human migrations [9].

Considering the ancient origins of Pygmy mitochondrial and Y-

chromosome lineages, and by analogy with the association

between hpAfrica2 and San hunter-gatherers, we hypothesized

that Pygmies might be infected with a currently unknown, Pygmy-

specific population of H. pylori derived from one of the two super-

lineages. Similar to the San, we also anticipated that Pygmies may

have acquired populations of H. pylori from their agriculturalist

neighbors, with whom they have been in contact for 3–6 kyr

[33,34], and from whom they acquired the Bantu language. We

therefore tested these hypotheses in a population genetic study of

the H. pylori infecting the Baka, a subgroup of the Western Pygmies

from two populations in Cameroon. Baka inhabit the rainforests of

Cameroon, Congo and Gabon and constitute one of the largest of

all Pygmy groups, with a population size of 30–40,000 [35]. The

prevalence and population structure of the H. pylori infecting the

Baka and other Pygmies was previously unknown. Their Bantu-

speaking, agriculturalist neighbors all have high H. pylori infection

rates [36], but again the population structure of those bacteria was

unknown. We therefore also screened H. pylori from neighboring

non-Baka of multiple ethnic groups in order to quantify the levels

of bacterial gene flow between hunter-gatherers and agricultural-

ists.

We obtained several interesting results: 1) the prevalence of H.

pylori infection among Baka Pygmies is much lower than among

neighboring non-Baka agriculturalists, 2) H. pylori from the Baka

did not define a new population, 3) Baka acquired their H. pylori

infections from non-Baka neighbors, 4) acquisition of H. pylori by

the Baka was recent, and post-dated the 3–6 kyr of secondary

contact between Baka and non-Baka, 5) the frequency of H. pylori

infection of the Baka is probably limited by population size and

other demographic factors.

Author Summary

Genetic analyses of Helicobacter pylori have illuminated
human migrations and the history of human infection by
these bacteria. Both humans and H. pylori originated in
Africa, and have been intimately associated for at least
100,000 years. We hypothesized that communities who
still live in relative isolation might provide further details
about the evolutionary history of H. pylori in Africa. We
therefore investigated H. pylori within Baka Pygmies of
southeast Cameroon, who live as hunter-gatherers in the
tropical rainforest, and compared those bacteria to H.
pylori from neighboring farming populations of non-Baka
ethnicities. Unexpectedly, Baka Pygmies were much less
commonly infected (20.8%) than the non-Baka (80.2%). H.
pylori from hunter-gatherers and agriculturalists were
genetically very similar and ancient H. pylori lineages were
not identified in Baka. We used an epidemiological model
to show that demographic factors including small popu-
lation size and low life expectancy can account for the low
infection rate among Baka Pygmies, and that this low rate
could have been attained within a few hundred years of
secondary contact with their neighbors. We also suggest
that the ancestors of the Baka Pygmies were initially H.
pylori-free or that their ancestral bacteria have been lost
through past demographic fluctuations.

Recent Acquisition of H. pylori by Baka Pygmies
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Results

Infection rates
We analyzed H. pylori prevalence in 178 Cameroonians,

including 77 Baka Pygmies and 101 non-Baka agriculturalists,

by bacterial culture from gastric mucosal biopsies obtained

through esophagogastroduodenoscopy (Table 1). Among the Baka,

46.8% were male; the mean age of the Baka participants was 38.9

years. Among non-Baka, 21.8% were male, with a mean age of

46.0 years. Similar inter-sample age differences were present for

males and females. We found a high prevalence of H. pylori

infection (81/101; 80.2%) within the non-Baka (Table 1), which is

concordant with infection rates in Cameroon among patients

[5,36] and asymptomatically infected individuals [37]. However,

the infection rate among Baka Pygmies was significantly lower

(16/77; 20.8%; Chi-square test: p,0.001) than observed among

non-Baka, and this low rate was consistent between the two

sampling locations, Abong Mbang (10/42; 23.8%) and Yoka-

douma (6/35; 17.1%), although they are separated by a distance of

over 200 km (Figure 1B). Baka women were more frequently

infected than men (24.4% vs. 16.7%), and non-Baka men were

more frequently infected than non-Baka women (90.9% vs.

77.2%). However, these differences were not significant (Fisher

exact test: p.0.05). A multiple logistic regression (controlling for

sex and age) suggests that in this sample, non-Baka individuals

were about 16 times more likely to be infected than Baka

(OR = 16.1, 95% CI 7.3–35.6, p,0.001).

Endoscopic evaluations revealed that 80% of all study

participants showed evidence of gastroduodenal pathology (Table

S1). None of the observed pathologies showed a significant

correlation with H. pylori infection status, in agreement with prior

results from developing countries [6]. Moreover, the prevalence of

pathologies was not significantly different between Baka and non-

Baka populations, despite their different H. pylori infection rates.

However, the relatively small number of individuals sampled and

the non-randomized design of the study preclude solid conclusions

about the associations between H. pylori and pathology as observed

by endoscopy.

In total, 191 H. pylori isolates were cultured from all biopsies,

and seven MLST housekeeping gene fragments [38] were

sequenced from each isolate. An alignment of the concatenated

sequences (3,406 bp) revealed 113 distinct haplotypes. Ten

Figure 1. The sources of African H. pylori isolates. (A) The proportions of haplotypes from the different African H. pylori populations at each
sampling location are displayed as pie charts, whose size is proportional to the total number of haplotypes. Colors indicate STRUCTURE population
assignments. All hpAfrica1 and hpNEAfrica isolates indicated were used in the corresponding STRUCTURE analyses. Country code: DZ, Algeria; AO,
Angola; BF, Burkina Faso; CM, Cameroon; ET, Ethiopia; GM, Gambia; MA, Morocco; NA, Namibia; NG, Nigeria; SN, Senegal; SO, Somalia; ZA, South
Africa; SD, Sudan. (B) The distributions of the Cameroonian haplotypes at the two sampling locations are displayed as pie charts. The size corresponds
to the total number of haplotypes. The Baka villages are located at distances of 18–19 km from Abong Mbang and 6–14 km around Yokadouma,
respectively. The non-Baka participants lived either in Abong Mbang or Yokadouma or in villages located within a distance of less than 50 km from
Abong Mbang, or 36 km from Yokadouma.
doi:10.1371/journal.pgen.1003775.g001
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haplotypes were shared among more than one individual, the

most common of which was found in five individuals,

including three Baka Pygmies and two non-Baka individuals.

Isolates from antrum and corpus differed in 31 individuals,

although most of these strain pairs varied only slightly. There

was only one pair of highly divergent strains, which is a clear

indication of a mixed infection with unrelated strains. Finding

identical haplotypes in multiple individuals indicates that

transmission is frequent, relative to mutation and recombina-

tion rates, especially considering the numbers of strain pairs

from single individuals that differed slightly in their haplotype

sequences.

Population structure and phylogeography
Bayesian clustering using both the ‘‘no admixture model’’ and

the ‘‘linkage model’’ of STRUCTURE [39] assigned most

haplotypes to the populations hpNEAfrica (67; 59.3%) or

hpAfrica1 (44; 38.9%) (Figure 2A). Two strains isolated from

one non-Baka individual were assigned to hpEurope. hpAfrica2

was not isolated nor did any isolate belong to a novel, Pygmy-

Table 1. Assignment of Cameroonian H. pylori isolates to populations and subpopulations.

Location Ethnicity
Language
subgroup

No. of
individuals

No. of unique haplotypes assigned to H. pylori population/
subpopulation1

total H. pylori hpNEAfrica hpAfrica1 hpEurope

neg. pos. hspWAfrica hspSAfrica

Hunter-Gatherers 77 61 16 8 6 0 0

Abong Mbang Baka Ubangi 42 32 10 5 4 0 0

Yokadouma Baka Ubangi 35 29 6 3 2 0 0

Agriculturalists 101 20 81 65 39 1 2

Abong Mbang 41 8 33 22 21 1 0

Badjoue Benue-Congo 5 0 5 5 1 0 0

Bamileke Benue-Congo 7 1 6 2 10 0 0

Bassa Benue-Congo 1 0 1 0 1 0 0

Betsi Benue-Congo 1 0 1 1 0 0 0

Bikele Benue-Congo 1 0 1 1 0 0 0

Boulou Benue-Congo 1 1 0 0 0 0 0

Kako Benue-Congo 1 1 0 0 0 0 0

Maka Benue-Congo 17 2 15 10 6 1 0

Menemo Benue-Congo 1 1 0 0 0 0 0

Moghamo Benue-Congo 1 1 0 0 0 0 0

Pompom Benue-Congo 1 0 1 0 1 0 0

Wimboum Benue-Congo 1 0 1 0 2 0 0

Yebekolo Benue-Congo 2 1 1 1 0 0 0

Zime Benue-Congo 1 0 1 2 0 0 0

Yokadouma 60 12 48 43 18 0 2

Bamileke Benue-Congo 7 1 6 0 8 0 0

Bapele Benue-Congo 1 0 1 0 1 0 0

Baya Ubangi 2 0 2 4 0 0 0

Bimou Benue-Congo 9 1 8 9 1 0 2

Bogandou Benue-Congo 3 1 2 1 2 0 0

Boman Benue-Congo 2 2 0 0 0 0 0

Boulou Benue-Congo 1 0 1 0 1 0 0

Foulbe Atlantic 1 0 1 1 0 0 0

Kako Benue-Congo 3 0 3 3 0 0 0

Konabembe Benue-Congo 7 2 5 5 1 0 0

Maka Benue-Congo 1 0 1 2 0 0 0

Mvonvon Benue-Congo 21 4 17 17 4 0 0

Ndjem Benue-Congo 1 1 0 0 0 0 0

Toupouri Adamawa 1 0 1 1 0 0 0

Total 178 81 97 73 45 1 2

1Seven of the ten identical haplotypes were isolated from individuals of different ethnicity and count more than once, thus, the total number of isolates in this table is
121 instead of 113.
doi:10.1371/journal.pgen.1003775.t001
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specific population. The occurrence of hpAfrica1 strains is not

surprising because this population has been isolated repeatedly

from Bantu speakers [9]. However, isolating hpNEAfrica in

Cameroon was unexpected because it has previously only been

found in Afro-Asiatic and Nilo-Saharan speakers [8].

The proportions of Baka and non-Baka in our study that were

infected with hpNEAfrica or hpAfrica1 strains were very similar

(Table 1), as were the relative levels of nucleotide diversity within

hpNEAfrica and hpAfrica1 haplotypes from both communities

(Table 2). Intra- and inter-population pair-wise haplotype

differences did not reject a null hypothesis of panmixia

(p(Ks) = 0.12) between Baka and non-Baka populations.

Using a composite-likelihood approach to estimate population

demographic parameters under an isolation with migration model

(Jaatha 2.0) [40], we estimated the time to population split of H.

pylori between Baka and non-Baka using explicit demographic

models of constant population size and exponential expansion (see

Methods for details). The composite likelihood for model 1

Figure 2. Bayesian population assignments using STRUCTURE 2.0. (A) DISTRUCT plot of the population assignment of Cameroonian H. pylori
haplotypes in a global reference dataset as determined by the ‘‘no admixture model’’ (K = 6) and the ‘‘linkage model’’ (K = 6). Each bacterial isolate is
depicted by a thin vertical line, which is divided into K colored segments representing the membership coefficients in each cluster. Black lines
separate isolates of different populations/subpopulations. Populations are labeled above the figure, subpopulations below the figure. Cameroonian
non-Baka and Baka H. pylori haplotypes are shown on the right side of the plot. (B) DISTRUCT plots of the subpopulation assignment of H. pylori
hpAfrica1 haplotypes using the ‘‘no admixture model’’ (K = 2, K = 3). Strains were grouped together according to their geographical source. (C)
DISTRUCT plot of the population structure of H. pylori hpNEAfrica haplotypes according to the ‘‘no admixture model’’ (K = 2). Strains were grouped
together according to their geographical source.
doi:10.1371/journal.pgen.1003775.g002

Table 2. Genetic diversity of hpAfrica1 and hpNEAfrica haplotypes isolated from Baka Pygmies and non-Baka agriculturalists.

H. pylori population Ethnicity N h S k p (SD)

hpAfrica1 Baka 7 6 183 76.29 0.02240 (0.00318)

non-Baka 40 38 336 81.22 0.02385 (0.00082)

hpNEAfrica Baka 10 8 233 80.80 0.02372 (0.00202)

non-Baka 70 60 440 76.59 0.02249 (0.00064)

N, total number of sequences; h, number of haplotypes; S, Number of polymorphic (segregating) sites; k, average number of nucleotide differences; p, nucleotide
diversity; SD, standard deviation.
doi:10.1371/journal.pgen.1003775.t002
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(2197.4695; constant population size in Baka) was higher than for

scenario 2 (2197.5009; exponential growth in both populations),

but estimates for time to population split and effective population

size (Table 3) were very similar. Gene flow into the Baka population

was higher when Baka bacterial population size was assumed to be

constant, although confidence limits for both estimates were widely

overlapping. Allowing for gene flow since divergence, we inferred a

median date for the split between the Baka and non-Baka H. pylori of

2,110 and 2,406 years for constant size and expansion models

respectively, with combined confidence limits of 856–3,973 years.

These analyses indicate that the modern infections of Baka by H.

pylori began no earlier than 4,000 years ago, soon after Baka came

into contact with non-Baka agriculturalists (,3–6 kya).

We also analyzed our Cameroon sample together with other

African haplotypes previously assigned to hpAfrica1 or hpNEAfrica,

respectively. The most consistent results were obtained for a K = 2

scenario within hpAfrica1, wherein 43 haplotypes from Cameroon

were assigned to hspWAfrica and only one to hspSAfrica

(Figure 2B). Interestingly, at K = 3, most Cameroonian haplotypes

formed a novel subpopulation, hspCAfrica, together with three

haplotypes from Angola. These analyses also provide evidence for

genetic structure within hpNEAfrica, for which a K = 2 hypothesis

was most likely. All haplotypes from Ethiopia (51), Somalia (2) and

isolates from Sudan (42/63) and Algeria (1/2) clustered together in

an ‘East African’ subpopulation, hspEastNEA, whereas all isolates

from Cameroon (67), Nigeria (8) and some isolates from Sudan (21/

63) and Algeria (1/2) formed a second ‘Central/West African’

subpopulation which we call hspCentralNEA (Figure 2C).

ClonalFrame was used to further elucidate the substructure of

both the hpAfrica1 and hpNEAfrica populations. The resulting

genealogies (Figures S2 and S3) highlight the interspersed

distribution of Baka H. pylori isolates among the non-Baka strains

from Cameroon, without Baka-specific groupings. Both phyloge-

nies comprised several clades, all supported in over 80% of the

posterior sample, but corresponding only roughly to the subpop-

ulations within hpAfrica1 and hpNEAfrica.

H. pylori infection among Baka Pygmies is recent
We were intrigued by the low frequency with which the Baka

were infected by H. pylori, which could further corroborate the

hypothesis of recent acquisition by the Baka. In order to

investigate these observations quantitatively, we implemented an

age-structured SI model, building on an existing model of H. pylori

infection developed by Rupnow et al. [41]. In concordance with

observed data, the model assumes that infection is life-long once

acquired. Unlike in the original model, we did not further

subdivide the compartment of infected individuals by severity or

pathology. The model population was divided into three age

groups: children, youths and adults; and we stipulated that a

fraction of individuals are born non-susceptible, in keeping with

observations that show that prevalence never attains 100%, even

in highly infectious settings [42], and consistent with the

implementation of the existing model [41]. Our model includes

the following assumptions: 1) The Baka population is both stable

and stationary, that is, both the total population size and the

fraction in each age class are constant, allowing us to estimate

constant birth and age-specific death rates. The assumption of a

stable population is consistent with our coalescent simulations

above, that show only very slight differences in splitting times

between models of constant population size and population

expansion (Table 3). 2) Infection does not affect all-cause

mortality. This was demonstrated in a recent study [43]. 3)

Inter-age class transmission is governed by the characteristics of

the less-transmissive partner. This is conservative, but represents

an increase in transmission from the Rupnow et al. model [41],

which assumes that inter-age class transmission is negligible. 4)

The population is closed, with no migration or transmission from

external sources. This is unlikely in reality, given the close

proximity of agriculturalist communities; however, since the Baka

are quite reclusive, we consider it a reasonable simplifying

assumption. Additionally, since the Baka have only recently (3–

6 kya) come into secondary contact with agriculturalists [33,34],

the assumption would likely hold true for Baka populations prior

to this time. 5) Survival decreases linearly within age classes. As did

the original model, we also assume that transmission is entirely

person-to-person. We then parameterized the model according to

our best estimates for demographic and transmission parameters

among Pygmies (Table 4). Allowing for inter-age class transmission

yielded nine transmission constants (b) rather than the three intra-

class coefficients used by Rupnow et al. [41].

Table 3. Population demographic parameters for H. pylori from Baka Pygmies and non-Baka agriculturalists derived using an
isolation-with-migration model and assuming two demographically explicit scenarios.

Theta (h) Timing (t) Gene flow (m) Growth (a)
Recombination
(rho)

Model 1: Constant Baka population size, exponential growth of non-Baka population

h1 (non-Baka) t T (years) BakaRnon-Baka non-BakaRBaka a1 non-Baka a2 Baka (fixed) rho

Median 13.78 0.0006 2,110 0.2145 0.0781 0.0023 0 0.0033

c.i. L 13.76 0.0003 856 0.0292 0.0047 0.0007 0 0.0003

c.i. U 13.87 0.0012 3,981 0.6325 0.2662 0.0062 0 0.0476

Model 2: Exponential growth of both Baka and non-Baka populations

h1 (non-Baka) t T (years) BakaRnon-Baka non-BakaRBaka a1 non-Baka a2 Baka rho

Median 13.78 0.0007 2,406 0.4373 0.0250 0.0008 0.0012 0.0023

c.i. L 13.71 0.0003 983 0.0502 0.0054 0.0004 0.0003 0.0002

c.i. U 13.89 0.0012 3,973 0.9352 0.0910 0.0016 0.0042 0.0018

Population parameter theta (h) = 4N1m, where N1 is the effective population size of the reference population (non-Baka) and m is the mutation rate. t is the timing
parameter in coalescent units, and T the time to split between Baka and non-Baka (T~ th

2m). m is the fraction of the population replaced by migrants per generation:
Nm2{w1~

m
4N1

:N1 of population 1 (non-Baka) are replaced per generation and Nm1{w2~
m

4N1

:N2 of population 2 (Baka) are replaced per generation. The h estimated

by the software refers only to population 1. c.i., confidence interval; L, lower; U, upper.
doi:10.1371/journal.pgen.1003775.t003
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The model thus specified indicates a low equilibrium prevalence

for the Baka of ,10.2% under the assumptions of the base

scenario. This is close to what we observed, and suggests that the

time required to establish a stable equilibrium at this prevalence is

considerably shorter than the estimated age of the most recent

common ancestor of H. pylori haplotypes from Baka and non-Baka

- under the base scenario the estimated time to equilibrium was

1,164 years. We tested the sensitivity of this model by varying the

parameter estimates individually across a wide range of values,

encompassing plausible ranges of demographic variation estimated

from the literature or prior experience with the Baka (Figure 3).

Equilibrium infection rates among adults remained low (,40%)

over the ranges of plausible variation for individual parameters.

Moreover, infection was nearly or entirely eliminated in the

population for some values within these ranges for most

parameters, suggesting that the Baka are near a limit for viable

maintenance of population-level H. pylori infection. The sensitivity

analysis indicated that the most crucial parameter was population

size (Figure 3A). In fact, the observed infection rate of 20.8% is

achieved at equilibrium in the model with a small population

increase, to N = 43,000 from the 40,000 assumed in the base

scenario. Mean life expectancy also appears to have a strong but

non-linear effect on infection, with equilibrium prevalence falling

to zero over intermediate values (Figure 3C). Time to equilibrium

increased rapidly as equilibrium infection rates approached zero,

decreasing the meaningfulness of this statistic at particularly low

infection rates. However, within the range of uncertainty, time to

equilibrium is reached in less than 1,000 years for those scenarios

where the equilibrium infection rate is equal to or exceeds the

value we observed in the Baka.

Increasing the population size to 200,000 and applying model

parameters that are typical of Cameroon (Table 4) yielded infection

frequencies that are consistent with non-Baka populations in

Cameroon (Figure 4), and other parts of the developing world

[42]. This supports the validity of the model and is consistent with

the idea that human population sizes were fairly large during the

100,000 years that they have been infected by H. pylori [4].

As with all epidemiological models, our results should be

interpreted with care. Following Rupnow et al. [41], we

incorporated a frequency-dependent transmission parameter

(rather than a density-dependent parameter). This is a common

assumption for directly-transmitted diseases, but the estimated

values from the original model might be inaccurate when applied

to substantially different population sizes. Moreover, it is possible

that another model structure might better capture the complex

reality underlying H. pylori transmission, such as a model

incorporating the possibility of environmental transmission.

Although the utility of the original model in various contexts

[41,44,45] suggests that it captures many of the most important

aspects of transmission, further empirical work on the importance

of environmental transmission in sub-Saharan Africa would allow

us to refine our model accordingly. There is also uncertainty in

parameter estimates. For example, the proportion of non-

susceptible individuals can vary across populations as a function

of innate immunity, lifestyle, contact patterns and/or factors such

as atrophic gastritis which eliminates infection [42]. Our results

Table 4. Base scenario model parameters determined empirically for Baka Pygmies and Cameroon.

Model parameter Baka Pygmies Cameroon (countrywide)

Value Reference Value Reference

Population size (N) 40,000 [35] 200,000 [41]

Life expectancy (Le) (years) 16.6 [52] 51.0 WHO1

Survivorship at age 5 (S5) 0.7 estimated 0.846 WHO

Survivorship at age 15 (S15) 0.4 [52] 0.823 WHO

Fraction born immune (NS) 0.15 [42] 0.15 [42]

Transmission coefficients All derived from [41] All derived from [41]

bCC 0.0000183 0.0000183

bCY 0.00000367 0.00000367

bCA 0.0000004 0.0000004

bYC 0.00000367 0.00000367

bYY 0.00000367 0.00000367

bYA 0.0000004 0.0000004

bAC 0.0000004 0.0000004

bAY 0.0000004 0.0000004

bAA 0.0000004 0.0000004

1WHO, 2012.
WHO Global Observatory Health Data Repository. World Health Organization, Geneva, Switzerland. http://apps.who.int/gho/data/. Last accessed on 11/02/2012.
N: For the Cameroon-wide simulation to validate the model, a population of 200,000 was adopted, following Rupnow et al. [41].
Le: For the Baka, the Migliano et al. estimate for the Aka was used [52].
S5: Fraction of individuals that reach five years of age. For the Baka, no estimate was available, so the base scenario assumes that half of mortality that will occur by age
15 takes place by age 5, in keeping with typically high infant mortality in developing-world contexts.
S15: Fraction of individuals that reach fifteen years of age. For the Baka, the Migliano et al. estimate for the Aka was used [52].
NS: Fraction born non-susceptible, i.e., the fraction of individuals that cannot become infected ‘‘for physiologic, physical, or immunologic reasons’’ [41]. Estimated from
observed maximum prevalences in the developing world.
bXY: = Transmission coefficients, with X and Y in {C,Y, A}, where these stand for child, youth and adult age classes, respectively, yielding nine coefficients in all. This
represents the probability of transmission from class X to class Y, and is derived from Rupnow et al. [41], as described in the text.
doi:10.1371/journal.pgen.1003775.t004
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rely on the accuracy of demographic and transmission estimates

for the Baka, which in many cases are undefined or highly unusual

for human populations. Further work verifying the accuracy of

these estimates would be useful.

Discussion

Based on the .100 kyr long association between H. pylori and

man and our recent findings that the San hunter-gatherers of

southern Africa were the original hosts of hpAfrica2 [4], we

expected to identify unique H. pylori lineages that have long been

associated with West African Baka Pygmies. Our results did not

identify such lineages. Instead, H. pylori haplotypes from Baka

belong to the hpAfrica1 or hpNEAfrica populations, which are

also prevalent among other Africans (Figure 1A). Surprisingly, we

also found that Baka were only rarely infected with H. pylori,

significantly less than global frequencies in developing countries

[6,7], including their agriculturalist neighbors.

Phylogeography
Under a K = 3 scenario, we identified a novel subpopulation

within hpAfrica1, designated hspCAfrica, which because it

comprises haplotypes from Cameroon and Angola, provides

Figure 3. Sensitivity analysis of equilibrium values for H. pylori infection (primary y-axes) and time to equilibrium (secondary y-
axes) in Baka Pygmies for six demographic and transmission parameters (panels A–F). For each panel, adults are in green, youths in red,
children in blue. The dashed vertical line shows the value of the parameter adopted in the base scenario; the two solid vertical lines delimit plausible
ranges of variation in this population, where these can be estimated from the literature. The dotted black line illustrates the time in years required for
the prevalence in adults to approach to within 1% of the equilibrium value.
doi:10.1371/journal.pgen.1003775.g003
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support for a Bantu agriculturalist migration along the western

coast of Central Africa [30,31] (see also Figure S1). Interestingly,

we did not detect this population among 91 previously isolated

hpAfrica1 strains from Namibia and South Africa, which were

designated hspSAfrica and hspWAfrica (Figure 2B). This suggests

that the western Bantu migration that brought hspCAfrica to

Angola was not able to cross the Namib Desert and progress as far

south as present-day South Africa. This agrees with the hypothesis

that the Bantu who originally colonized South Africa were not part

of this western migration, and instead brought hpAfrica1 to South

Africa via the alternative eastern coastal route [31,32]. We would

therefore expect to find both hspSAfrica and hspWAfrica in high

frequency among eastern African populations. Investigating the

frequency of hpAfrica1 throughout south-central Africa could

potentially shed even further light on the enigmatic Bantu

migrations.

We also defined two subpopulations of hpNEAfrica, hspEast-

NEA and hspCentralNEA, which are distributed across the Sahel

from Nigeria to Somalia. Sudan contains both subpopulations,

suggesting that this subdivision may have originated there.

Alternatively, the presence of both populations in Sudan may

represent more recent, secondary migrations. The existence of

hspCentralNEA in Cameroon, Nigeria and Algeria may corre-

spond to the Holocene expansions that carried Nilo-Saharan

languages from northeast Africa into the Sahara. We note

however, that most of the Cameroonians from whom we isolated

hpNEAfrica were Bantu speakers who presumably originated in

West Africa. This situation resembles the frequent isolation of

hpEurope and hpAfrica1 in South America, where they have

largely displaced the ancestral hspAmerind bacteria [9], and the

isolation of multiple populations of H. pylori from Australian

aboriginals in addition to their ancestral hpSahul bacteria [10].

We also found that phylogenetic reconstructions of both hpAfrica1

(Figure S2) and hpNEAfrica (Figure S3) revealed greater detail

about population structure than did Bayesian clustering. These

showed a more gradual or gradient-like transition from one

population/clade to another. Together, this evidence suggests that

H. pylori is a sensitive indicator of human population admixture.

Further genetic studies on populations in Cameroon may provide

insights on local colonization processes, and the origins and

diffusion of agriculturalist communities.

Gene flow and contraction
The strong similarity of haplotypes from Baka Pygmies and

non-Baka agriculturalists and the absence of significant differen-

tiation between them justifies treating these H. pylori as a single

metapopulation. This inference is plausible because Baka are in

daily contact with their Bantu agriculturalist neighbors [46], and

these populations exchange a low number of human migrants per

generation [25]. Although we also inferred high gene flow between

Baka and non-Baka populations [47], phylogenetic analyses

suggest that Baka strains were derived from non-Baka ancestors.

Under a hypothesis of acquisition of H. pylori by one group from

another, we would expect that strains isolated from the donor

population would occupy ancestral positions closer to the base of a

subclade and that they would form closely related clusters, some

strains of which would be passed on to the recipient population.

This is precisely what we observe in both hpAfrica1 and

hpNEAfrica phylogenies (Figures S2 and S3) - groupings among

non-Baka strains, with one of the strains belonging to a Baka. We

interpret these results, as well as the unusually low equilibrium

prevalence of H. pylori among Baka, as reflecting the acquisition of

H. pylori by the Baka via secondary contact with their non-Baka

agriculturalist neighbors. This most likely occurred around 2,500

Figure 4. Model predicted prevalence under the base scenario versus observed H. pylori prevalences by age in Cameroon. The
model-predicted prevalence rises in steps with the three age classes (i.e., child, youth, adult).
doi:10.1371/journal.pgen.1003775.g004
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years ago with an upper bound of 3,973 years (Table 3). This age

estimate for the Cameroon H. pylori metapopulation is in complete

agreement with a hypothesis of recent secondary contact because

Bantu expansions have been dated by archaeology to 3–5 kyr [34]

and by human population genetics to ,6 kyr [33]. Furthermore,

the number of distinctly different and unrelated haplotypes found

among the Baka is also suggestive of several independent

agriculturalist to hunter-gatherer transmission events.

Factors influencing H. pylori infection rate
According to our H. pylori-specific transmission model, the levels

of infection observed in Baka can be achieved in a short timeframe

after introduction into a naı̈ve population, and are reproducible

within the range of uncertainty in parameter estimates. The

infection rate of 10.2% predicted by the model under the base

scenario was slightly lower than the observed rate, possibly

implying that the latter is influenced by continuously introduced

infection from non-Baka agriculturalists. Regular and ongoing

contact or cross-migration between Baka and agriculturalists

would also imply a higher effective population size, which would

increase the observed infection rate relative to that implied by the

closed model. Conversely, we note that our samples were from

Baka individuals with gastric complaints, which might overesti-

mate the population prevalence of infection in the Baka (an effect

that might be even more pronounced for non-Baka, who were

sampled from among hospital patients).

Possibly the most striking finding from the simulations was that

even small fluctuations in population size can result in the

extinction of population-wide infection. This observation may

explain the apparent absence of ancient bacterial lineages among

Baka. While there are currently no estimates on the prehistoric

census size of San or Pygmies, archaeological evidence suggests

that San occupied a much wider territory than Pygmies [48].

From molecular demographic reconstructions, we know that

prehistoric hunter-gatherer populations were larger [49], denser

[50] and more constant in size [47] than in the present day, but

they suffered declines during the Holocene at the advent of

Neolithic agriculture. The Baka population size is now ,40,000

[35], which is less than a fifth of the 208,000 extant San speakers

[51]. Thus, the San, being less affected by the rise of agriculture,

were able to retain their ancient H. pylori lineages, while any that

existed among the Baka may have died out leaving an uninfected

population which could acquire novel lineages from their non-

Baka neighbors on secondary contact. The postulated ancient

lineages might be found by more extensive sampling, and/or by

sampling H. pylori from Eastern Pygmies. Alternatively, ancient

haplotypes may never have existed and Baka were first infected

with H. pylori in recent times.

A second interesting observation was that the short life

expectancy among Pygmies [52] contributes to maintenance of

endemic H. pylori infection. Transmission of H. pylori is particularly

high during childhood [1], which in turn results in higher

prevalence where life expectancy is low and children make up a

larger proportion of the population. Our simulations indicate that

the expected prevalence drops with increasing life expectancy -

though it increases with age class, as individuals, once infected,

remain infected. Intriguingly, prevalence rises once more when life

expectancy exceeds 40 years, despite lower rates of transmission in

adults. This is probably because longer-lived adults can potentially

transmit infections for much longer periods. However, these

insights were obtained by varying single parameters while holding

other variables constant at base-scenario levels; simultaneous

fluctuation in several parameter values would result in a wider

range of estimated endemic prevalence values.

Apart from violations of model assumptions, other explanations

could potentially also account for the low prevalence of H. pylori

among the Baka, including their hunter-gatherer diet based on

forest products and the medicinal use of rain-forest plants with

antibiotic properties [53–55]. A low prevalence of H. pylori in Java,

Malaysia and Tanzania has also been attributed to local diet [56]

but those epidemiological data have not been considered in light of

a demographic transmission model as presented here [57]. Finally,

genetic or innate immunity that is specific to the Baka may also

have played a role.

Materials and Methods

Study area, sample selection, and ethics statement
We undertook field collection of gastric biopsies at two

settlements in the rainforests of the East Province of Cameroon.

Yokadouma and Abong Mbang are towns of more than 20,000

inhabitants that lie about 250 km apart. The Bantu populations

are engaged mainly in primary agriculture (hereafter referred to as

agriculturalists), while the Baka are hunter-gatherer communities

that live in the forests surrounding both settlements. Study

participants were selected from among individuals complaining

of gastric pain. Esophagogastroduodenoscopy was performed by a

certified gastroenterologist (A.M.) with written informed consent at

Yokadouma and Abong Mbang Hospitals under ethics certificate

0002/ERCC/CBNO2 from the Cameroon Bioethics Initiative

(CAMBIN), administrative authorization 631.19-09 from the

Cameroon Ministry of Public Health (Secretariat General,

Division of Health Operations Research), and with permission of

the ethics committee of the Charité Hospital in Berlin, Germany

(ethics certificate EA1/071/07). Among agriculturalists, samples

were taken from patients at their respective district hospitals,

whereas Baka - who were unlikely to attend the hospital - were

recruited directly from their communes by an NGO worker

familiar with the area. Baka communes were provided minor food

incentives (e.g., rice) for participation, which did not depend on

the number of participants from each village. Non-participation or

refusal was rare among approached subjects, both at the hospital

and in the field.

H. pylori samples and culture
Gastric biopsies were taken from 178 Cameroonians belonging

to 25 different ethnic groups (Table 1). All individuals were

endoscopically evaluated for gastroduodenal pathology, histolog-

ical evaluation was not performed. Biopsies were obtained from

both the antrum and corpus of the stomachs of 176 people, while

only single biopsies from the corpus were obtained from two

individuals. All biopsies were immersed in PBS (phosphate

buffered saline) and immediately frozen in liquid nitrogen, kept

at 280uC and couriered to the Hannover Medical School. H.

pylori was cultivated by inoculation of the biopsies on blood agar

plates (Columbia-Agar-Basis II, Oxoid, Wesel) supplemented with

10% horse blood (Oxoid), and the antibiotics vancomycin (10 mg/

l), polymyxin B (2500 U/l), amphotericin B (4 mg/l) and

trimethoprim (5 mg/l). Plates were incubated under microaerobic

conditions (5% O2, 10% CO2, 85% N2) for 3 to 5 days at 37uC. In

case of lack of bacterial growth, the plates were incubated for

longer periods of time. Since concomitant infection with several

different H. pylori strains has been previously observed [2], strains

were purified by single colony isolation from one colony from each

of the antrum and corpus biopsies, resulting in a total of 191 isolates.

To ensure optimal efficiency of cultures, the entire biopsies were

used for culture, and antrum and corpus biopsies were cultured by
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independent investigators on separate days, with overall excellent

agreement between results.

Molecular genetics
Genomic DNA of bacterial strains was isolated using the

QIAamp DNA Mini Kit (Qiagen). Seven housekeeping gene

fragments (atpA, efp, mutY, ppa, trpC, ureI, yphC) were amplified by

PCR. Primer sequences and primer combinations can be found at

http://pubmlst.org/helicobacter. PCR was performed under the

following conditions: initial denaturation of 5 min at 94uC, 30

cycles of 1 min at 94uC, 1 min of annealing, 1 min at 72uC, and a

final extension of 7 min at 72uC. The annealing temperature was

either 57uC (atpA, trpC), 55uC (yphC), 53uC (efp, mutY), or 51uC (ppa,

ureI). PCR products were purified using the QIAquick 96 PCR

Purification Kit (Qiagen). PCR amplicons were sequenced

bidirectionally using the BigDye Terminator v1.1 Cycle Sequenc-

ing Kit and the 3130xl Genetic Analyzer (Applied Biosystems).

Sequence data were analyzed using BioNumerics v6.01 (Applied

Maths NV, Sint-Martens-Latem, Belgium).

Diversity and structure
Data graphing and statistical analyses were performed with

Origin 8.0 (OriginLab, USA) and SigmaStat 3.5 (SYSTAT, USA).

Population genetic diversity indices were calculated using DnaSP

v5 [58].

A test of population subdivision was applied to evaluate whether

Baka and non-Baka H. pylori populations were panmictic [59].

This statistic is particularly effective in detecting population

structure in the presence of high recombination, as is the case for

H. pylori. The test generated a random distribution for the Ks

statistic (sum of the mean number of pairwise differences for each

population weighted by population) using a Monte Carlo

approach that randomized genotypes between the two populations

using 10,000 simulations. The null hypothesis of panmixia is not

rejected if p(Ks).0.05.

We performed Bayesian population assignments on the 113

Cameroonian H. pylori haplotypes along with another 792

previously published global reference haplotypes [8–10]. The

‘‘no admixture model’’ and ‘‘linkage model’’ of the program

STRUCTURE 2.0 [39] were used to assign the Cameroonian

isolates to one of the known modern H. pylori populations [8–10]

and to explore their level of reciprocal admixture, respectively. In

order to determine the number of bacterial populations (K) within

the dataset ten independent STRUCTURE runs of 50,000

iterations following a burn-in period of 25,000 iterations for each

K value were analyzed and compared for consistency. To reveal

subpopulation structure subsequent analyses were performed

separately for hpAfrica1 and hpNEAfrica isolates with ten

independent STRUCTURE runs for each K value. The Camer-

oonian isolates assigned to hpAfrica1 (n = 44) were further

analyzed together with 93 hspSAfrica and 73 hspWAfrica

reference isolates. The Cameroonian isolates assigned to hpNEA-

frica (n = 67) were further analyzed together with 126 hpNEAfrica

reference isolates. The latter include 65 previously published

haplotypes [8,9] as well as 61 unpublished haplotypes obtained

from individuals in Sudan in 2004 and 2005. Culture and

sequence analysis of the Sudanese isolates were performed as

described above for the samples from Cameroon. The STRUC-

TURE runs yielding the highest model log-likelihood were

graphically displayed using the program DISTRUCT [60].

The software ClonalFrame v1.1 [61] was used to determine

ancestral relationships among strains within the hpAfrica1 and

hpNEAfrica populations. ClonalFrame reconstructs phylogenetic

genealogies while accounting for horizontal gene transfer and its

value in consistently reconstructing H. pylori phylogenies has been

demonstrated previously [4,10]. The program was run with

100,000 MCMC iterations with a thinning interval of 100 after an

initial burn-in phase of 50,000 iterations. Ten independent

ClonalFrame runs were performed. Using Treefinder [62] an

80% consensus tree of all independent ClonalFrame runs was

computed. Three hpAfrica2 haplotypes were used as an outgroup

to root both hpAfrica1 and hpNEAfrica trees.

Gene flow and coalescence
We used the software Jaatha 2.0 [40] to estimate the time to

population split and the level of gene flow between Baka and non-

Baka H. pylori populations. This coalescence-based software uses

the observed joint allele frequency spectrum as a summary statistic

to estimate the composite likelihood of posterior parameters in

user-defined demographic models. This flexibility allows the user

to control for between-population differences in demographic

history by explicitly simulating either constant or expanding

populations. Furthermore, Jaatha is also able to model recombi-

nation within the coalescent framework, controlling for horizontal

gene transfer, and is particularly robust in estimating the time to

population split in cases of recent population divergence [40], as

may be likely among the studied populations. We ran two models:

the first assuming that the non-Baka bacterial population

underwent exponential growth and Baka remained constant in

size; and the second with both populations evolving under

exponential growth. These two settings approximate well the

possible demographic histories of the two bacterial populations

based on previous knowledge of host demographic history. As a

first step, we used wide prior values (see Table S2) to explore the

parameter probability space for the best starting point for a refined

estimate of the posterior parameters. The probability space was

divided into a number of equal blocks in which coalescent

simulations using the software ms [63] were performed. Since we

simulated sets of 6 and 7 parameters for Baka constant and

expansion models, probability space was divided into 36 and 37

blocks, respectively, for each of which 200 simulations were

performed using the range of prior parameter values. The joint

allele frequency spectra were divided into 23 independent Poisson-

distributed values and fitted using a generalized linear model. A

score proportional to the likelihood was calculated for each

parameter set and those with the two highest scores were used as

starting points in the final search. Then, a search of 10,000

simulations was repeated 200 times for the two best starting points

with five independent seeds. The 10 best parameter combinations

for each of these 10 simulations were then subjected to a further

simulation step of 100,000 iterations from which the composite

likelihood of each parameter combination was calculated. The

distribution of posterior parameters was used to estimate

confidence intervals. The times to population split in years were

calculated using a mutation rate (m= 2.0961026), which is the

average of the three estimates presented in Morelli et al. [64].

Transmission model
To estimate the length of time needed to reach equilibrium H.

pylori infection among Baka Pygmies, we applied a simple age-

structured transmission model, modified from Rupnow et al. [41].

The model assumes a standard Susceptible-Infected (SI) structure

dividing the model population into three age groups, namely,

children (0–5 years old), youths (5–15 yo) and adults (15+ yo). For

a description of model parameters see Table 4.

We constructed a base scenario using the best available

estimates for the demographic and transmission parameters: life

expectancy (Le), population size (N), survivorship at age 5 (S5),
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survivorship at age 15 (S15), and fraction of individuals born into

the non-susceptible class (NS). Since demographic variables for

Western Pygmies are largely uncharacterized [65], we used

parameters from a Pygmy population adjacent to the Baka (the

Aka) [52] where available; during sensitivity analysis we included

the entire range of plausible parameter variation, estimated from

the literature where possible. In contrast to the model by Rupnow

et al. [41], we allowed for inter-age class transmission. To obtain

approximate values for the resulting nine transmission constants

(b), we divided those obtained for the prior model - i.e., for intra-

age class transmission - by three, and assumed that transmission

between age groups was governed by the characteristics of the less-

transmissive group. To test the validity of the b-values thus

specified, we applied them to a simulation using a population of

200,000 (following Rupnow et al. [41]) and demographic

parameters for Cameroon. Because the results fit well with prior

observations of age-specific prevalence (see Figure 4), we retained

these values for the base scenario.

To test the sensitivity of results to changes in input parameters,

we varied each parameter incrementally, while holding all others

at base scenario values. When varying transmission constants, we

assumed that the relative strength of transmission among age

groups remains constant. Simulations were run until the system

reached equilibrium with a time step (dt) of 0.25 years, using the

Runge-Kutta 4 integration method in iThink 7.0.3 (High

Performance Systems, Inc., Hanover, NH).

Data deposition
This publication made use of the Helicobacter pylori Multi Locus

Sequence Typing website (http://pubmlst.org/helicobacter/)

developed by Keith Jolley and sited at the University of Oxford

[66]. The development of this site has been funded by the

Wellcome Trust and European Union. Each new isolate from

Cameroon and Sudan was assigned an ID number (1663–1836).

Supporting Information

Figure S1 Major human population events in recent African

prehistory. This map summarises the potential major human

demographic events as inferred from [4,20,25,27,28,33,47,67].

Ancestral hunter-gatherer populations split into extant popula-

tions, beginning with Northern and Southern San (32–47 kya) and

Western and Eastern Pygmies ,20 kya. The Nilo-Saharan

speakers originated in northeast Africa from where they migrated

both north-westward and south-eastward. Their north-westward

migration was favored by a climatic change from dry to more

humid conditions during the humid Holocene period (6–9 kya).

Bantu-speaking agriculturalist populations expanded from their

homeland in what is present-day Nigeria/Cameroon, beginning

,6 kya, in two independent waves along the western and eastern

flanks of Africa into southern Africa. They thus spread their

languages and agriculture through most of sub-Saharan Africa

within the last 5 kyr.

(TIF)

Figure S2 Phylogenetic relationships among hpAfrica1 isolates.

Phylogenetic relationships among hpAfrica1 isolates as determined

by ClonalFrame. The haplotypes are colored according to their

geographical source and symbols (triangles, circle) specify the

respective subpopulation determined by STRUCTURE. Camer-

oonian haplotypes from non-Baka (brown color) or Baka (pink

color) are marked. The hpAfrica2 strains used as outgroup to root

the tree are separately indicated. The number of isolates is shown

in brackets.

(PDF)

Figure S3 Phylogenetic relationships among hpNEAfrica iso-

lates. Phylogenetic relationships among hpNEAfrica isolates as

determined by ClonalFrame. The color-code corresponds to the

geographical source. Cameroonian haplotypes isolated from non-

Baka (brown color) or Baka (pink color) are indicated. One

haplotype was isolated from both non-Baka and Baka individuals

(dark-green color). The hpAfrica2 strains used as outgroup to root

the tree are separately indicated. The number of isolates is shown

in brackets.

(PDF)

Table S1 Frequencies of endoscopy findings in Baka Pygmy and

non-Baka agriculturalist study participants.

(DOC)

Table S2 Prior parameters used in coalescent simulations with
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