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Conditional punishment is a 
double-edged sword in promoting 
cooperation
Feng Huang  1,2, Xiaojie Chen2 & Long Wang 1

Punishment is widely recognized as an effective approach for averting from exploitation by free-riders 
in human society. However, punishment is costly, and thus rational individuals are unwilling to take 
the punishing action, resulting in the second-order free-rider problem. Recent experimental study 
evidences that individuals prefer conditional punishment, and their punishing decision depends on 
other members’ punishing decisions. In this work, we thus propose a theoretical model for conditional 
punishment and investigate how such conditional punishment influences cooperation in the public 
goods game. Considering conditional punishers only take the punishing action when the number 
of unconditional punishers exceeds a threshold number, we demonstrate that such conditional 
punishment induces the effect of a double-edged sword on the evolution of cooperation both in well-
mixed and structured populations. Specifically, when it is relatively easy for conditional punishers 
to engage in the punishment activity corresponding to a low threshold value, cooperation can be 
promoted in comparison with the case without conditional punishment. Whereas when it is relatively 
difficult for conditional punishers to engage in the punishment activity corresponding to a high 
threshold value, cooperation is inhibited in comparison with the case without conditional punishment. 
Moreover, we verify that such double-edged sword effect exists in a wide range of model parameters 
and can be still observed in other different punishment regimes.

The solutions to many challenges in human societies, such as the management of public resources1–3 and the 
global warming4–6, all boil down to resort to a broad collective action of cooperation. However, the dilemma of 
helping others at a cost to ourselves or refraining from doing so but still profiting from the efforts provided by 
others7, always leads to the collapse of cooperation. As a solution to the dilemma of cooperation, costly punish-
ment has attracted much attention both from the theoretical8–11 and experimental12–17 perspectives. But its side 
effect that the enforcement can lower the income of punishers is also highlighted9,18. Hence, whether contributing 
to the punishment pool or not becomes a similar dilemma as whether contributing to the public good or not19–21.

The puzzle about the emergence of costly punishment can be solved by considering some additional fac-
tors, such as reputation22–24, group selection25–28, social exclusion29,30, and consideration of sanctioning the 
second-order free-riders10,31. In addition, by including a loner strategy, voluntary participation also paves the 
way to solve the dilemma of costly punishment8,9,32,33. Based on the assumption that punishment is considered to 
be unconditional and uncoordinated individual action automatically triggered by defectors34, however, it seems 
that the loner strategy does not effectively address the inherent dilemma for the initial emergence of costly pun-
ishment, since rare punishers must undertake enough punishment when defection are prevalent18. On the con-
trary, the coordinated effort among punishers is well documented both in ethnographic evidence and behavioral 
experiments with communication or with the option of coordinating behavior35,36. It seems that such coordinated 
strategy can provide another method to overcome the problem of costly punishment because punishers do not 
bear the cost of punishment permanently. Motivated by the ethnographic evidence and behavioral experiments, 
a theoretically seminal work on coordinated punishment shows that cooperation can be sustained and such pun-
ishment can proliferate when rare34. Moreover, some other variants of punishment, such as conditional punish-
ment37 defined by imposing a fine with a strength proportional to the number of punishers in their own groups 
and probabilistic sharing of punishment responsibility38, also play an important role in solving the problem of 
second-order free-riders.
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It is worth mentioning that a recent behavior experiment found that individual’s punishing decision is on 
average significantly positively proportional to other members’ punishing decisions39. Actually, such sheep-flock 
effect of punishing behavior or the threshold effect of collective action40, is very ubiquitous in human socie-
ties and in animals. For example, when robbers implement a robbery in a public place, policemen may behave 
righteously and bring the thief to justice at once. While general civilians may hesitate to engage in sanction and 
their punishing decisions to robbers should significantly depend on the number of individuals who perform the 
punishment. And this novel behavior among punishers is completely distinct from the coordinated punishment 
investigated in some aforementioned works34,37,38. Hence, it still remains unclear how such conditional punish-
ment, under which whether to sanction free-riders or not depends on the number of unconditional punishers in 
the group, influences the evolution of cooperation.

In this work, we then propose a theoretical model for conditional punishment in the context of public goods 
games, and consider that conditional punishers will participate in the punishment activity with other uncon-
ditional punishers only when the number of unconditional punishers in the group is not less than a threshold 
number, otherwise they will just cooperate. In addition to the consideration of well-mixed populations, we also 
investigate the conditional punishment in structured populations out of the interest for dynamics in some real 
social systems41,42. Considering that very little work has addressed questions about the relative efficacy of differ-
ent types of punishment pointed out in ref.17, we further take into account different punishment forms10,29,38. As 
we will show in what follows, the introduction of conditional punishment induces the effect of a double-edged 
sword on the evolution of cooperation. That is, if the threshold for the number of unconditional punishers is low, 
more conditional punishers will jump on the bandwagon and punish free-riders, which sustains cooperation. 
Otherwise, a high threshold exacerbates the second-order free-rider problem of punishment. And we verify that 
such effect is robust against population structures and punishment regimes.

Model
We consider that individuals in a population play the public goods game in which G individuals are chosen ran-
domly to form a group for playing the game. Each player is set as a pure cooperator (C), a pure defector (D), an 
unconditional punisher (P), or a conditional punisher (M). Except for defectors who contribute nothing to the 
common pool but exploit others’ efforts, all three other strategists contribute a fixed amount c to the common 
pool. The sum of all contributions in the group will be multiplied by a synergy factor r, and then allotted equally 
among all group members irrespective of their contributions.

Subsequently, the punishment mechanism will work as long as there exists at least one defector and one pun-
isher in the group. Each unconditional punisher will impose a fine α on each defector in the group. While all pure 
cooperators only contribute to the public good but refrain from punishing defectors, who are the second-order 
free-riders18,43. Conditional punishers are principally cooperators who contribute to the common pool, but mean-
while permanently observe the choices of other players in the group at an additional cost of γ. Such observa-
tion will assist conditional punishers to discern the number of unconditional punishers in the group. When the 
number of unconditional punishers is not less than the threshold H, which should be satisfied 0 < H < G, the 
punishing action from conditional punishers will be triggered. Each conditional punisher will impose the same 
fine α on each defector as a reaction. Otherwise, they do nothing but cooperate. Thus, in our model the punishing 
decision of conditional punishers to a defector significantly relies on the number of unconditional punishers. And 
when H is low, it means that it is relatively easy for conditional punishers to participate in the punishment activity. 
While when H is high, it means that the environment for conditional punishers to participate in the punishment 
activity is more harsh. In addition, each defector penalized for free-riding will bring a cost β to the community 
of punishers. And the associated costs are equally shared among individuals who participate in the punishment 
activity following a previous work38.

Accordingly, we designate the number of pure cooperators, pure defectors, unconditional punishers, and con-
ditional punishers as NC, ND, NP, and NM among the other G − 1 players in the group, respectively. And hence the 
payoffs of cooperators (ΠC), defectors (ΠD), unconditional punishers (ΠP), and conditional punishers (ΠM) from 
the group are given by, respectively,
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where δ(u) is the Heaviside step function: δ(u) = 1 if u ≥ 0, otherwise δ(u) = 0. For the sake of comparison with 
the case of a structured population, we assume that the group size is G = 5 in this paper. Furthermore, without 
loss of generality, the contribution to the public good is considered to be c = 1. And to adhere to the existence of 
social dilemma11,44,45, the interval of r values is constrained as 1 < r < G.

As we have already defined, it is a key point that conditional punishers employ a more sophisticated strategy 
with following the trend, which characterizes the sheep-flock effect of punishing behavior. More specifically, such 
a player only behaves as a pure cooperator and refuses to engage in punishment if the number of unconditional 
punishers is less than a critical threshold H. Otherwise, they will undertake the obligation of punishing defectors, 
who play the role of unconditional punishers. Such propensities of following the trend for conditional punishers 
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are characterized via the δ function. In general, the value of H can characterize the level of willingness or difficulty 
for conditional punishers engaging in punishment. Thus, the threshold H is a key parameter in our model. In 
what follows, we will present the evolutionary dynamics both in well-mixed and structured populations for low 
and high values of H. In particular, we will show the effects of conditional punishment on the evolution of coop-
eration by comparing with the case in which conditional punishment is not introduced.

Results
Infinite well-mixed populations. Based on replicator equations, we first present the evolutionary dynam-
ics in infinite well-mixed populations. In Fig. 1, the flow diagrams are shown in the interior of the simplex S4 and 
on its boundary faces for two different threshold values, respectively. We find that when conditional punishment 
is considered, the system will evolve to either the state of all defectors (vertex D) or the coexistence state of 
cooperators and unconditional punishers (segment PK), no matter whether the threshold value is low or high 
(Fig. 1(a) and (b)). And such evolutionary outcomes are not changed in comparison with the case in which con-
ditional punishment is not introduced (see the triangle PDC in Fig. 1(c) and (d)). In the simplex S4, accordingly 
there exists a surface which divides the whole strategy state space into two basins of attraction. In particular, 

Figure 1. Flow diagrams in the interior of the simplex S4 and on its boundary faces based on replicator 
dynamics. Top row (bottom row) depicts evolutionary dynamics in the interior (on the boundary faces) of the 
simplex S4 for H = 1 (panels (a) and (c)) and H = 3 (panels (b) and (d)), respectively. Stable fixed points are 
depicted with solid blue circles, while unstable fixed points are depicted with open blue or red circles. Arrows 
indicate the direction of evolution. In the interior of the simplex S4 and on its boundary faces, the system 
will evolve to the stable equilibrium—either all defectors (vertex D) or the coexistence of cooperators and 
unconditional punishers (segment PK), in dependence on the initial conditions. The red surface separates the 
basins of attraction for vertex D and segment PK. In each pie chart, the likelihood that the equilibrium segment 
PK evolves is indicated by red, and green for the likelihood that the equilibrium D evolves. Additionally, 
the light red domain in the second row represents the attractive basin of defection on the boundary faces of 
the simplex S4. Parameters in panels (a) and (c): r = 3, c = 1, G = 5, α = 1.0, β = 0.7, γ = 0.05, and H = 1. 
Parameters in panels (b) and (d): r = 3, c = 1, G = 5, α = 1.0, β = 0.7, γ = 0.05, and H = 3.
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the unstable interior equilibrium R on the edge DP can be determined by the real root z*∈(0, 1) of the function 
g(z) = β{(1)/(z)[(1 − z)G − 1] + (α(G − 1)z)/(β) + (rc)/(Gβ) − (c)/(β) + 1} (Methods for infinite populations).

Furthermore, we analyze the basin of attraction in the simplex S4 by numerical calculations, as shown in the 
pie chart of Fig. 1. We find that for low H = 1, the cooperative basin of attraction occupies 62.3% of the whole 
strategy state space in the simplex S4. While for high H = 3, it only occupies 44.0% of the whole strategy state 
space. It indicates that the cooperative basin of attraction decreases with increasing the threshold value H. On 
the other hand, we note that the cooperative basin of attraction occupies 51.5% of the whole triangle PDC shown 
in Fig. 1(c) and (d), which corresponds to the case without conditional punishment. Thus, we can conclude that 
the introduction of conditional punishment induces a double-edge sword effect on cooperation. That is, when 
it is easy for conditional punishers to participate in the punishment activity (low threshold value), cooperation 
is promoted in comparison with the case in which conditional punishment is not introduced. While when it is 
difficult for conditional punishers to participate in the punishment activity (high threshold value), cooperation is 
inhibited in comparison with the same case where conditional punishment is not introduced.

By respectively changing the model parameters (α, β, and γ), we show the evolution of strategies on the 
boundary faces of the simplex S4 again (Fig. 2). It is found that the stability of the system does not change when 

Figure 2. Evolution on the boundary faces of the simplex S4 for different model parameters. Unstable equilibria 
are indicated by open red circles, and stable equilibria are indicated by solid blue circles. The defection basin of 
attraction is depicted by the light red shadow, and the remaining domain is the ‘cooperative’ basin of attraction. 
In each pie chart, the red domain represents the likelihood that the equilibrium segment PK evolves, and the 
green domain for the likelihood that the equilibrium D evolves in the interior of the simplex S4. For the cases 
without the strategy of conditional punisher, the cooperative basin of attraction occupies 16.4% ((a) and (b)), 
69.1% ((c) and (d)), and 48.4% ((e) and (f)) of the whole triangle DCP, respectively. Parameters: r = 3, c = 1, G 
= 5, α = 0.3, β = 0.7, and γ = 0.05 in (a) and (b); r = 3, c = 1, G = 5, α = 1.0, β = 0.15, and γ = 0.05 in (c) and 
(d); r = 3, c = 1, G = 5, α = 1.0, β = 0.7, and γ = 0.6 in (e) and (f).
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the parameter values are properly altered. And in comparison with Fig. 1, we further find that the cooperative 
basin of attraction decreases with decreasing the α value, or increasing the β value, no matter whether the thresh-
old value H is low or high. Moreover, increasing the γ value for low H also decreases the cooperative basin of 
attraction. But this effect reverses for high H. Importantly, we still see that the double-edge sword effect exists 
even if these parameter values are changed significantly, which indicates that this finding of the double-edge 
sword effect remains valid in a broad range of model parameters.

Finite well-mixed populations. We continue to study the effects of conditional punishment on the evo-
lution of cooperation in finite well-mixed populations. Based on the social learning dynamics10 with an arbitrary 
exploration rate μ (Methods for finite populations), we first show the time evolution of strategies for three differ-
ent situations by individual-based simulations, as shown in Fig. 3. It is noted that for a relatively small threshold 
the population can temporarily evolve into a quasi-stable state46 where defectors are suppressed, and only coop-
erators and unconditional punishers coexist due to neutral drift. Although such quasi-equilibrium is not the 
evolutionarily stable state no matter whether the conditional punishment is introduced or not (Fig. 3(a) and (b)), 
the time duration of such quasi-equilibrium can be changed significantly with the change of threshold values once 
the conditional punishment is introduced. In comparison with the time duration of the quasi-stable state for no 
conditional punishment as shown in Fig. 3(a), the time duration of the quasi-stable state for low H = 1 is longer 
(Fig. 3(b)). While for high H = 3, the quasi-stable state almost does not emerge and the system rapidly evolves 
into the globally stable equilibrium where the whole population is taken over completely by defectors (Fig. 3(c)). 
This indicates that the introduction of conditional punishment can still induce a double-edged sword effect in 
finite well-mixed populations.

In order to illustrate the robustness of the double-edged sword effect in finite populations, we further present 
the average frequencies of strategies as a function of mutation rate, as shown in Fig. 4. The simulation results are 
indicated by data points, and the analytical approximations for very small values of μ are indicated by solid lines 
(Methods for finite populations). We find that for a sufficiently large μ (close to 1), random exploration dominates 
and results in roughly equal average frequencies for all available strategies. But for a small or moderate μ, the 
results can be significantly influenced by the threshold H in comparison with the results without the strategy of 
conditional punisher. Specifically, for low H = 1 the average frequencies of cooperators and (unconditional and 
conditional) punishers are higher than the frequency of defectors (Fig. 4(b)). And importantly, these frequencies 
are much higher than those in the case where the conditional punisher strategy is not considered, as shown in 
Fig. 4(a). This shows that cooperation is promoted for low threshold values when conditional punisher strategy is 
introduced. However, for high H = 3 the average frequencies of cooperators and (unconditional and conditional) 
punishers are much lower than the frequency of defectors (Fig. 4(c)). Correspondingly, these frequencies are also 
lower than the cooperators’ and punishers’ frequencies in the case without conditional punisher strategy. This 
indicates that cooperation is inhibited for high threshold values when conditional punisher strategy is introduced. 
Therefore, the double-edged sword effect still exists in a broad range of μ in finite well-mixed populations.

Structured populations. In contrast to the well-mixed case, the fact that the interactions among players 
are not typically random but rather that each player merely interacts with a set of fixed neighbors in the popula-
tion38,47–50, is taken into account in structured populations. Usually, it can lead to some novel and counterintuitive 
results which are absent in a well-mixed population51.

Figure 3. Time evolution of strategies for three different situations. Panel (a) shows the time evolution of 
all three strategies when conditional punishment is not considered. In the presence of conditional punisher 
strategy, panel (b) shows the time evolution of all four strategies for H = 1, but panel (c) for H = 3. Individual-
based simulations run over 109 time steps, and here we only present the outcomes for 2 × 105 time steps. 
Parameters: r = 3, c = 1, G = 5, N = 100, α = 1.0, β = 0.7, γ = 0.05, s = 2.0, and μ = 0.001.
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To explore the effects of conditional punishment on cooperation in structured populations, here we show a 
series of snapshots on a square lattice with the von Neumann neighborhood to depict the spatial formation of all 
strategies over time (Methods for structured populations), as shown in Fig. 5. First, some characteristic snapshots 
of the spatial formation are presented in the case where conditional punishment is not considered (top row of 

Figure 4. Average frequencies of strategies as a function of mutation rate in three different situations. Panel 
(a) shows the average frequencies of three strategies when conditional punishment is not considered. In the 
presence of conditional punisher strategy, panel (b) shows the average frequencies of all four strategies for H = 
1, but panel (c) for H = 3. Symbols indicate results obtained from individual-based simulations (by averaging 
over 104–105 imitation steps for each player and by doing 50 independent runs) and solid lines indicate 
analytical approximations for very small values of μ. Parameters: r = 3, c = 1, G = 5, N = 100, α = 1.0, β = 0.7, 
γ = 0.05, s = 2.0, and μ = 0.001.

Figure 5. Spatial patterns of strategies over time for three different situations. Cooperators (C) are denoted 
by black, defectors (D) by red, unconditional punishers (P) by green, and conditional punishers (M) by blue. 
Top row depicts the typical snapshots over time in the case where the strategy of conditional punisher is not 
considered. Middle row depicts the typical snapshots over time in the case where the strategy of conditional 
punisher is introduced and the threshold value is H = 1, but H = 3 for bottom row. The times of strategy update 
by Monte Carlo simulation are also shown for each snapshot. Parameters: G = 5, r = 2.0, α = 1.0, β = 0.8, c = 1, 
γ = 0.05, s = 2, and L = 100.
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Fig. 5). We find that defectors can quickly fight against other two strategists, which results in that cooperators or 
unconditional punishers can only form small tiny clusters. With the invasion of defectors, these small clusters 
formed by cooperative individuals finally disappear completely, which leaves defectors to take over the popu-
lation. Nevertheless, when conditional punishment is considered and the threshold value is low (middle row of 
Fig. 5), defectors only have some competitive advantages over the other three strategists during the initial period 
of the evolution, and they can then utilize these advantages to rapidly invade the whole population. Ultimately, it 
results in the extinction of conditional punishers as well as the decrease of cooperators and unconditional punish-
ers. But when cooperators and unconditional punishers form the compact clusters, they can reverse the invasion 
of defectors and expand across the whole population. Such results are indicated by the spatial formation that the 
isolated islands of defectors (depicted by red) are in the sea of cooperators (depicted by black) and punishers 
(depicted by green), and finally disappear completely. On the contrary, when the threshold H is high (bottom row 
of Fig. 5), the negative effect of conditional punishers on cooperation is highlighted. Because conditional pun-
ishers have less chances to participate in the punishment activity with unconditional punishers, this immediately 
provides a chance for defectors to obtain a relatively higher fitness. Consequently, defectors can permanently 
remain successful in the structured public goods game. Hence, in structured populations, the effect of condi-
tional punishment on the evolution of cooperation is still a double-edged sword. When conditional punishment 
is not considered in the public goods game, the population evolves towards a homogenous state of full defectors 
(D-only phase), finally. However, if the strategy of conditional punisher is considered, a low threshold value will 
drive the population to evolve into the coexistence of cooperators and unconditional punishers (a mixed C + P 
phase), which shows the positive effect of conditional punishment on cooperation. But if a high threshold value is 
applied, the system will transform from the mixed C + P phase to a D-only phase, similar to the previous finding 
in spatial public goods game with four strategies38,51,52. And it takes a shorter time to reach the D-only phase in 
comparison with the case without conditional punishment, which shows the negative effect of conditional pun-
ishment on cooperation.

In order to eliminate the influence of randomness on the evolutionary outcomes, we further calculate the aver-
age frequencies of strategies over time by doing 30 independent runs for those three different situations studied 
in Fig. 5, as illustrated in Fig. 6. It is our goal to verify the existence of the double-edged sword effect in structured 
populations by evaluating the average frequencies of strategies in equilibrium. We find that when there is no con-
ditional punishers engaging in structured public goods game, the average frequency of cooperators in equilibrium 
is zero. And the average frequency of punishers in equilibrium is about 0.33, which is much smaller than that of 
defectors whose frequency is about 0.67 (Fig. 6(a)). Whereas when conditional punishment is considered and the 
threshold value is low, we see that cooperators and unconditional punishers coexist in equilibrium and the aver-
age frequencies of the other two strategies converge to zero (Fig. 6(b)). It implies that the average level of coop-
eration is significantly increased in comparison with the case without conditional punishment. On the contrary, 
when the threshold value is high, we observe the similar results to the case without conditional punishment. But 
the average frequency of unconditional punishers in equilibrium is about 0.15 (Fig. 6(c)), which is much lower 
than that in the case without conditional punishment. This shows that cooperation is obviously inhibited when it 
compares with the results in the case without conditional punishment. We thus conclude that the double-edged 
sword effect is also embodied in structured populations. In addition, we have checked that such effect still exists 
even if we properly change the initial conditions for these three situations.

Discussion
Since a decision-making may cause damage to our own interests, the reaction made by depending on others’ 
decisions is usually a dominant strategy most of the time. The effect of sheep-flock in our life is a typical example. 
Unlike the definition given by the previous study37, our model regarding conditional punishment characterizes 
the sheep-flock effect of the punishing behavior which has been documented in the experimental research39. By 
means of theoretical analysis and computer simulations, we have explored the effects of conditional punishment 
on the evolution of cooperation. Conceptually similar to the conditional cooperation or conditional participation 

Figure 6. Time evolution of average frequencies of strategies by averaging 30 independent runs in structured 
populations. Panel (a) depicts the average frequencies of the three strategies over time in the case where the 
strategy of conditional punisher is not considered. Panel (b) depicts the average frequencies of all four strategies 
over time in the case where the strategy of conditional punisher is introduced and the threshold value is H = 1, 
but H = 3 for panel (c). Parameters: G = 5, r = 2.0, α = 1.0, β = 0.8, c = 1, γ = 0.05, s = 2, and L = 100.
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in joint efforts7,51,53,54, conditional punishers can utilize the advantages of both unconditional cooperators and 
unconditional punishers. But simultaneously, it also induces the effect of a double-edged sword on coopera-
tion. When it is relatively easy for conditional punishers to participate in the punishment activity, the invasion 
of defectors can be controlled by punishment, and the cost caused by punishment can be also shared by more 
individuals. Thus, in comparison with the case without conditional punishment, cooperation can be further pro-
moted. Whereas when it is relatively difficult for conditional punishers to participate in punishment activity, 
they are more willing to perform prosocial cooperation rather than spiteful punishment. In this way, the threat 
of sanctioning free-riders is so weak that the environment for cooperation to thrive becomes more harsh. Thus, 
cooperation is inhibited when it compares with the outcome in the case without conditional punishment.

Moreover, it is necessary to point out that in our model the ability to recognize the level of unconditional pun-
ishers is not self-serving but costly for conditional punishers, because the self-serving function does not seem to 
be the feature of punishment in real life29,51. Accordingly, the extra cost makes conditional punishers do not have 
the competitive advantages over other two cooperative strategists, no matter what the threshold value is. And 
meanwhile it also differentiates the strategy of conditional punisher from other cooperative strategies, essentially. 
Our study thus reveals the significant role of additional cost in the evolution of cooperation, and shows that the 
introduction of conditional punishment can alleviate or exacerbate the second-order free-rider problem9,29,55, 
which strongly depends on the the threshold value. Consequently, conditional punishment induces the effect of a 
double-edged sword on the evolution of cooperation.

Although different punishment modes can result in different outcomes according to previous studies10,17, 
we verify that the double-edged sword effect found in our model is also valid for other punishment regimes, 
such as peer punishment and a variant of its (see Supplementary Information). Undeniably, in the framework 
of our model, sanction is merely targeted at free-riders, and the possibility of anti-social punishment24,56,57 that 
non-cooperators attack cooperators is excluded a priori. To make up this deficiency, we additionally consider a 
model variant that includes the possibility of anti-social punishment (see Supplementary Information). When 
defectors suffer from the sanction of punishers, it will trigger defectors to revenge all members in the group. 
Surprisingly, cooperation is still sustained in the population. In addition, as an important direction to develop 
our model, considering the heterogeneity of the threshold52,58,59 for matching the reality well is worth the effort 
in the future.

Methods
Evolutionary dynamics in infinite well-mixed populations. We study the evolution of strategies in 
infinite well-mixed populations based on replicator dynamics60,61. First, we define that the fraction of cooperators 
(C), defectors (D), unconditional punishers (P), and conditional punishers (M) can be denoted by x, y, z, and w, 
respectively. Thus we have x + y + z + w = 1. Accordingly, the replicator equations are given by

= −

= −

= −







x x P P
y y P P
z z P P

( ),
( ),
( ), (2)

C

D

P

where dots denote the derivatives with respect to time t and Pi designates the expected payoff for each strategy i 
(i = C, D, P, or M), which is given by

∑=
−

Π
≤ ≤ −

P G
N N N N

x y z w( 1)!
! ! ! !

,
(3)

i
N G C D P M

N N N N
i

0 1s

C D P M

where Ns is the number of players choosing strategy s (s = C, D, P, M) in a group, hence ∑sNs = G − 1. Πi repre-
sents the payoff of strategy i, which is defined by Eq. (1). P  describes the average payoff of the entire population, 
which is given by = + + +P xP yP zP wPC D P M.

For discussing the evolution of these four strategies, we first consider there are no any punishers in the pop-
ulation. In this way, defectors can exploit the effort of cooperators permanently. Therefore, natural selection will 
always favor defectors to take over the population, irrespective of the initial conditions.

However, the introduction of punishers can effectively reverse the negative situation. Thus we consider that 
only defectors and unconditional punishers are presented in the population, namely y + z = 1. Then the replicator 
equation degenerates to = − −z z z P P(1 )( )P D . In this situation, the average payoff of punishers PP is given by

∑ β
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Similarly, the average payoff of defectors PD is given by
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With these expressions, the replicator equation has two boundary equilibria, namely z = 0 and z = 1. On the 
other hand, the interior equilibria can be determined by the roots of the function g(z) := PP − PD, thus obtaining

β α β= − − + − + + − .g z
z

z G z rc
G

c( ) [(1 ) 1] ( 1)
(6)

G

It follows that β= = − + − <→ +g g z c G(0) lim ( ) (1 ) 0z
rc
G0  with 1 < r < G and c = 1. Note that the func-

tion g(z) can be approximated by g(z) ≈ (α + Gβ/2)(G − 1)z + β(1 − G) + (rc)/(G) − c. Thus the function g(z) is 
strictly increasing since g′(z) ≈ (α + Gβ/2)(G − 1) > 0. Accordingly, the interior equilibrium is determined by 
g(1) = α(G − 1) + (rc)/(G) − c, from which we have the following two conclusions:

 1. When α > ((G − r)c)/(G(G − 1)), the replicator equation has only one interior equilibrium z*∈(0, 1), but it 
is unstable since g′(z*) > 0. The two boundary equilibria z = 0 and z = 1 are both stable.

 2. When α ≤ ((G − r)c)/(G(G − 1)), the replicator equation has no interior equilibria in (0, 1). z = 0 is a 
stable equilibrium, while z = 1 is an unstable equilibrium.

Moreover, if there are no defectors in the population, the average payoff of cooperators is equal to that the 
unconditional punishers obtain from the public goods game. And it is higher than the average payoff of con-
ditional punishers, because the latter have to pay the observation cost. Thus natural selection will support the 
system to evolve into the coexistence state of cooperators and punishers because of neutral drift.

Evolutionary dynamics in finite well-mixed populations. We denote that the population of size N 
contains X cooperators, Y defectors, Z unconditional punishers, and W conditional punishers. Thus we have X 
+ Y + Z + W = N, and the average payoffs of cooperators (C), defectors (D), unconditional punishers (P), and 
conditional punishers (M) can be given by, respectively,
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where k, l, m, and n represent the number of contributors, unconditional punishers, conditional punishers, and 
defectors among G − 1 players in a group, respectively.

Next, we employ a so-called social learning process10 to describe the evolution of all strategies in finite 
well-mixed populations. Let us denote that Pu and Pv are the average payoffs of two randomly chosen players u 
and v, respectively. Under pairwise comparison rule45,62,63, player u adopts the strategy of player v with a proba-
bility given by the Fermi function64

=
+ − −

q
exp s P P

1
1 [ ( )]

,
(11)v u

where the imitation strength s ≥ 0 measures the intensity of selection that determines the level of uncertainty 
in the strategy imitation process4,11. Without loss of generality, we use a representative value s = 211,19,51 in finite 
well-mixed and structured populations, which implies that the better performing players are readily imitated, but 
it is not impossible to adopt the strategy of a player performing worse.

Then we denote that Ni is the number of players choosing strategy i. Hence the probability that one chosen as 
a focal player out of Ni players with strategy i imitates another player of the Nj = N − Ni players with strategy j (j 
≠ i and j = C, D, P, or M) is given by
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τ =
−

+ − −
.→ N N
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N N

N exp s P P
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1 [ ( )] (12)
i j i

i i

j i

As a result, the fixation probability that characterizes the fixation of the dissident strategy j caused by imitation 
in the population can be computed by

ρ =
+ ∑ ∏
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It is noted that the equation Nj = N − Ni is always met, so the fixation probability ρij can be simplified to

ρ =
+ ∑ ∑ −

.
=
−

=exp s P P
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1 [ ( )] (14)
ij
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N

N
q
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1

1j

Furthermore, let us denote that the homogeneous population with Ni = N is Alli and the random exploration 
rate is μ. In the case of four strategies (C, D, P, and M), with probability μ/3 a single individual randomly switches 
from strategy i to the strategy j (j ≠ i). Thus the transition probability pij from Alli to Allj is μρij/3. In this way, 
the transition matrix of the complete Markov chain can be written as Pr = [pij]4×4. Accordingly, the stationary 
distribution which describes the percentage of time spent by the state of the population in the vicinity of the 
homogeneous state10, is given by the normalized left eigenvector to the eigenvalue 1. In addition, it is shown that 
the stationary distribution of the full system converges to the stationary distribution of this ‘embedded’ Markov 
chain on the homogeneous states65,66 for μ → 0, of which transition probabilities from Alli to Allj(j ≠ i) are given 
by ρij/310. Thus for four competitive strategies, the transition matrix can be concisely written by

 (15)

where j is subject to three other strategies in the group except the imitator itself.
In particular, in the limiting case of strong imitation (s → +∞), the transition matrix can be significantly 

simplified by

=
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(16)

And the stationary distribution (the left eigenvector to the eigenvalue 1) is easily given by (0, 1, 0, 0), which 
implies the population becomes a stable regime of defectors, leading to the tragedy of the commons.

Individual-based simulations for finite well-mixed populations. We consider a finite well-mixed 
population with a constant size N. Each individual achieves an expected payoff defined by Eqs (7)–(10) based on 
the random sampling of the interaction groups. Strategies evolve in dependence on a mutation-selection process 
defined in discrete time7. At each time step, a player u is randomly selected to update. With probability μ, the 
player u undergoes a mutation and randomly adopts one strategy from the space of available strategies. With 
probability 1 − μ, another individual v is randomly selected to act as a role model for player u. Then player u 
adopts the strategy of player v with a probability q defined by Eq. (11). Otherwise, player u sticks to its strategy 
with the probability 1 − q.

Individual-based simulations for structured populations. Here, we consider a structured population 
where the public goods game is staged on a L × L square lattice with periodic boundary conditions. L2 players are 
arranged into overlapping groups of size G = 5 such that everyone is connected to its G − 1 nearest neighbors, 
which implies that each individual is involved in G different groups. Hence the overall payoffs for each player are 
the sum of all the profits acquired from G groups. Initially, the player on every site is designated either as a cooper-
ator, defector, unconditional punisher, or conditional punisher with equal probability. At every time step, a player 
u is randomly selected to play the public goods game with its four neighbors as a member of all five groups and 
obtains its overall payoffs Pu. Similarly, another player v, one of the four nearest neighbors, is chosen randomly 
and acquires its total payoffs Pv in the same way. If their strategies are different, the imitation is executed with the 
probability defined by Eq. (11). In each full round of the game, every player has one chance to imitate from one 
of their neighbors on average19,37,51.
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