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Sequential biases in accumulating
evidence

Elena Kulinskaya,a* Richard Hugginsb and Samson Henry Dogoa
Whilst it is common in clinical trials to use the results of tests at one phase to decide whether to continue to
the next phase and to subsequently design the next phase, we show that this can lead to biased results in
evidence synthesis. Two new kinds of bias associated with accumulating evidence, termed ‘sequential
decision bias’ and ‘sequential design bias’, are identified. Both kinds of bias are the result of making
decisions on the usefulness of a new study, or its design, based on the previous studies. Sequential decision
bias is determined by the correlation between the value of the current estimated effect and the probability
of conducting an additional study. Sequential design bias arises from using the estimated value instead of
the clinically relevant value of an effect in sample size calculations. We considered both the fixed-effect and
the random-effects models of meta-analysis and demonstrated analytically and by simulations that in both
settings the problems due to sequential biases are apparent. According to our simulations, the sequential
biases increase with increased heterogeneity. Minimisation of sequential biases arises as a new and
important research area necessary for successful evidence-based approaches to the development of
science. © 2015 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd.
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For with much wisdom comes much sorrow; the more knowledge, the more grief.

Ecclesiastes 1:18
1. Introduction

The idea that the results of previous meta-analyses should be used for design of new trials is widely recognised.
For example, the UK Medical Research Council requires a comprehensive review of existing evidence before
funding trials (Glasziou et al., 2006). The guidelines of several medical journals including the Journal of American
Medical Association and the Lancet state that all reports of clinical trials must include a summary of previous
research findings and explain how the new trial affects this summary with direct reference to existing meta-
analysis (Goudie et al., 2010).

There are two ways of using prior analyses to inform further research. The first is using prior information in
making the decision to conduct a new trial (sequential decision). The second is using prior analyses and systematic
reviews to design the next trial (sequential design). That is, both the decision to conduct an experiment and the
subsequent design of this experiment may depend on the results of previous experiments, and after the new
experiment is conducted, the results are combined in an updated meta-analysis.

Sequential and cumulative meta-analyses are established techniques in both fixed-effects and random-effects
meta-analyses. See Whitehead (1997), Higgins et al. (2011), van der Tweel and Bollen (2010) to name a very few.
Often, in a sequential analysis, when the results seem promising, after each trial, the only decision is whether or
not to add the next trial in a sequence of independent trials. Whilst not advocating the approach and remarking
on its inherent flaws, van der Tweel and Bollen (2010) noted that
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“The usual approach is to repeatedly test the null hypothesis of equal effectiveness of two treatments on the
cumulative data. If the test result is not statistically significant, a new trial is added and the test is repeated”.

But the sequence of trials may also be stopped for futility, and a systematic review would then reach the
conclusion that a new trial is unnecessary (Goudie et al., 2010).

The setting explored here differs from the standard sequential meta-analysis setting in that after K studies are
accumulated and their results meta-analysed, a meta-analyst has an active role in the decision-making and the
design of the subsequent, (K+ 1)-st study, aiming at the definitive meta-analysis of the (K+ 1) studies. No direct
involvement beyond this planned study is assumed. We examine the effect of prior knowledge on decision-
making in Section 2, where we show that if the probability of proceeding to a new trial is correlated with the
current estimate of the effect size, the new combined estimator from a meta-analysis will be biased (sequential
decision bias).

Systematic reviews are often used to inform study design (Cooper et al., 2005). The sample size of the new
study is calculated to yield a given type-I error rate, typically 5%, and power, typically 80%, to detect a given effect
size. ‘Researchers use the review to …estimate sample sizes’ (Mulrow, 1994). Or,

“In this context, we would wish to have answers to questions such as how a new study will influence the
result of the meta-analysis or how much more information might be needed to make the meta-analysis
conclusive (Roloff et al., 2013)”.

‘A new trial may, thus, be designed so as to achieve a decisive result when it is added to an existing meta-
analysis.’ (Goudie et al., 2010). We demonstrate in Section 3 that if the previous experiment is used to determine
the effect size used in the sample size calculations in this fashion, then the combined estimator is biased. To
illustrate these effects, we consider both fixed-effect and random-effects meta-analyses analytically and by
simulation, and in both settings, the problems become apparent. In Section 4, we illustrate the arising biases using
as an example the systematic review by Johnson (1993). Similar biases appear and are well understood in group-
sequential and adaptive clinical trials. In this area, the existence of sequential bias is widely recognised and the
means of adjustment for this bias have been developed (Denne, 2000; Emerson & Fleming, 1990; Kirby et al.,
2012; Li et al., 2002; Whitehead, 1986). Discussion is given in Section 5 where, among other issues, we discuss
similarities and differences between our setting and that of drug development. Proofs of some technical results,
description of our simulations and additional figures depicting the simulation results are given in the Supporting
Information.
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2. Sequential decision bias

2.1. Bias

To illustrate sequential decision bias, we consider the following simple situation. Suppose there is a study that had

estimated the effect of interest, θ, by θ̂1 and its variance by s21. A researcher is considering the usefulness of running

another study. Suppose that the probability of running this new study p 1ð Þ ¼ p θ̂1; s21; θ0
� �

is a function of the

estimated effect, its precision and the effect of clinical interest θ0 that is the same in both studies. In general,

we denote by θ̂ i and s2i the effect and the estimated variance from the ith study, i ≥ 1. We also adopt sequential

notation using bracketed subscripts, so that θ̂ ið Þ is the meta-analytically combined effect from the first i studies and

s2ið Þ is its estimated variance. For the first study, θ̂1 ¼ θ̂ 1ð Þ. We denote by ωi the normalised inverse variance weights

for θ̂ ið Þ, i.e. ω1 +ω2 +⋯ωi=1. If the second study is conducted, then the combined effect θ̂ 2ð Þ is

θ̂ 2ð Þ ¼
ω1θ̂1 þ ω2θ̂2; with probability p θ̂1; s21; θ0

� �
;

θ̂1; with probability 1� p θ̂1; s21; θ0
� �

:

8><
>:

The main results on sequential design bias are given below in Equations (1–3), and their proofs are provided in
Section A of the Supporting Information.

To derive the results on bias analytically, we assume that θ̂1 and θ̂2 are independent and also that the weights
are either non-random or at least independent of the estimated effects. This strong assumption, although
common in meta-analysis, is fully satisfied for the weights based on inverse sample variances only when the
effects are the sample means of continuous outcomes. It is also approximately true in the fixed-effect model when
the studies in the meta-analysis are sufficiently large. To demonstrate that sequential decision bias arises in a quite
general setting, in Section 2.2, we also provide simulation results for several decision-making models in random-

effects meta-analysis. All our simulations are based on 10 000 values of θ̂1 , providing precision to the second
decimal place for estimated biases.
© 2015 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 294–305
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Under the aforementioned assumptions, we prove that the expected value of the combined estimator is

E θ̂ 2ð Þ
� �

¼ θ þ ω1 � 1ð ÞCov p θ̂1; s21; θ0
� �

; θ̂1

� �
: (1)

FromEquation (1), we see, for example, that if the value of current estimate θ̂1 is positively correlatedwith the probability of

conducting an additional study, then (because ω1� 1 is negative), the combined estimator θ̂ 2ð Þ will be negatively biased.
A somewhat simpler version of our Equation (1) was obtained in equation (2.3) of Ellis and Stewart (2009) who

considered equal weights and p θ̂1; s21; θ0
� �

¼ p θ̂1 > cs21

� �
, i.e. the second trial is carried out only if the result of

the first trial is significant. This decision procedure is not intuitive and was labelled a ‘toy story’ by the authors.
Next, we study the conditional biases given the decision about the next trial. In practice, conditional biases are

arguably more important than their unconditional counterparts. When a practitioner or a meta-analyst finds
several trials in the literature, a particular decision-making scenario may have already taken place. Therefore, a
standard meta-analytic estimate is, in fact, a conditional estimate.

Assume that E p θ̂1; s21; θ0
� �� �

≠0 and let Y=1 if the second trial is conducted and zero otherwise. Suppose Y and θ̂2

are conditionally independent given θ̂1; s21

� �
. Then the conditional expectation given that the second trial is conducted is

E θ̂ 2ð ÞjY ¼ 1
n o

¼ θ þ
ω1Cov p θ̂1; s21; θ0

� �
; θ̂1

� �
E p θ̂1; s21; θ0

� �� � þ ω1 E θ̂1

� �
� θ

n o
: (2)

Thus, unless Cov p θ̂1; s21; θ0
� �

; θ̂1
� �

¼ 0, both the unconditional and conditional expectations are biased. The

last term in the preceding equation, although zero for an unbiased estimator θ̂1, is retained intentionally, so that
the equation can be generalised to the case of K sequential decisions and trials. Similarly, the conditional
expectation given that the trial is not conducted is

E θ̂ 2ð ÞjY ¼ 0
n o

¼ θ �
Cov p θ̂1; s21; θ0

� �
; θ̂1

� �
1� E p θ̂1; s21; θ0

� �� � : (3)

The consequence of Equations (2) and (3) is that when the probability of conducting an additional study is

positively correlated with the value of the current estimate θ̂1 , the bias given that the study is conducted is
positive, and negative given that it is not.

Remark 1
If K trials were run sequentially and the decision to run trial i+1 was dependent on the cumulative results from the

first i trials, θ̂ ið Þ ¼ ∑i
j¼1ωj θ̂ j for i= 1, ···, K� 1. Equation (2) can be applied directly to cumulative effect θ̂ K�1ð Þ and the

effect in the K-th trial θ̂K , to obtain a recurrent equation for the sequential decision bias

EK θ̂ Kð Þ � θ
� �

¼ ω K�1ð ÞEK�1 θ̂ K�1ð Þ � θ
� �

þ ω K�1ð ÞCov p K�1ð Þ; θ̂ K�1ð Þ
� �

E p K�1ð Þ
� �h i�1

: (4)

In Equation (4), Ei(�) is the conditional expectation given i trials, and ω ið Þ ¼ ∑i
1ωj=∑

iþ1
1 ωj is the normalised

weight for θ̂ ið Þ. Similarly, p i�1ð Þ ¼ p θ̂ i�1ð Þ; s2i�1ð Þ; θ0
� �

is the probability of running the ith trial.

2.2. Modelling the probability of the second trial

To examine the resulting biases numerically, a model for the probability of running the next trial p θ̂; s2; θ0
� �

given

cumulative results θ̂; s2
� �

is required. We first examine three simple models: the power-law, the extreme value

and the probit models, and then a more complex model depending on power calculations.

2.2.1. A power-law model for p θ̂; s2; θ0
� �

Suppose θ̂1∼N θ; σ2ð Þ for θ> 0, and, for some t> 0, p θ̂1; s2; θ0
� �

¼ θ̂1=θ0
� �t

for 0 < θ̂1 < θ0 and zero otherwise.

That is, there is no need for further trials when the effect is at least θ0, and ‘promising’ results increase the
probability of the next trial. The variability of the estimator is not taken into account in this very simplistic model.
The function p(x, θ0) is a distribution function from the power-law family of distributions on [0, θ0) and t=1
corresponds to uniform distribution. In (15) in the Supporting Information, we see that the covariance between

θ̂1 and p θ̂1; θ0
� �

is negative if θ> θ0, so we expect a negative bias for the conditional expectation in this case.
© 2015 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 294–305
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If θ0> θ, the bias may be positive. In Figure 1, we plot the heatmaps for the biases of the conditional and
unconditional means as functions of 0 ≤ θ, θ0 ≤ 1 for t= 3, ω1 =ω2 = 1/2 and σ2 = 1/3 (the value obtained as
s21=n1 for the first trial in the example in Section 4). These heatmaps were computed by performing 10 000
simulations at each pair of values of θ, θ0 in steps of 0.05. We note that the most biased estimator is the
conditional estimator when a new trial is conducted. It can be seen that in this model, the unconditional mean
is reasonably precise, but the step 2 conditional mean has a considerable positive bias when the actual effect is
small in comparison with the target value of θ0. The step 3 conditional mean appears to be even more biased
for small values of the actual effect. Because the model assumes no need for a further trial when the effect value
of θ0 is reached, the model underestimates the mean for large values of a.

Figure 2 illustrates the biases arising in the random-effects model θ̂1∼N θ; σ2 þ τ2ð Þ for 0.3 ≤ θ ≤ 0.7 and the
target value of θ0 = 0.5. There is much random variation in this figure due to the comparatively large variance
of σ2 = 1/3, but the biases are quite distinct. Plots (a) and (b) in this figure show that increases in τ2 cause increased
biases in the power-law model. Similar bias plots for the third trial (i=3) following on from the second in the same
fashion are given in the Supporting Information, Fig. S1, plots (a) and (b). Biases for σ2 = 0.04 (corresponding to a
sample size of 500) are given in Figs. S2 and S3 in the Supporting Information. Here, the impact of an increase in τ2

is visible very clearly.
Figure 1. The probability of conducting a second trial and the bias in the unconditional and conditional means when the second trial is
conducted (Y = 1) and not conducted (Y = 0), given by Equations (1), (2) and (3), respectively, for the power-law model of Section 2.2.1 with

t = 3. The x-axis is the true value of θ whilst the y-axis is the target value θ. The parameter values are σ
2
= 1/3 and ω1 = ω2 = 1/2.

© 2015 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 294–305

2
9
7



Figure 2. Biases of unconditional (left) and conditional Y = 1 (right) expected values of the cumulative effects θ̂ 2ð Þ at the second study for τ
2
values

of 0 (blue), 0.02 (green), 0.04 (yellow) and 0.06 (red). Rows 1 to 3 correspond to the biases in power-law with t = 3, extreme value (r = 0.8) and
probit (r = 0.8) with α = 0 and β = 1 models, respectively. Results from 10 000 simulations at each value of θ = 0.3(0.05)0.7 for the target value of
θ0 = 0.5, equal weights ω1 = ω2 and the variance σ

2
= 1/3 (corresponding to the within-study variance s21 ¼ 19:94 and sample size of n1 = 61 in

the example of Section 4).
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2.2.2. Extreme-value and probit models. In this subsection, we briefly consider two alternative models for

p θ̂; s2; θ0
� �

. Both are based on a class of t-models for publication bias by Copas (2013). These models are of

the form a(θ/σ) for an arbitrary function a(�). We centre these functions at the clinically significant effect θ0 and
truncate at rθ0 for some 0< r< θ0, so that the next trial is unlikely when the current estimated effect is much
below (or much above) the clinically significant effect. The general form of these models is

p θ; σ2; θ0; r
� � ¼ 1� G θ � θ0ð Þ=σð Þ½ �= 1� G r � 1ð Þθ0=σð Þ½ � for θ > rθ0;

and 0 otherwise, for a distribution function G(�). Consider first an extreme value distribution-based model for
which the distribution function G(θ, σ2, θ0) = exp(�exp((θ0� θ)/σ)). The simulation-based bias plots for the
second trial under this model with r=0.8 are given in plots (c) and (d) of Figure 2. It can be seen that the
unconditional expected values underestimate the mean, and conditional (Y=1) expected values overestimate
the mean. Biases noticeably increase with the increase in the heterogeneity parameter τ2.

Following a probit model for publication bias by Copas (2013) we consider the probit model with G(θ, σ2, θ0)
=Φ(α+ β(θ� θ0)/σ). We provide simulation results for a simple version of this model with α=0 and β = 1 for
r= 0.8 in the plots (e) and (f) of Figure 2. As with the extreme value model, the probit model also yields negative
unconditional bias and positive conditional bias given that the next trial is conducted. Once more, the biases
increase with an increase in the heterogeneity parameter τ2.

The bias plots for the third trial (i=3) are given in the Supporting Information, Fig. S1. It can be seen that the
biases increase with each step i in decision-making.
© 2015 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 294–305
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As we have seen, different rules and different parameters could give quite different results, but these
indicate that biases do occur when data-dependent rules are used to determine if the second trial should
be conducted.

2.2.3. A power calculation model for p θ̂1; s21; θ0
� �

. In this section, we look at the situation in which the probability
of conducting a new trial may depend on power calculations. For simplicity, suppose that two studies may be
conducted and that we use normally distributed means to estimate an effect size θ that is the same for each trial.
Typically, if the power calculations yield a small sample size for the second study, the increase in total power of the
subsequent meta-analysis will be minor, and it may be decided that it is not worth proceeding with the study.
Alternatively, the power calculations may yield a large sample size and it may not be possible to achieve the
desired power with the available resources.

Let the first study result in an estimate θ̂1 of θ. We wish to determine a sample size n2 for the next study, so that

the combined effect θ̂ 2ð Þ ¼ w1θ̂1 þ w2θ̂2
� �

= w1 þ w2ð Þ will be significantly different from zero (two-sided) at the

significance level α with 1� β power at the target effect size θ0. Here, wi ¼ ni=σ2i , i= 1, 2 are the unnormalised
inverse variance weights, and σ2i are the population variances within the studies. The level α should be chosen
to account for multiple testing, but the details of such adjustments are beyond the scope of this paper. The
variance of the combined effect is then (w1 +w2)

� 1. In the Supporting Information, we show that the required
sample size is

n2 ¼ c2

θ20
� w1

 !
σ22; (5)

where c= z1� α/2 + z1� β.
In the absence of clinical knowledge, the estimate of the treatment effect from the initial study is often taken to

be the clinically relevant treatment effect for this sample size calculation – a practice we do not condone. In this

scenario, the second sample size is calculated using the estimated mean θ̂1 from the first trial as the effect size θ0.
The estimated variance s21 may be used to estimate bothσ21 andσ

2
2 in the aforementioned formula. Then the sample

size is taken to be

n2 ¼ c2s21
θ̂2
1

� n1: (6)

If θ̂1 is normally distributed and independent of the sample variance s21 , which has d1 degrees of freedom
(d1 = n1� 1 for one sample, but we introduce this notation for more generality), then d1s21=σ

2
1∼χ

2 d1ð Þ , and we
may compute probabilities associated with the experiment. For example, suppose that it is decided to conduct

a new study of size b if a< n2 ≤ b for some a and b. Then assuming that θ̂1∼N θ; σ21=n1
� �

is unbiased, the

conditional (given θ̂1 ¼ θ1) and unconditional probabilities that a new trial is conducted are given by equations
(18) and (19) in the Supporting Information Section A.

In Figure 3, we plot the estimated percentage unconditional bias as a function of θ from 10 000
simulated experiments for the same scenario with n1 = 60, σ21 ¼ 20 and if a second experiment of size
80 is conducted when 30 ≤ n2 ≤ 80. The conditional bias is calculated over the simulations where a second
trial was/was not conducted. The biases are very considerable, especially for small effects θ, where the
conditional bias given that a new trial is conducted is above 100%, and the negative unconditional bias
is approximately 10%.

In Fig. S4 in the Supporting Information, we plot the conditional and unconditional probabilities that a new trial
is conducted for n1 = 60, andσ21 ¼ 20, the parameters taken from the first trial in the Example discussed in Section 4.
We assume a= 30 and b= 80 in these plots.

Remark 2
If the decision to run trial i+ 1 of size b is taken if a< ni + 1 ≤ b for some i ≥ 1, denote the cumulative combined

effect from the first i trials θ̂ ið Þ ¼ ∑i
j¼1wj θ̂ j=W ið Þ for W ið Þ ¼ ∑i

j¼1wj , and the cumulative sample size n ið Þ ¼ ∑i
j¼1 nj .

Equation (5) changes to

niþ1 ¼ c2

θ20
�W ið Þ

 !
σ2iþ1; (7)

where σ2iþ1 is the variance of the trial (i+ 1). Equations (18) and (19) in the Supporting Information Section A
can be adapted to provide the conditional and unconditional probabilities of the trial (i + 1) being
conducted.
© 2015 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 294–305



Figure 3. Estimated percent unconditional (solid line) and conditional (Y = 1 dashed line, Y = 0 dot-dashed line) bias from 10 000 simulations as a
function of θ for the power calculation rule of Section 2.2.3, with σ21 ¼ 20, n1 = 60, a = 30 and b = 80 and a second trial of size 80 is conducted if

a< n2< b.
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3. Sequential design bias

Although there is an implicit decision made prior to designing the second trial, we now emphasise the design
of the second trial and refer to the resulting bias as design bias. We continue the approach and the notation
of Section 3, but now rather than conduct a new experiment with b observations, we conduct it with n2
observations. We investigate the bias introduced by sample size calculations based on estimated effects and
their variances. For the ith trial, i= 1, 2, with ni observations, the weight is wi ¼ ni=σ2i and the effect estimate

θ̂ i is taken to be a sample mean. The combined estimate over two trials is then θ̂ 2ð Þ ¼ ∑2
i¼1wi θ̂ i=∑

2
i¼1wi. Note

that n2 = 0 yields w2 = 0 and θ̂ 2ð Þ ¼ θ̂1 . In what follows, we make the assumption that the estimates of the
effect size and variances are independent, which will hold for samples from normal populations and
approximately for other situations.

In practice, σ22 is not known and we must guess a value to determine the sample size. Denote this by σ2g . A

common option is to take σ2g ¼ σ̂2
1, which is explored later. Then, following from Equation (5), we take

n2 ¼ c2

θ20
� w1

 !
σ2g ¼

c2

θ20
� w1

 !
d2σ22;

where d2 ¼ σ2g=σ
2
2. Thus, n2 is positive if c2 > w1θ20 or n1 < c2σ21=θ

2
0. Let n2 =max(n2, 0). Set d= 0 whenever n2 = 0.

Therefore, with w2 ¼ n2=σ22 ¼ c2=θ20 � w1

� �
d2, we have

θ̂ 2ð Þ ¼ w1θ̂1 þ w2θ̂2

w1 þ w2
¼ θ̂2 þ

w1 θ̂1 � θ̂2

� �
w1 þ w2

: (8)

As long as the value of θ0 used in the sample size calculation is a constant decided by clinical considerations,
the expected value of the cumulative effect given by Equation (8) is equal to θ and is unbiased. But in the absence

of this clinical knowledge, when designing the second study, it is tempting to use the value of θ̂1 þ δ for some
constant δ for the sample size calculation. In clinical trials, this can form the basis of proceeding to a phase III trial.
That is, we now have
© 2015 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 294–305
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n2 ¼ c2

θ̂1 þ δ
� �2 � w1

0
B@

1
CAσ2g (9)

and ŵ2 ¼ c2= θ̂1 þ δ
� �2 � w1

� �
d2. To examine this situation, for simplicity, suppose σ21 and therefore w1 too are

known. Note that if θ̂1 is large, then n2 given by (9) can be negative, and in this case, a further experiment is not
conducted.

In the Supporting Information Section A, we show that if we stop after the first experiment because the
observed result had the desired power for the observed effect size, we can obtain a highly positively biased
estimate of θ. For example, if θ =0.2, σ21 ¼ 1; α=0.05, β = 0.2, δ=0.2 and n1 = 15, then
E θ1 n2≤0Þ ¼ 0:647 >> 0:2 ¼ θjð . Fortunately, the bias diminishes with increase in n1, so that for n1 = 50,
E θ1 n2≤0Þ ¼ 0:310jð , and for n1 = 100, E θ1 n2≤0Þ ¼ 0:222jð . In the limit, the bias is zero. Similarly, given that the
observed result has not reached the desired power and the second trial is conducted, the estimate of θ is
negatively biased.

Now let us explore the unconditional bias of θ. Suppose that we guess the variance σ22 exactly, i.e. d=1. As a
consequence of (20) in the Supporting Information Section A, we have

E θ̂ 2ð Þ
� �

≤ θ þ ϕ hð Þσ1ffiffiffiffiffi
n1

p þ 2 θ þ δð Þ
c2

� �
; (10)

where h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=w1

p � δ
� �

� θ
n o

= σ1=
ffiffiffiffiffi
n1

p� �
and ϕ(�) is the standard normal density, giving an upper bound on

the unconditional bias of the estimate θ̂ 2ð Þ. That is, if δ> 0 and α= 0.05, β = 0.2 then c2 = 7.85 and the bias is not

greater than 25%. But what happens when d≠ 1?
In the general case, for an arbitrary d value,

θ̂ 2ð Þ ¼ θ̂2 þ
w1 θ̂1 � θ̂2

� �
θ̂1 þ δ
� �2

w1 θ̂1 þ δ
� �2

1� d2
� �þ d2c2

:

At d= 0, this is just θ̂1 and is unbiased. However, this is of little practical use for at d=0 we would not conduct
the second experiment. Now, for an arbitrary d,
Figure 4. Plot of the percent bias against d from 10 000 simulations with θ = 0.2, δ = 0.2, α = 0.05 and β = 0.2. The variances σ21 ¼ 19:94, σ22 ¼ 24:96
and the sample size n1 = 61 were taken from the example of a meta-analysis discussed in Section 4. The locfit (Loader, 2012) package was used to

smoothly estimate the mean bias.

© 2015 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 294–305
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E θ̂ 2ð Þ
� �

¼ θ þ E
w1 θ̂1 � θ
� �

θ̂1 þ δ
� �2

w1 θ̂1 þ δ
� �2

1� d2
� �þ d2c2

8><
>:

9>=
>;; (11)

which is analytically intractable.
We have seen that the bias at d= 1 can be quite large; therefore, we conducted a series of simulations to

examine the bias for other values of d. The design of these simulations is described in the Supporting Information
Section C.

For our first simulations, we took θ =0.2, δ=0.2, α=0.05 and β =0.2. The variances σ21 ¼ 19:94, σ22 ¼ 24:96 and
the sample size n1 = 61 were taken from the example of a meta-analysis discussed in Section 4 so that w1 = 3.06.
Then c2/θ2�w1 = 136.22> 0. We conducted 10 000 simulated initial experiments and took d from 0.1 to 10 in
steps of 0.1. The means of the combined estimators for each value of d are plotted in Figure 4. As there is some
variability due to the random sampling, we used the R (R Core Team, 2012) package locfit (Loader, 2012) to
smoothly estimate the mean. It is clear from this plot that the bias can be substantial over a range of guesses

for σ22. With δ=0, the bias was around 15% less than that in Figure 4 but still of concern. If we took σ2g ¼ σ̂2
1, then

the mean percentage bias over the simulations was 49.9% with standard deviation of 3.16 so the bias was
uniformly high. As a check, if we used θ and σ22 with δ=0 to compute n2, then the mean bias was close to zero

(0.129%). The bias was 0.042%, also close to zero if we used θ and σ̂2
1 again with δ=0 to compute n2, which

confirms that the bias arises from using the estimated value of θ̂1 to decide to carry out the second experiment
and compute the sample size.
4. Example

The meta-analysis conducted by Johnson (1993) comprised nine studies comparing sodium monofluorophosphate
with sodium fluoride dentifrices in the prevention of caries development. The outcome of interest was the dental
decay score, and a summary of the data, the forest plot, the cumulative meta-analysis plot and the results
obtained with R package ‘meta’ (Schwarzer, 2010) are given in Figure 5. Heterogeneity was not detected, so the
fixed-effect model was used. The first three studies in this meta-analysis failed to reach significance but showed

positive effect. The combined effect after three trials, θ̂ 3ð Þ ¼ 0:5211 , is just significant (p= 0.049, confidence
interval [0.003; 1.039]).

For purposes of an illustrative example, we will assume the following: that the meta-analyst could have been
responsible first for deciding whether or not to conduct the second (and/or third) study given the results of the
previous studies and second for deciding on the design of the additional study. We will examine the bias that
would be introduced by these decisions.

All results formulated in the previous sections were based on just one sample size ni and the sample variance s2i
per trial. Here, we first explain how to apply them to the standard clinical trial setting. Consider K comparative
Figure 5. Forest plot (left), cumulative meta-analysis plot (right) and some additional results for Johnson(1993) meta-analysis.
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studies with the treatment (T) and the control (C) arms of sample sizes NiT and NiC, NiT+NiC=Ni. The effect measure

is the mean difference θ̂ i ¼ XiT � XiC . Assume, for simplicity, equal variances σ2i in both arms of each study. The

variance of the effect is Var θ̂ i

� �
¼ σ2i N�1

iC þ N�1
iT

� �
. This can be written as σ2i =ni for the effective sample size ni. This

effective sample size is the geometric mean of the sample sizes of each arm, i.e. ni ¼ N�1
iT þ N�1

iC

� ��1
. For a

balanced trial of size Ni, ni=Ni/4. Now all the theory of Sections 2 and 3 can be applied using effects θ̂ i, effective
sample sizes ni and pooled sample variances s2i with di=Ni� 2 d.f. from each study.

For the first three trials, the effective sample sizes were n= (61.30, 81.06, 69.24) and the pooled sample
variances were s2 = (19.94, 24.96, 8.56), respectively. Assuming standard choices of a 5% significance level and
power of 80%, the constant c in Equations (6) and (9) is c= z1� α/2 + z1� β = 2.802.

After the first trial, we consider performing the second trial with a goal of achieving a definitive meta-analysis.
Suppose the second trial may run given that its sample size is between 200 and 2000 patients. This translates into
the decision to conduct a new balanced trial if a< n2 ≤ b for a= 50 and b=500. Using the estimated treatment

effect θ̂1 ¼ 0:86, we calculate from (6) the value of n2 = 150.35 required for this new trial. Assume that the true
parameter values are θ = 0.28 (the combined effect from nine trials) and σ2 = 21.62 (the pooled variance from nine
trials). Under these assumptions, we estimate from equation (19) in the Supporting Information the unconditional
probability of continuation after trial 1 to be p=0.349. If we do not wish to restrict sample sizes from below, take
a= 0, and the resulting estimated probability of continuation is p= 0.412. To assess the resulting bias after two
trials, we performed 10 000 simulated experiments with n1 = 61 (effective sample size of the first trial), θ =0.28
and σ2 = 21.62 for a= 50 and b=500. From the simulations, the estimated probability to continue after the first
trial is 0.343 (in agreement with our theoretical estimate of 0.349), unconditional bias after two trials is
� 19.92%, conditional bias given the decision to stop is � 34.40% and conditional bias given the decision to
continue is 8.13%. Thus, if the meta-analyst had been responsible for deciding (based on the results of the first
study) whether to conduct the second study, then a substantial sequential decision bias would have been
introduced.

If the second trial was run first, the estimated effective sample size for the next trial would be 1719> b, and the
next trial would not be run. Now suppose that the first two trials were run independently from each other, but the
decision is required about the third trial. The variances in these two trials are similar, so we proceed as suggested
in Remark 2. The required sample size calculated from (7) is 376.02. The unconditional probability to continue is
0.25. Taking a=0 increases this probability to 0.30. As it happened, the third trial was run with an effective sample

size of 69.24, resulting in marginal significance of the combined effect θ̂ 3ð Þ of sodium monofluorophosphate.
So far, we considered the sequential decision scenario for this meta-analysis. To assess the sequential design

bias in this realistic setting, suppose that after the first trial the investigators correctly assume that the effect is
overestimated and use δ=� 0.36 to ‘correct’ the effect to 0.50 in the sample size calculation. We have performed
10 000 simulated experiments with n1 = 61, θ =0.28, σ21 ¼ 19:94, σ22 ¼ 24:96 and δ=� 0.36. The results are plotted
in Fig. S5 in the Supporting Information Section C. For the values of d≈ 1, i.e. when the variance is guessed
correctly, the bias is about 15%. The bias is greatly reduced for the large values of d. This is to be expected as
the large assumed variance would result in large sample size of the next trial.

It is clear that in this meta-analysis with moderate sample sizes, both types of biases are far from negligible.
3
0
3

5. Discussion

We have demonstrated theoretically and by simulations that both sequential decision bias and sequential design
bias can arise in sequential and cumulative meta-analyses when the results of previous studies influence the
design of a new study. This setting differs from the standard sequential meta-analysis setting in that a meta-
analyst has an active role in the design of the subsequent trial aiming at a definitive meta-analysis. We have seen
that both the conditional and unconditional biases can be non-negligible. Thus, caution needs to be exercised in
conducting meta-analysis when prior knowledge has been used to design the trials being studied.

Our sample size calculations are based on the unconditional power of the Wald test for the combined effect. A
recent paper by Roloff et al. (2013) advocated using the conditional power approach. We do not expect this to
alleviate the bias. The design bias arising from the conditional power is discussed in the designed extension of
a clinical trial setting by Denne (2000). In particular, that paper compared the biases of the estimated effects in
conditional and unconditional setting and found that the differences were minor (see Figure 2 in Denne (2000)).

We considered both the fixed-effect and the random-effects models of meta-analysis and demonstrated
analytically and by simulations that in both settings the problems due to sequential biases are apparent.
According to our simulations, the sequential biases increase with increased heterogeneity.

Sequential meta-analysis results in inflation of type-I error due to multiple testing. This well-known issue was
not discussed in any detail in this paper. A number of procedures aimed at adjustment of significance levels to
safeguard the overall type-I error are available from a number of publications such as Pogue and Yusuf (1998),
van der Tweel and Bollen (2010) and Higgins et al. (2011). Such adjustments will result in larger sample sizes of
© 2015 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 294–305
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the new studies (formulae (6) and (9)) and may decrease sequential biases (formula (11)) through increases in
critical values. Bias due to non-independence of studies as well as the timing of the meta-analysis itself was
studied theoretically but without quantification by Ellis and Stewart (2009). Their findings are akin to the
sequential decision bias discussed in Section 2.

Our models assumed that a new study is more likely if the existing evidence is in favour of a new treatment
than if it is the other way around. However, we have not considered in detail how the interplay between the effect
size and the uncertainty may affect the sequential biases. The value of information approach (Claxton & Sculpher,
2006; Claxton et al., 2002) is an alternative method to decide on the necessity of further research. This method is
based on economic modelling comparing the costs involved in further research with benefits of reduction in
uncertainty. This method is widely used in contemporary health policy decision-making (Claxton & Sculpher,
2006). It would be of great interest to investigate the existence of sequential decision bias resulting from this
approach.

Note that in clinical trials, the favourable results of a phase II trial may be used to design the phase III trial,
‘Estimates of treatment effects and variability from earlier trials are traditionally used in the design of trials at the next
stage’ (Kirby et al., 2012). This setting is different from meta-analysis in that results are not combined. Moreover,
the decision to conduct the phase III trial depends on a significant result in the phase II trial, whereas with
meta-analysis guiding research, the sequence of trials may be terminated once significance is attained. However,
the problem of resulting biases is already recognised in drug development, (Wang et al., 2006) and methods of
adjustment are sought (Kirby et al., 2012). Perhaps a closer analogy for the sequential decision bias is with
group-sequential clinical trials, where a significant result at an interim stage would stop the trial, but otherwise,
the results of sequential interim stages are accumulated and combined. In this setting, the existence of sequential
bias is widely recognised and the means of adjustment for this bias have been developed (Whitehead, 1986). This
adjustment is possible because of the explicit decision rules in these trials. Design bias is similar to the bias
induced by mid-trial sample size re-estimation in adaptive trials (Li et al., 2002; Wang et al., 2010). However,
methods of sequential bias adjustment in meta-analytic setting are more difficult to develop than in sequential
and adaptive clinical trials. The bias depends not only on the unknown true value or the precision of the effect
θ but also on the strategy for making the decision to continue or stop and of choosing the sample size of the next
study. If such a strategy is made explicit, by, say, the Research Councils, development of an appropriate bias
adjustment should be possible. Development of such a strategy appears to be an important and complicated
problem deserving concerted efforts of statisticians and decision-makers.

As was pointed out by the Associate Editor, there are clear parallels between the models for the sequential
decision bias and the models for publication bias, although the decisions being made are aimed at the next trial
or at the current trial, respectively. In fact, both the model by Ellis and Stewart (2009) and our extreme-value and
probit models are the publication bias models from the t-family introduced by Copas (2013). Similar to publication
bias models, the choice of the model may greatly affect the amount of bias, but we have demonstrated that non-
negligible biases may arise in a variety of models, and we recommend the use of multiple models for sensitivity
analyses to uncover the consequences of sequential biases. To enable this use, all our R programmes are provided
in the Supplementary Information materials.

We believe that this is the first time that this important issue is raised in the context of the sequential
decision-making associated with the managed accumulation of evidence. Existence of sequential biases raises
a number of important research questions. What is the best way to decide on the usefulness of a new trial?
How to design this trial so that the resulting combined estimate is the least biased? How to adjust the
combined effect to minimise this bias? All these questions need to be addressed if we are to aim at
evidence-based development of science.
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