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Multipartite network analysis 
to identify environmental 
and genetic associations 
of metabolic syndrome 
in the Korean population
Ji‑Eun Shin 1,5, Nari Shin 2,5, Taesung Park 3 & Mira Park 4*

Network analysis has become a crucial tool in genetic research, enabling the exploration of 
associations between genes and diseases. Its utility extends beyond genetics to include the 
assessment of environmental factors. Unipartite network analysis is commonly used in genomics to 
visualize initial insights and relationships among variables. Syndromic diseases, such as metabolic 
syndrome, are characterized by the simultaneous occurrence of various signs, symptoms, and 
clinicopathological features. Metabolic syndrome encompasses hypertension, diabetes, obesity, 
and dyslipidemia, and both genetic and environmental factors contribute to its development. Given 
that relevant data often consist of distinct sets of variables, a more intuitive visualization method 
is needed. This study applied multipartite network analysis as an effective method to understand 
the associations among genetic, environmental, and disease components in syndromic diseases. 
We considered three distinct variable sets: genetic factors, environmental factors, and disease 
components. The process involved projecting a tripartite network onto a two‑mode bipartite 
network and then simplifying it into a one‑mode network. This approach facilitated the visualization 
of relationships among factors across different sets and within individual sets. To transition from 
multipartite to unipartite networks, we suggest both sequential and concurrent projection methods. 
Data from the Korean Association Resource (KARE) project were utilized, including 352,228 SNPs 
from 8840 individuals, alongside information on environmental factors such as lifestyle, dietary, 
and socioeconomic factors. The single‑SNP analysis step filtered SNPs, supplemented by reference 
SNPs reported in a genome‑wide association study catalog. The resulting network patterns 
differed significantly by sex: demographic factors and fat intake were crucial for women, while 
alcohol consumption was central for men. Indirect relationships were identified through projected 
bipartite networks, revealing that SNPs such as rs4244457, rs2156552, and rs10899345 had lifestyle 
interactions on metabolic components. Our approach offers several advantages: it simplifies 
the visualization of complex relationships among different datasets, identifies environmental 
interactions, and provides insights into SNP clusters sharing common environmental factors and 
metabolic components. This framework provides a comprehensive approach to elucidate the 
mechanisms underlying complex diseases like metabolic syndrome.

Keywords Environment, Genome-wide association study, Metabolic Syndrome, Multipartite network, 
Projection, Tripartite network

Metabolic syndrome (MetS) is defined as a cluster of metabolic abnormalities conditions, including abdomi-
nal obesity, hypertension, diabetes, and  dyslipidemia1,2. The prevalence of MetS has been reported as 20–25% 
 worldwide3,4. MetS is known to be associated with an increased risk of type 2 diabetes mellitus, cardiovascular 
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disease, and premature mortality. The individual components of MetS are also known to be important risk fac-
tors for cardiovascular  diseases5–7.

Various attempts have been made to discover the genetic risk factors of MetS. The heritability of MetS has been 
estimated at over 30%8–10. Many genes and variants associated with MetS have been identified through genome-
wide association studies (GWAS)11–14. Many studies have also sought to find genetic variants associated with 
each MetS component by population. For example, variants near insulin receptor substrate 1 were found to be 
associated with various traits of MetS, such as insulin resistance, HDL cholesterol, and triglycerides in a French 
 population15. GCKR has been reported to be associated with fasting glucose and insulin levels in individuals of 
European  ancestry16,17. UGT1A1 has been reported to impact MetS in both men and women in a Mediterranean 
 population18. In the Korean population, CCDC63, LPL, MYL2, and APOA5 were found to be associated with 
 MetS14,19. The number of variants associated with MetS continues to  increase1,2.

Meanwhile, studies on pleiotropic single-nucleotide polymorphisms (SNPs) for MetS-related traits have also 
been conducted. Kraja et al.20 reported that the same loci were associated with more than one MetS-related trait. 
Based on pleiotropic associations, their research revealed relationships between SNPs, lipids, inflammation, and 
 obesity20. More recently, pleiotropic SNPs and genes related to type 2 diabetes and obesity have been identified 
by applying genetic analyses incorporating pleiotropy and annotations using GWAS  datasets21. A study found 
that IGF2BP2 and TNFRSF13B predisposed individuals to MetS from a pleiotropic  standpoint22. These results 
suggest that examining pleiotropy among metabolic traits is essential.

Since MetS is a multifactorial disease, environmental factors influence MetS. Numerous studies have inves-
tigated the influence of both genetic and environmental factors on the development of MetS. Specifically, envi-
ronmental factors including dietary patterns, physical activity levels, and smoking status have been extensively 
 explored23–29. For instance, a sedentary lifestyle and consumption of energy-dense diets have been linked to pat-
terns in the clustering of different MetS traits  MetS30. Moreover, research indicates that weight loss and increased 
physical activity are prioritized over pharmacological interventions in managing  MetS31. Similarly, risk factors 
related to overnutrition and sedentary behavior have been identified as significant contributors to MetS, alongside 
a genetic  predisposition27. Furthermore, a study highlighted the substantial role of various environmental factors, 
including diet, physical inactivity, stress, education levels, exposure to pollutants, and addictive behaviors, in the 
development of obesity-related  MetS28. Recent investigations in Korea have explored the associations between 
environmental factors—such as sleep duration, sedentary behavior, alcohol consumption, smoking habits, and 
dietary patterns—and the risk of developing MetS. These studies have reinforced the observation that individuals 
with unhealthy lifestyle habits are more prone to developing  MetS32.

Several studies have emphasized the importance of simultaneously considering both environmental and 
genetic  factors8,30,31,33–37. For instance, a multivariate genetic analysis was conducted on nine endophenotypes 
associated with MetS, utilizing twin data to identify common genetic and environmental  factors37. Additionally, 
Prone-Olazabal et al.36 provided an updated perspective on the genetics of MetS as a cohesive entity, examining 
SNPs and gene-diet interactions concerning cardiometabolic markers. In light of the understanding that genetic 
interactions intersect with an individual’s environment, the distinction between genetic disorders and traits from 
environmental influences remains  challenging35.

Network analysis has recently been used for genetic data to investigate disease-gene  associations38–40. A 
network is a collection of nodes and edges connecting the nodes. It can be used to visualize biological processes 
by taking biological entities such as genes, proteins, and diseases as nodes and representing the relationships 
between the entities by  edges41,42. One-mode unipartite network analysis for each variable set or the whole vari-
able set is widely used for genomic data.

Since it is not easy to investigate complex relationships through statistical models, we consider a more intuitive 
representation via a smart visualization method. Among several visualization methods, multipartite network 
analysis has the advantage of enabling researchers to easily grasp the relationships among genes, environments, 
and diseases. A multipartite network, often referred to as a k-partite graphs, can be seen as a complicated form 
of a network. The distinctive characteristic of a k-partite network is that the nodes can be divided into k disjoint 
sets. The edges do not connect nodes in the same set; instead, they only link nodes in different  sets43.

We applied tripartite network analysis for the case of k = 3, considering that there are three different variable 
sets relevant to MetS—namely, MetS components, environmental factors, and genetic factors. We considered 
dichotomous variables for the diagnosis of metabolic syndrome as MetS components, demographic variables, and 
dietary habits as environmental factors, and selected SNPs from GWAS data as genetic factors. To represent the 
relationship between two sets of variables, we used projections with  weights38. A tripartite network was projected 
onto a two-mode bipartite network, and the projected bipartite network was projected again onto a one-mode 
network with the least loss of information. Through this procedure, we could visualize not only the relationship 
among factors in the different sets but also the compressed relationship among factors within the sets.

Materials and methods
Data
We used data from the Korean Association Resource (KARE) project (http:// bioba nk. nih. go. kr). This project, 
a part of the Korean Genome Epidemiological Study (KoGES), started in 2007 and is still in progress. The data 
comprise two community-based cohorts from a rural area (Ansung) and an urban area (Ansan). The cohorts 
consist of community dwellers and participants recruited from the national health examinee registry. For base-
line recruitment, eligible participants were asked to volunteer. Participants completed consent forms and then 
underwent surveys and examinations to assess their current health status and lifestyle habits. Anthropometric and 
clinical measurements such as weight, height, waist circumference, and blood pressure were measured. Human 
biological materials, including blood, urine, and DNA, were collected for analysis. The data include information 
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on genetic variants and environmental factors affecting chronic diseases such as type 2 diabetes, hypertension, 
obesity, MetS, osteoporosis, cardiovascular disease, and cancer in  Koreans44. All participants provided their 
written informed consent to participate in this study. All methods were carried out following relevant guidelines 
and regulations (Declaration of Helsinki). This study was approved by the Institutional Review Board (IRB) of 
Eulji University (EU21-003-01).

Among the participants, 10,030 samples from individuals aged between 40 and 69 were genotyped using an 
Affymetrix Genome-Wide Human SNP Array 5.0. Quality control for the samples and genotypes was performed 
as previously described by Cho et al.44. SNPs with minor allele frequencies (< 0.01), low genotype calling rates 
(< 95%), and violation of Hardy–Weinberg equilibrium (p-values < 1E − 06) were removed. Participants whose 
sex/gender did not match or had a low calling rate (< 95%) were excluded. After quality control, 352,228 SNPs 
in 8840 individuals remained.

To diagnose MetS, the National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) 
criteria are widely  used45. These include different criteria for the Asian  population1,46. A person who has three 
or more of the five MetS components is diagnosed with MetS. The five metabolic syndrome components are 
hypertension (> 130/85 mmHg), abdominal obesity (a waist circumference of ≥ 90 cm in Asian-American men, 
and ≥ 80 cm in Asian-American women), elevated triglycerides (≥ 150 mg/dL), reduced plasma high-density 
lipoprotein cholesterol (HDL-C; < 40 mg/dL in men and < 50 mg/dL in women), and impaired glucose toler-
ance (> 100 mg/dL). We followed these criteria and obtained five dichotomous variables as MetS components.

We also considered 10 variables of demographic characteristics, lifestyle factors, and dietary habits as envi-
ronmental factors. The demographic variables comprised age, education level, and monthly household income. 
As lifestyle factors, we analyzed alcohol consumption, smoking, and physical activity (metabolic equivalents of 
task). The participants were questioned by trained interviewers regarding their socio-demographic status (age, 
education, household income) and lifestyle (diet, smoking, alcohol consumption, physical activity). Education 
level was categorized into six groups, and monthly household income was classified into eight groups. In the 
analysis, low-frequency items were integrated and finally, the education and household income items were 
reduced to four items and three items, respectively.

Protein, carbohydrates, and fat intake, as well as total energy, were used as variables for dietary habits. For 
dietary assessment, a food-frequency questionnaire (FFQ) involving 103 semi-quantitative items was  developed47. 
Information regarding the protocol of the FFQ has been described  elsewhere48. The frequencies of food consump-
tion were categorized into nine groups, ranging from "rarely" to "more than three times per day." Portion sizes 
for each food item could be selected from three options: "small", "medium", or "large". The duration of seasonal 
fruit intake was classified into four categories (3, 6, 9, and 12 months). To assess the overall intake of nutrients 
such as protein and carbohydrates, the consumption frequency of each food item was multiplied by its nutrient 
content using the CAN-Pro 2.0 nutrient database developed by the Korean Nutrition  Society49. Subsequently, 
the amounts of macronutrients were converted into calories, and the percentages of total calorie intake from 
each macronutrient were calculated. More details on the KoGES cohort profile can be found in Ref.50. The data 
description is summarized in Table 1.

Methods
Foundations of multipartite network analysis
A multipartite network or a k-partite network consists of mutually exclusive sets of nodes. Edges can exist 
only between nodes belonging to different sets. A graph is called k-partite if it can be partitioned into k 
nonempty, vertex-disjoint, edgeless  subgraphs40. A k-partite graph can be represented as G = (V ,E) , where 

Table 1.  Summary of the data. SNP single-nucleotide polymorphism, MetS metabolic syndrome, HDL-C 
high-density lipoprotein cholesterol, WC waist circumference.

Chip Affymetrix genome-wide human SNP array 5.0

Number of SNPs 352,228

Number of samples 8840

Cohort

 Urban area Ansan

 Rural area Ansung

Environmental factors

 Demographic Age, education level, household income

 Lifestyle Alcohol consumption, smoking, physical activity

 Dietary habits Protein intake, carbohydrate intake, fat intake, total energy

MetS diagnosis criteria

 Abdominal obesity WC ≥ 90 for men, WC ≥ 80 for women

 Triglycerides ≥ 150 mg/dL

 HDL-C < 40 mg/dL in men, < 50 mg/dL in women

 Hypertension > 130/85 mmHg

 Fasting glucose > 100 mg/dL
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V and E represent vertices and edges satisfying V = V1 ∪ V2 ∪ · · · ∪ Vk and Vi ∩ Vj = ∅ for i  = j and 
E = {(u, v) : u ∈ Vi , v ∈ Vj , i �= j} ,  respectively39.

There are two types of multipartite networks: closed and open networks. While a closed network has no 
restriction on its structure, an open network does not allow a circular structure. The adjacent matrix for a 
k-partite graph is given by

for a closed network, and

for an open network, respectively. Here, Aij is a rectangular matrix called an incidence matrix. The (m, n)-th 
element of Aij is 1 if there is an edge between vertices m of part i and n of part j , and 0 otherwise. Networks can 
also be classified into directed and undirected networks. As the terms indicate, vertices in a directed network are 
connected by directed edges, while the nodes of an undirected network are interconnected.

To understand the structure of a multipartite network, various measures can be employed. Degree distribu-
tion, where the degree of a node represents the number of edges it connects to other nodes, provides insights 
into the network’s  structure35,51. Connectivity measures the minimum number of vertices required to separate 
remaining nodes, indicating strong or weak graph  linkage42,52,53. Closeness centrality gauges a node’s proximity 
to others by calculating the inverse of the average shortest distance to all nodes. Betweenness centrality quan-
tifies a node’s importance by assessing its role in shortest  paths54. Nodes with high closeness or betweenness 
centrality act as significant hubs. Additionally, the clustering coefficient indicates the likelihood of neighboring 
nodes being  connected54.

When k = 2, the network is a bipartite network. From a bipartite network, a one-mode projection can be cre-
ated to compress the network and reveal connections within one  dataset55. This results in two one-mode projec-
tions for each dataset:P1 = AT

12A12 and P2 = A12A
T
12 , where A12 is a bi-adjacency matrix encoding the edges from 

the first dataset to the second dataset. Similarly, a k-partite network produces k different (k − 1)-mode projections 
by consolidating information across the remaining set. However, a multi-stage projection onto the k − i (i > 1) 
mode from a k-partite network is not well established. Assigning weights, which can be simple, hyperbolic, or 
resource allocation-based, to edges can reduce information loss during the projection  process38,56,57.

We propose utilizing k-partite networks to elucidate the complex relationship among genes, environments, 
and disease components in syndromic diseases. There is potential for k-partite networks to be applied in vari-
ous fields, but no research has yet used this method to integrate multiple aspects of genetics, environment, and 
disease. We provide a series of analysis processes and propose concurrent and sequential projections to offer 
various visualizations of hidden relationships.

Implementing multipartite network analysis in GWAS
We employed a multipartite network to identify the environmental and genetic associations for a syndromic 
disease. We considered three distinct datasets: genetic factors, environmental factors, and MetS components. As 
genetic factors, we used SNPs. Ten environmental factors— E0 (age), E1 (education), E2 (income), E3 (alcohol), 
E4 (smoking), E5 (physical activity), E6 (total energy), E7 (protein intake), E8 (fat intake), E9 (carbohydrate 
intake)—were considered, as in previous  research29. Five components of MetS—MetS1 (abdominal obesity), 
MetS2 (triglycerides), MetS3 (HDL-C), MetS4 (hypertension), and MetS5 (fasting glucose)—were considered as 
variables in the disease dataset. All analyses were stratified by sex since it is known that there are sex differences 
in metabolic  homeostasis58,59.

The procedure for the analysis was as follows:

(a) Variable selection: To reduce the number of SNPs in GWAS data, we performed a single SNP analysis using 
logistic regression. Age and area were considered as covariates. To address the issue of multiple compari-
sons, we adjusted the p-values using the Bonferroni correction. Since the number of SNPs selected based 
on this criterion was not sufficient, we used a less stringent threshold of p < 1E − 05. By filtering with this 
threshold, 42 SNPs for women and 57 SNPs for men were selected.

(b) Addition of reference SNPs: To improve the validity of our study, we also included 131 referenced SNPs that 
were reported to affect each component of MetS in a GWAS catalog (https:// www. ebi. ac. uk/ gwas/ home). 
We used the five components of MetS as search terms and targeted studies focusing on Asian populations. 
After reviewing the content of the selected papers, we retrieved a list of relevant SNPs. Using the same 
threshold of p < 1E − 05, significant SNPs were selected. Excluding overlapping SNPs, 168 SNPs for men 
and 160 SNPs for women were used in the analysis.
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(c) Construction of an adjacency matrix A , as shown in Eq. (1): The incidence matrix Aij was set based on 
Pearson correlation coefficients. The (m,n)-th elements of Aij were set to 1 if the correlation coefficient 
between the m-th variable in dataset i and the n-th variable in dataset j is significant ( p < 0.001 ), and 0 
otherwise. Through this procedure, 67 nodes for women and 65 nodes for men in the genetic factor set 
remained. The environmental factor set and MetS component set still had 10 and 5 nodes, respectively.

(d) Building the tripartite network: A tripartite graph was drawn using the adjacency matrix. To represent the 
strength of the connections between nodes, correlation coefficients were used as the weights of edges. An 
undirected and closed network was created.

(e) Projection to a bipartite network: We constructed two-mode projections composed of two sets of variables 
using projection from a tripartite network. They were connected by an edge if they shared a common vari-
able in a third dataset. For example, if an SNP and a MetS component were connected in the two-mode 
projection, they shared at least one environmental factor. We used the simple weighting method—that is, 
the strength of the connection between two nodes is proportional to the number of nodes that they shared 
in the original graph. In total, three two-mode projections were created.

(f) Projection to a unipartite network: Unlike one-level projection, a method for conducting a multi-stage 
projection onto k − i (i > 1) from a k-partite network has not been well established. There can be various 
paths from a k-partite to a unipartite network. We proposed two types of projections for obtaining uni-
partite projections: sequential projection and concurrent projection.

A. Sequential projection: A (k − i + 1)-mode projection is compressed to a to (k − i)-mode projection by 
aggregating information over the remaining set for i = 1, · · · , k − 1 . That is, for the i-th stage, a (k − i)
-mode network is constructed by connecting two nodes within the same dataset if they share at least 
one node in a different dataset on the (k − i + 1)-mode projection. For example, if we have three dif-
ferent datasets, three two-mode bipartite networks are produced in the first stage, and three one-mode 
unipartite projections are obtained for each two-mode projection in the second stage. The final network 
varies depending on its route of derivation.

B. Concurrent projection: A k-partite network is compressed to a unipartite network at once. To draw a 
unipartite network of one set, the nodes of the other set are treated as if they belong to the same dataset. 
For example, if we have three different datasets, only one one-mode projection is obtained for each 
dataset.

  To create a unipartite network via sequential projection, a two-mode projection is compressed in a similar 
way to (d). In this process, nodes within the same dataset are connected if they share at least one node in 
another dataset on the two-mode projection, resulting in three one-mode projections per two-mode pro-
jection. Concurrent projection compresses a tripartite network directly into a unipartite network without 
utilizing method (d). Here, nodes from the other set are considered part of the same dataset, yielding three 
one-mode projections in total.

(g) Construction of one-mode projections from (d). In the network, nodes in the same dataset were connected. 
For the above procedure (c)–(e), separate networks were established for men and women.

Single SNP association testing was performed using PLINK (http:// pngu. mgh. harva rd. edu/ ~purce ll/ plink/). 
To draw a multipartite network, the igraph package in R can be used. Since the igraph package does not provide 
projections of tripartite networks, we modified the algorithm to enable projections using simple weights.

Results
Descriptive statistics
Table 2 demonstrates the descriptive statistics for participants by sex. Although the average age of men and 
women was similar, there were significant differences in every environmental factor ( p < 0.001 ). Each com-
ponent of MetS showed a higher proportion in women than in men except for MetS5, and a particularly high 
value for MetS1 was found in women. The overall proportion of individuals with MetS was 32.8%. Therefore, we 
constructed a separate network for each sex.

Constructing tripartite networks
Figure 1 shows the tripartite network using the data from men. The nodes that had weak connections with other 
nodes (p ≥ 0.001) were eliminated in the drawing process. Total of 80 nodes were used to draw the network. The 
Rs numbers of the SNPs used in the graph are listed in Supplementary Table 1. In the graph, MetS3 (HDL-C) 
seemed to have the most connections, followed by MetS2 (triglycerides). E3 (alcohol) was located at the center 
connecting metabolic components except for MetS1 (abdominal obesity). A group of SNPs, including S64–S67, 
S70–S73, S76, S78, S105–S107, and S110, showed connections to both MetS2 and MetS3. It is remarkable that 
MetS1 had no direct connection with most SNPs except for S20 and was mainly related to nutritional factors 
such as E6 (total energy), E7 (protein intake), E8 (fat intake), and E9 (carbohydrate intake).

The node with the largest degree (i.e., the node that was connected to the most nodes) was MetS3, with a 
degree of 42. MetS2 had the second-highest degree (34). Among the nodes in the environmental factor set, E3 
(alcohol) showed the largest degree (16), and among the nodes in the SNP set, S129 (rs12903590) and S130 
(rs4821116) showed the largest degree (7). S129 is mapped to the ALDH1A2 gene and has been reported to be 
related to HDL-C  levels60,61. S130 has been reported to be located in UBE2L3 and related to hepatitis B virus 
infections and HDL-C  levels62,63. The nodes with large degrees also showed high centrality. A node with high 
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closeness centrality tends to be in the center of the network, while many other nodes are connected. In contrast, 
a node with high betweenness centrality builds a bridge that connects a lateral node and a central node rather 
than being connected to many nodes. MetS3 showed the highest closeness centrality (0.0067) followed by MetS2, 
(0.0064), E3 (0.0064), S129 (0.0063), and S130 (0.0063). For betweenness centrality, MetS3 (1442.06), MetS2 
(1256.88), and MetS4 (hypertension;492.39) showed high values. E3 (373.67) and E9 (370.14) also showed high 
betweenness centrality. Thus, these nodes played the role of hubs in the network for men.

The thickness of the edges denotes the strength of the connection between the nodes. Not only S129 and S130, 
but also S127 (rs17411126) and S138 (rs6805251) showed strong connection with E3 in Fig. 1. S127 is mapped 
to the LPL gene and is known to be related to the cholesterol ratio in the Korean  population64. S138 is mapped 
to the GSK3B gene and has been reported to be associated with HDL-C65. Table 3 shows the top five edges based 
on the absolute value of the correlation coefficients and their p-values. All relationships for which the absolute 
value of correlations was greater than 0.10 are presented in Supplementary Table 2. The information obtained 
from the graph is confirmed.

Similarly, Fig. 2 represents the tripartite network for women. In this network, after eliminating the nodes with 
weak correlations (p ≥ 0.001), 82 nodes were used to form the network. The same process as with the data from 
men was conducted to filter the significant nodes. Instead of E3 (alcohol), which played an important role in the 
network for men, socioeconomic variables such as E0 (age), E1 (education), E2 (income), and E8 (fat intake) 
were located at the center, connecting various MetS components in the network for women. Moreover, these 
showed strong connections. As in the network for men, E3 was linked to MetS3, and there were several SNPs 
(S104-S107) linking MetS2 and MetS3, playing the role of bridges. S120 (rs10899345) connected MetS4 to the 
environmental variables of E0, E1, E2, and E8, while S162 (rs2156552) linked these environment variables to E5 
(physical activity). S120 has been identified in the B3GNT6 gene, and the reported trait is waist  circumference66. 
S162 is in LOC105372112 and is known to be associated with HDL-C and LDL-C in various  populations67,68.

MetS3 had the largest degree (41). Among the environmental nodes, E2 showed the largest degree (8). Among 
the SNPs, the degrees of S162 and S120 were high (6 and 4, respectively). MetS3, E2, E0, E1, E8 were the five nodes 
with the highest closeness centrality (MetS3:0.0069, E2:0.0063, E0:0.0062, E1:0.0062, E8:0.0061) while MetS3, 
MetS2, MetS4, E3, E2 were the five nodes with the highest betweenness centrality (MetS3:2404.22, MetS2:863.22, 
MetS4:738.17, E3:532.00, E2:484.00). No SNP seemed to be important in terms of centrality. MetS4 and MetS1 
showed the highest correlations with E0 (age). It is remarkable that they had high negative correlation coefficients 
with E1 (education) (Table 3).

Table 2.  Basic statistics for participants by sex. Values are presented as mean ± SD or number (%). *1 
USD ≈ 1000 KRW.

Male Female

Number of samples 4182 (47.3%) 4658 (52.7%)

E0: Age (year) 51.78 ± 8.78 52.61 ± 9.01

E1: Education

 ≤ Elementary school 834 (20.0%) 2074 (45.0%)

 Middle-high school 2439 (58.6%) 2262 (49.1%)

 ≥ College 888 (21.4%) 271 (5.9%)

E2: Household income (monthly)

 < 1000 USD** 556 (13.4%) 1125 (24.8%)

 1000–1999 USD 1209 (29.2%) 1498 (33.0%)

 2000–2999 USD 1458 (35.2%) 1306 (28.8%)

 ≥ 3000 USD 918 (22.2%) 611 (13.5%)

E3: Alcohol (g/day) 18.96 ± 28.8 1.31 ± 5.8

E4: Smoking (pack-years) 19.43 ± 18.4 0.41 ± 2.9

E5: Physical activity (MET min/week) 9747.33 ± 6450.82 9203.32 ± 6228.25

E6: Total energy(kcal/day) 2029.71 ± 654.08 1887.96 ± 742.03

E7: Protein intake (g) 70.02 ± 28.44 63.60 ± 30.99

E8: Fat intake (g) 36.13 ± 20.77 29.34 ± 20.90

E9: Carbohydrate intake (g) 350.59 ± 106.93 338.13 ± 127.63

MetS1: Abdominal obesity 803 (19.2%) 2500 (53.7%)

MetS2: Triglyceride 2032 (48.6%) 1666 (35.8%)

MetS3: HDL-C 1549 (37.1%) 3267 (70.2%)

MetS4: Hypertension 1952 (46.7%) 1912 (41.1%)

MetS5: Fasting glucose 731 (18.6%) 508 (11.6%)
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Constructing projected bipartite and unipartite networks
To elucidate the relationship between the nodes in two different sets, we projected the tripartite network into 
a two-mode bipartite network. Three two-mode projections were created for each sex. Among them, bipartite 
networks with the metabolic component set and SNP set for each sex are shown in Fig. 3. The projected bipartite 
network implies an indirect relationship between the nodes. For instance, in the network for men, MetS4 and 
S62 (rs4244457) are connected because they share E0, E1, E2, and E5 in the tripartite network. To reduce the 
loss of information, we applied simple weighting for the projection. The thickness of the edges was proportional 

Disease        Environmental factor         SNP 

Fig. 1.  Tripartite network of data from men. E0 (age), E1 (education), E2 (income), E3 (alcohol), E4 (smoking), 
E5 (physical activity), E6 (total energy), E7 (protein intake), E8 (fat intake), E9 (carbohydrate intake); MetS1 
(abdominal obesity), MetS2 (triglycerides), MetS3 (HDL-C), MetS4 (hypertension), MetS5 (fasting glucose); 
S1–S190 (SNPs); Line thickness (degree of association).

Table 3.  Top five edges with high correlations. *Pearson correlation coefficient.

Male Female

Edge Correlation coefficient* Edge Correlation coefficient

E3 ↔ S130 − 0.2780 MetS4 ↔ E0 0.4047

E3 ↔ S129 − 0.2758 MetS1 ↔ E0 0.3244

E0 ↔ MetS4 0.2405 MetS1 ↔ E1 − 0.2884

E3 ↔ S127 − 0.2305 MetS4 ↔ E1 − 0.2835

E3 ↔ S138 − 0.1629 MetS1 ↔ E2 − 0.2731
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to the number of environmental factors shared by the two nodes. We can interpret this as indicating a large 
indirect association between MetS4 and S62 through environmental factors, although there was no significant 
direct association, as shown in the tripartite network. S162 (rs2156552) and MetS4 also showed slightly stronger 
indirect relationships than other nodes. In the network for women, S120 (rs10899345) and S162 (rs2156552) 
showed strong connections with every component of metabolic syndrome. These SNPs showed high degrees in 
the tripartite network, but their direct correlations with metabolic syndrome components were low. However, 
the projected bipartite network indicated that they had strong indirect relationships with metabolic components, 
reflecting environmental factors. The bipartite networks of MetS components and environmental factors, as well 
as environmental factors and the SNP set, can be interpreted similarly (Supplementary Figs. 1, 2).

Figure 4 demonstrates the projected unipartite graph of data from men and women using concurrent projec-
tion. By the definition of a closed tripartite network, nodes in the same set were disconnected in the original 
tripartite network. However, through the projection, indirect relationships between the nodes in the same set 
could be discovered in the unipartite network. For men, MetS2 and MetS3 were strongly related through SNPs 
and environmental factors, and MetS1 was not related to other MetS components. In the data from women, the 
relationships involving MetS2 and MetS3 were weaker, but all the components were connected. For the environ-
mental network, E0, E3, and E5 for men and E0, E1, E2, and E8 for women were strongly related through SNPs 
and MetS components. The unipartite network for SNPs showed several SNP clusters, each of which shared the 
same environments and MetS components.

To obtain unipartite networks using sequential projection, we re-compressed the projected bipartite network. 
For each dataset, two different unipartite networks were produced. The resulting structure of the unipartite 
network and the relationship between the nodes differed according to the order of the aggregating dataset. For 

Disease        Environmental factor         SNP 

Fig. 2.  Tripartite network of data from women. E0 (age), E1 (education), E2 (income), E3 (alcohol), E4 
(smoking), E5 (physical activity), E6 (total energy), E7 (protein intake), E8 (fat intake), E9 (carbohydrate 
intake); MetS1 (abdominal obesity), MetS2 (triglycerides), MetS3 (HDL-C), MetS4 (hypertension), MetS5 
(fasting glucose); S1–S190 (SNPs); Line thickness (degree of association).
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instance, although (b) and (d) in Fig. 5 both denote relationships between environmental factors, the graphs are 
completely different. This is because (b) was obtained by aggregating information over MetS component infor-
mation from the environment-MetS components bipartite network (a), whereas (d) was obtained by aggregating 
information using the SNPs from the environment-SNP bipartite network (c). In the data from men, E3 and E4 
were strongly connected by metabolic components, but nothing was connected to E4 via SNPs. The remaining 
unipartite networks obtained by sequential projection can be seen in Supplementary Figs. 3–7.

Discussion
To visualize the structure of numerous relationships among different variable sets—corresponding to genes, 
environments, and diseases—at once, a multipartite network was used. From a methodological perspective, the 
following novel points are proposed.

 i. Utilizing multipartite networks to explore genetic and environmental influences on syndromic diseases: 
To understand genetic and environmental influences on syndromic diseases, we constructed independent 
variable sets and utilized multipartite networks to visualize the relationships between each set of variables 
at a glance.

 ii. Identifying indirect relationships via projected bipartite networks: Using a projected bipartite network 
enabled the identification of indirect relationships between nodes that could not be discovered in a usual 
network. Connections in the lower mode network graphs derived through projection do not indicate 
direct associations, but rather indirect associations reflecting the factors in a hidden set. For example, if 
an SNP and a metabolic component are connected in a projected bipartite network, this does not imply 
a direct association between them, but rather that they share a hidden environmental factor.

 iii. Proposing two different multi-stage projection methods: To elucidate the relationship between nodes 
in the same set, we suggested two different projection methods. Using the concurrent method allows us 
to represent associations between variables explained by variables from different groups. For instance, 
in a graph of diseases obtained from the projection into a one-mode unipartite network, diseases with 
significant indirect influences from both environment and genetics are strongly connected. In our data, 
the concurrent projection method was preferred due to its ease of interpretation. However, if the variable 
sets are nested, such as SNPs, genes, and pathways, sequential projection would be more meaningful. It 
is recommended to choose a projection method considering the relationship between sets.

 iv. Applicability to small samples: Many studies did not conduct sex-stratified analyses due to sample size 
limitations or analytical  complexities69,70. Moreover, the effects of individual variables can be weak in 
complex diseases. Multipartite networks serve as exploratory tools, capable of revealing not only strictly 
significant variables but also potential underlying associations. Therefore, they can offer advantages in 
small-scale studies.

 v. Applicability to pleiotropy: We set each component of MetS as a node. However, if a node is defined as a 
disease, a pleiotropic effect can also be seen through a tripartite network graph.

From the perspective of MetS analysis results, the study’s novel findings can be summarized as follows:

Disease          SNP

Fig. 3.  Projected bipartite network of MetS components and the SNP set. MetS1 (abdominal obesity), MetS2 
(triglycerides), MetS3 (HDL-C), MetS4 (hypertension), MetS5 (fasting glucose); S1–S190 (SNPs) ; Line 
thickness (degree of association). (a) Data from men (b) Data from women.
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 (i) Sex-based variations in network patterns on metabolic syndrome: Utilizing Korean GWAS data, we 
identified distinct patterns between men and women. A notable contrast is the central and hub role of 
alcohol in the network for men, whereas its significance was lower within the female network. While 
the impact of alcohol consumption on health issues such as hypertension and dyslipidemia has been 
 acknowledged71–73, the use of multipartite networks helped confirm its influence on MetS components, 
particularly in men. Furthermore, within the male network structure, HDL-C, triglyceride, and hyper-
tension from the MetS component set; rs12903590 and rs4821116 from the SNP set; and carbohydrate 
intake and alcohol from the environmental set served as central and bridging nodes. In contrast, key 
nodes in the female data comprised age, education, income, and fat intake from the environmental set, 
which were strongly linked with MetS components, displaying a distinct pattern compared to men. 
Previous studies have underscored sex/gender differences in the risk and genetic effects of  MetS58,59,74. 
Additionally, the effects of socioeconomic variables and dietary habits on MetS have been  reported75–77. 
Certain SNPs, such as rs12903590 and rs4821116, have been associated with HDL-C cholesterol levels 
in the Asian  population78,79. However, network graphs offer a clear depiction of their associations with 
pertinent SNPs.

 (ii) Environmental interactions on MetS and genes: The projected bipartite network enabled the identifica-
tion of indirect relationships between MetS components influenced by environmental factors and SNPs 
can be identified. The analysis indicated that in men, rs4244457 is associated with hypertension through 
age, education, and physical activity, while rs2156552 appears to be prominently linked to hypertension 

Fig. 4.  Projected unipartite networks using concurrent projection. E0 (age), E1 (education), E2 (income), 
E3 (alcohol), E4 (smoking), E5 (physical activity), E6 (total energy), E7 (protein intake), E8 (fat intake), 
E9 (carbohydrate intake); MetS1 (abdominal obesity), MetS2 (triglycerides), MetS3 (HDL-C), MetS4 
(hypertension), MetS5 (fasting glucose); S1–S190 (SNPs) ; Line thickness (degree of association). (a) Data from 
men. (b) Data from women.
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through age, income level, and physical activity. In women, rs10899345 and rs2156552 are associated 
with all MetS components through age, education level, income, and fat intake. These findings could 
not be obtained through simple correlation analysis, underscoring the need for further analyses such 
as gene-environmental interaction analysis or mediation analysis. While there have been various prior 
studies on this  topic80–82, the specific SNPs with lifestyle interactions on MetS addressed are, to the best 
of the authors’ knowledge, not covered in those studies.

Among the identified SNPs in this study, rs1290359, which showed a direct relationship with metabolic 
components, maps to the ALDH1A2 gene. ALDH1A2 is involved in converting retinol into retinoic acid (RA), a 
critical regulator of lung and cardiovascular development during human embryogenesis. Additionally, this gene 
is implicated in T-cell acute lymphoblastic leukemia and is considered a candidate tumor suppressor in prostate 
 cancer83,84. ALDH1A2 may also promote a progressive phenotype in  glioblastoma85. Furthermore, rs4821116 is 
located in the UBE2L3 gene, which has been associated with various autoimmune diseases, including rheumatoid 
arthritis, celiac disease, Crohn’s disease, and systemic lupus erythematosus, through its role in ubiquitination of 
the NF-κB  precursor86–88. The SNP identified via indirect relationships, rs2156552, maps to the ACAA2 gene. 
ACAA2 is a rate-limiting enzyme in mitochondria responsible for catalyzing the final step of the mitochondrial 
beta-oxidation  pathway89. Dysfunction of this enzyme may contribute to several metabolic disorders and dis-
eases. The ACAA2 expression has been proposed as a potential molecular marker for small-cell neuroendocrine 
 cancers89. The ACAA2 locus also has been linked to blood lipid abnormalities, particularly in HDL and LDL 

Fig. 5.  Projected unipartite networks using sequential projection for the data from men. (a) Projected bipartite 
network of the metabolic component set and the environmental set. (b) Projected unipartite network of 
environmental factors using sequential projection to (a). (c) Projected bipartite network of the environmental 
set and the SNP set. (d) Projected unipartite network of the environmental set using sequential projection to 
(c). E0 (age), E1 (education), E2 (income), E3 (alcohol), E4 (smoking), E5 (physical activity), E6 (total energy), 
E7 (protein intake), E8 (fat intake), E9 (carbohydrate intake); MetS1 (abdominal obesity), MetS2 (triglycerides), 
MetS3 (HDL-C), MetS4 (hypertension), MetS5 (fasting glucose); S1–S190 (SNPs) ; Line thickness (degree of 
association).
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cholesterol  levels68. Considering this information, future studies could explore potential associations with dis-
eases related to these genes.

Although the data were obtained according to systematic and standardized epidemiological data quality 
control procedures, this study still has several limitations. First, bias is possible since the variables related to 
lifestyle and diet were obtained from self-reported survey forms. Second, we used SNP chip data, which could 
be impacted by bias according to the direct genotyping approach without imputation analysis.

A few noteworthy methodological points are as follows. First, in selecting the threshold of p < 1E − 05, we 
aimed to balance between the rigorous control of false positives, as done with the Bonferroni correction, and the 
need to include a sufficient number of SNPs to catch meaningful signals for exploratory analysis. This threshold 
enables more SNPs in our graph while still maintaining a reasonable level of statistical significance. Various 
studies have used the same threshold in the analysis of GWAS  data81,90–94. Second, linkage disequilibrium (LD) 
pruning was not performed in the variable selection stage. Unlike regression-based methods, LD pruning is 
not required in the variable selection stage, because representing SNPs in LD does not influence the results of 
network-based methods. Instead, we investigated the selected SNPs in a post hoc analysis. A list of the SNP pairs 
with high LD  (r2 ≥ 0.9) is presented in Supplementary Table 2.

For the indirect relationships identified in this study, validation through mediation analysis or Mendelian 
randomization could be considered. These avenues could be pursued in future research endeavors.

Data availability
The Korea Association Resource (KARE) project data will be publicly distributed by the Distribution Desk of 
the Korea Biobank Network. Researchers who wish to receive epidemiological and genomic information data 
should apply through the ‘Human Resources Distribution Desk (http:// bioba nk. nih. go. kr).’ After completing the 
application form and submitting the research plan and IRB approval (or waiver), it goes through deliberation 
by the Distribution Review Committee, which meets once a month. The researchers will directly receive the 
distributed resources after approval. For any inquiries, contact admin@koreabiobank.re.kr.
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