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CD19-targeted chimeric antigen receptor (CAR) T-cell therapy has demonstrated remarkable

efficacy in patients with relapsed/refractory B-cell malignancies; however, it is associated

with toxicities including cytokine release syndrome (CRS), neurotoxicity, and impaired

hematopoietic recovery. The latter is associated with high-grade cytopenias requiring

extended growth factor or transfusional support, potentially leading to additional

complications such as infection or hemorrhage. To date, the factors independently

associated with hematologic toxicity have not been well characterized. To address this

deficit, we retrospectively analyzed 173 patients who received defined-composition CD19

CAR T-cell therapy in a phase 1/2 clinical trial (https://clinicaltrials.gov; NCT01865617), with

primary end points of absolute neutrophil count and platelet count at day-28 after CAR

T-cell infusion. We observed cumulative incidences of neutrophil and platelet recovery of

81% and 75%, respectively, at 28 days after infusion. Hematologic toxicity was noted in a

significant subset of patients, with persistent neutropenia in 9% and thrombocytopenia in

14% at last follow-up. Using debiased least absolute shrinkage selector and operator

regression analysis for high-dimensional modeling and considering patient-, disease-, and

treatment-related variables, we identified increased CRS severity as an independent

predictor for decreased platelet count and lower prelymphodepletion platelet count as an

independent predictor of both decreased neutrophil and platelet counts after CD19 CAR

T-cell infusion. Furthermore, multivariable models including CRS-related cytokines identified

associations between higher peak serum concentrations of interleukin-6 and lower day-28

cell counts; in contrast, higher serum concentrations of transforming growth factor-b1 were

associated with higher counts. Our findings suggest that patient selection and improved CRS

management may improve hematopoietic recovery after CD19 CAR T-cell therapy.

Introduction

CD19-targeted chimeric antigen receptor (CD19 CAR) T-cell therapy has demonstrated promising effi-
cacy in patients with relapsed or refractory (R/R) B-cell malignancies with high objective or overall
response rate (ORR) and complete response/remission (CR) or CR with incomplete hematologic
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Key Points

� Hematologic toxicity
was observed in
�20% of patients
receiving anti-CD19
CAR T-cell therapy.

� Higher CRS severity
and CRS-related
cytokine levels and
lower prelymphode-
pletion platelet count
predicted hematologic
toxicity.

12 APRIL 2022 • VOLUME 6, NUMBER 7 2055

REGULAR ARTICLE

https://clinicaltrials.gov
mailto:jgauthier@fredhutch.org
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


recovery rates in acute lymphoblastic leukemia1 (ALL; 68% to 93%
CR), chronic lymphocytic leukemia (CLL; 57% to 74% ORR; 21%
CR),2,3 mantle cell lymphoma4 (59% CR), and large B-cell lym-
phoma5-9 (LBCL; 52% to 88% ORR; 40% to 59% CR), the latter
including patients with diffuse large B-cell lymphoma, primary medi-
astinal B-cell lymphoma, and transformed follicular lymphoma.10 A
subset of these patients has demonstrated durable responses, with
CR of .2 years without the need for further treatment.5,7 Conse-
quently, the US Food and Drug Administration approved 4 CD19
CAR T-cell products: axicabtagene ciloleucel (Yescarta) for the
treatment of R/R LBCL and primary mediastinal B-cell lymphoma;
tisagenlecleucel (Kymriah) for R/R LBCL and ALL in children and
young adults; and, most recently, brexucabtagene autoleucel (Tecar-
tus) for the treatment of R/R mantle cell lymphoma and lisocabta-
gene maraleucel (Breyanzi) for R/R LBCL.

CD19 CAR T-cell therapy, however, is associated with significant tox-
icities that impede its development and wide dissemination: cytokine
release syndrome (CRS), immune effector cell–associated neurotox-
icity syndrome (ICANS), B-cell aplasia, and early and late infec-
tions.11-13 Furthermore, hematologic toxicity, including delayed
hematopoietic recovery with persistent high-grade neutropenia, ane-
mia, and thrombocytopenia, has been observed in a subset of
patients who undergo CAR T-cell therapies targeting CD195,7,9,11,14

and other antigens.15,16 We have reported prolonged cytopenia
requiring transfusions or growth factor support in a phase 1/2 trial of
defined-composition CD19 CAR T-cell therapy, either starting or per-
sisting beyond 90 days after CAR T-cell infusion in 16% of patients
in CR for at least 1 year and without myelodysplastic syndrome after
treatment.11 In the ZUMA15 and ELIANA17 studies, investigators
reported 17% of patients with grade $3 cytopenia at $3 months
after CAR T-cell infusion in the former study and grade $3 neutrope-
nia (11%) and thrombocytopenia (12%) at a median follow-up of
13.1 months in the latter. Prolonged cytopenias were also noted in
the recent TRANSCEND NHL 001 study,9 with 37% of evaluable
patients with grade $3 cytopenia at day-29, and prolonged neutro-
penia (7%), thrombocytopenia (26%), and anemia (9%) by day-180.

Prolonged cytopenia may result in increased frequency of infec-
tions,13,18 hemorrhagic events, extended growth factor administration,
and blood product transfusions. Persistent transfusion requirements
are associated with risks of iron overload, transfusion-associated
reactions, circulatory overload, and lung injury. These adverse effects
may ultimately contribute to treatment-related morbidity and mortality,
increased use of resources, and impaired quality of life.

Results of studies by our group19 and others20 have suggested an
association between the severity of CRS and lower hematologic
nadirs, delayed hematopoietic recovery, and increased dependence
on transfusion. Yet, the factors that independently influence hemato-
poietic recovery after CD19 CAR T-cell therapy remain poorly
understood; recent analyses have been limited by small cohort sizes
leading to low statistical power that precludes robust multivariable
modeling. In addition, the methodology used in these studies did
not account for competing events.14,20-22 We performed a retro-
spective analysis of a cohort of 173 patients treated at our institu-
tion in a phase 1/2 clinical trial of defined-composition CD19 CAR
T-cell therapy for B-cell malignancies. By applying the debiased
LASSO (least absolute shrinkage and selection operator) to draw

inference of the effects of multiple variables, we identified key fac-
tors independently associated with prolonged hematopoietic toxicity
after CD19 CAR T-cell therapy.

Methods

Patients and study design

We performed a retrospective analysis of patients with R/R B-cell
malignancies, including ALL, non-Hodgkin lymphoma (NHL), and CLL,
whowere treatedwith CD19-targetedCAR T-cells in a phase 1/2 clini-
cal trial at our institution (https://clinicaltrials.gov, NCT01865617).1,2,8

The CAR construct comprised a CD19-targeting single-chain variable
fragment (scFv) derived from the FMC63monoclonal antibody fused to
an immunoglobulin-G4 (IgG4) hinge region, a CD28 transmembrane
domain, a 4-1BB costimulatory domain, and a CD3z signaling
sequence. The CAR construct was separated by a T2A ribosomal skip
sequence from a truncated human epidermal growth factor receptor
(EGFRt), which served as a marker of transgene expression, as previ-
ously described.1,8 Patients received lymphodepleting chemotherapy
with cyclophosphamide and fludarabine at high (60 mg/kg or .1500
mg/m2 cyclophosphamide with 75-125 mg/m2

fludarabine) or low (30
mg/kg or#1500 mg/m2 cyclophosphamide with 75-90 mg/m2

fludar-
abine) intensities or other regimens (supplemental Table 2). Lymphode-
pletion was followed 2 to 4 days later by infusion of CD19 CAR T-cells
formulated in a 1:1 ratio of CD41:CD81 CAR T-cells at 1 of 3 dose
levels: DL1, 23 105 EGFRt1 cells/kg; DL2, 23 106 EGFRt1cells/kg;
or DL3, 23 107 EGFRt1 cells/kg.

For this analysis, we included 173 of the 195 patients who received
treatment after enrollment in the study (Figure 1). Five patients with
missing or incomplete data were excluded, as were 17 patients with
NHL treated in a pilot dose-dense cohort, who received a planned
second CAR T-cell infusion without additional lymphodepleting ther-
apy 15 days after the first infusion. The study was conducted
according to the principles of the Declaration of Helsinki and with
the approval of the Fred Hutchinson Cancer Research Center Insti-
tutional Review Board.

Our primary end point for hematologic toxicity was absolute neutro-
phil count (ANC) and platelet count at day-28 after CAR T-cell infu-
sion. As secondary end points, we assessed the cumulative
incidence of hematopoietic recovery accounting for competing risks.

Evaluation of hematologic toxicity

Hematopoietic recovery. Criteria for neutropenia, thrombocyto-
penia, and recovery of neutrophil and platelet counts were defined as
per the established Center for International Blood and Marrow Trans-
plant Research (CIBMTR)23 reporting guidelines for cellular therapy,
with neutropenia, ANC #0.5 3 109/L; thrombocytopenia, platelet
count#203 109/L; and neutrophil recovery, ANC.0.53 109/L, for
3 consecutive laboratory test results obtained on different days, irre-
spective of growth factor administration, and platelet recovery, platelet
count .20 3 109/L for 3 consecutive results obtained on different
days, in the absence of platelet transfusion for the preceding 7 days.

Grading of cytopenias. Cytopenias were graded according to
the Common Terminology Criteria for Adverse Events (CTCAE), ver-
sion 4.0.3, at a median of 14, 28, 60, 90, 120, and 180 days after
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CAR T-cell infusion (range, 13-17, 23-33, 55-65, 85-95, 110-130,
and 160-200 days, respectively) in evaluable patients, with minimum
ANC, hemoglobin level, or platelet count within each date range
selected. To grade preinfusion cytopenia, the minimum result between
the date of infusion and 7 days before infusionwas selected.

Evaluation and grading of CRS and ICANS, serum

biomarkers, cytokines, and additional clinical

laboratory results

The severity of CRS was graded according to the 2014 Lee crite-
ria.24 ICANS was graded according to the CTCAE 4.0.3 for neuro-
logic adverse events, with the overall ICANS grade defined as the
highest grade in each patient. Collection and analysis of serum

biomarkers, cytokines, and additional laboratory parameters were
performed as previously described.2,19 The following serum cyto-
kines were evaluated in this study: transforming growth factor b1
(TGF-b); interferon-g; interleukin 2 (IL-2), IL-5, IL-6, IL-7, IL-8, IL-10,
IL-15, IL-18, IL-22, and IL-2Ra; and MCP-1, MIP-1b, Fas, IL-6R, sol-
uble tumor necrosis factor receptor 1 (sTNFR1; p55), sTNFR1
(p75), TNFa, and TIM-3.

Statistical analysis

In evaluable patients, descriptive statistics excluded blood count
data at time points after initiation of the subsequent antitumor ther-
apy, a second CAR T-cell infusion, relapsed disease, or loss of the
patient to follow-up.

Patients with relapsed/refractory B-cell
malignancies screened on phase I/II

trial of CD19-targeted
CAR T-cell therapy

(n=226)

Received at least one infusion
of CD19 CAR T-cells

(n=195) 

Enrolled in study
(n=198)

NHL dose-dense cohort expansion
receiving second CAR T-cell infusion

(n=17)

Incomplete data
(n=5)

Cohort included in descriptive and
competing risk analyses

(n=173)

Excluded from analysis
n=22

Patients evaluable at day-28
post-CAR T-cell infusion

included in multivariable analyses
(n=164)

Death prior to day-28 
or incomplete data

(n=9)

Figure 1. Patient selection. Inclusion and exclusion criteria for analysis. Patients excluded from analysis at time of first competing event after CAR T-cell infusion, defined

as relapse with marrow involvement, new cytotoxic therapy, second lymphodepletion or CAR T-cell infusion, death, or loss to follow-up.

12 APRIL 2022 • VOLUME 6, NUMBER 7 CYTOPENIA AND CD19 CAR T-CELL THERAPY 2057



Primary end point: day-28 ANC and platelet count. For
linear regression the primary end points were ANC and platelet
count at day-28 after CAR T-cell infusion. With a window of 67
days, 164 of the 173 patients were evaluable for this analysis
(Figure 1). The following patient-, disease-, and treatment-related
variables were considered for univariate and multivariable analyses:
age, sex, disease type (ALL, CLL, or NHL), number of prior non-
transplant treatments; prior autologous or allogeneic hematopoietic
stem cell transplant (HSCT); CAR T-cell infusion dose level, CRS
grade; prelymphodepletion (pre-LD) neutrophil, lymphocyte, and
platelet counts; pre-LD D-dimer; prothrombin time; partial thrombo-
plastin time; and ferritin, C-reactive protein, and fibrinogen levels.

A second analysis was performed to assess the contribution of
CRS-related cytokines in which the CRS grade variable was
replaced by each of the cytokines mentioned herein. For this analy-
sis, we selected peak serum concentrations after CAR T-cell infu-
sion, with the exception of TGF-b1, for which we used the trough
serum concentration. This measure was determined by inspection of
the serum concentration kinetics categorized by CRS grade after
CAR T-cell infusion (supplemental Figure 1) and by applying a non-
parametric smoother (locally weighted scatterplot smoothing) to the
longitudinal data.

A univariate linear regression model was used to assess for each
risk factor with neutrophil and platelet recovery. In the joint analysis,
a novel debiased LASSO model was applied. First, regression coef-
ficients were penalized by using the LASSO25 approach. Next, the
penalized coefficient estimates were debiased to allow for statistical
inference (confidence intervals [CIs] and null hypothesis testing).
Multiple imputation using chained equations and predictive mean
matching was used for selected variables that were missing for
,25% of patients included in the analysis. We conducted univariate
analysis of 3 variables (pre-LD C-reactive protein, fibrinogen, and D-
dimer) with .25% missing values before and after imputation (num-
ber and proportion of patients with missing data are shown in
supplemental Table 5). As none was statistically significant at the
P 5 .05 level, these variables were removed from the covariate list.
Regression beta coefficients are reported with 95% CIs.

Secondary end points: cumulative incidence of ANC and
platelet recovery. For our secondary end points, we chose a
method of accounting for competing risks, because clinical events
unrelated to CAR T-cells may preclude hematopoietic recovery after
CD19 CAR T-cell therapy. An event was defined as neutrophil or
platelet recovery by the CIBMTR criteria, as described in
“Hematopoietic recovery,” whereas the following occurrences were
considered to be competing events: death, new antitumor therapy,
or disease relapse with marrow involvement in the absence of neu-
trophil or platelet recovery. As already noted, patients receiving a
second CAR T-cell infusion as part of the dose-dense expansion
cohort were excluded from the analysis. For patients included in the
analysis who received more than 1 CAR T-cell infusion, second lym-
phodepletion (if administered) and second CAR T-cell infusion (if
administered without second lymphodepletion) were also consid-
ered to be competing events. Patients who never met the CIBMTR
criteria for neutropenia or thrombocytopenia were considered to
have recovered at time 0. Median follow-up time was estimated by
using the reverse Kaplan-Meier analysis.26 The cumulative inciden-
ces of neutrophil and platelet recovery were estimated using the

Kalbfleisch and Prentice method,27 and univariate comparisons
across categories were performed with Gray’s test.28,29

Data analysis was performed with R (version 3.6.3), RStudio (ver-
sion 1.4.1106), and the following packages: cmprsk, ggplotly,
ggpubr, gtsummary, hdi, mice, rms, scales, survival, survminer, and
tidyverse.

Results

Patient characteristics

One hundred seventy-three patients with R/R B-cell malignancies
(ALL, n 5 62; CLL, n 5 48; and NHL, n 5 63) were included, with
a median age of 55 years (range, 20-76). The patients were heavily
pretreated with a median of 4 prior therapies (range, 1-11), and 61
(35%) underwent HSCT (autologous, 23 [13%]; allogeneic, 35
[20%]; or both autologous and allogeneic 3 [2%]). One hundred
forty-six (85%) received a lymphodepletion regimen containing both
cyclophosphamide and fludarabine at either high (80, 47%) or low
(66, 39%) intensity, and 25 (15%) received an alternative regimen
(supplemental Table 2). Median ANC and platelet counts before
lymphodepletion were 2.41 3 109/L (range, 0-23) and 123 3 109/L
(range, 7-448), respectively. Median pre-LD abnormal bone marrow
B-cell percentage was 8% (range, 0% to 98%). Patients received
CAR T-cells infused at 1 of 3 dose levels. Patient, disease, and treat-
ment characteristics are summarized in Table 1.

Hematologic toxicity after CD19 CAR T-cell therapy

Severity of hematologic toxicities. A significant proportion of
patients presented with severe cytopenia after CAR T-cell therapy.
We observed grade $3 neutropenia at days 0, 14, and 28 in 58.7%
(95% CI, 51.0-66.1), 49.1% (95% CI, 41.3-56.9), and 45.9% (95%
CI, 37.9-54.0), respectively (Figure 2A). We observed grade $3
thrombocytopenia at days 0, 14, and 28 in 36.6% (95% CI, 29.4-
44.3), 44.3% (95% CI, 36.6-52.2), and 33.8% (95% CI, 26.4-41.7)
of patients, respectively (Figure 2B). Grade 3 anemia was noted at
days 0, 14, and 28 in 14.5% (95% CI, 9.6-20.7), 16.2% (95% CI,
10.9-22.6), and 14.6% (95% CI, 9.5-21.2) of patients, respectively
(Figure 2C). The observed frequencies of cytopenia up to 180 days
after CAR T-cell infusion are shown in Figure 2. As faster hematopoi-
etic recovery could reflect response to treatment, we assessed the
relationship between day-28 ANC and platelet count and response at
first assessment in evaluable patients, typically performed at day-28
after CAR T-cell infusion. Patients were categorized as responders
(complete remission, complete remission with minimal residual dis-
ease, or partial response) or nonresponders (stable disease or pro-
gression of disease). No statistically significant difference (Wilcoxon
unpaired test) was noted for either ANC or platelet count (supplemen-
tal Figure 2A,C). When stratified by disease cohort, day-28 ANC was
lower, with statistical significance in nonresponders within the ALL
cohort (P 5 .037); however, no significant differences were noted in
day-28 platelet count in ALL or for either measure in CLL and NHL
cohorts (supplemental Figure 2B,D).

ANC and platelet kinetics after CAR T-cell infusion. To
visualize trends in ANC and platelet counts and to assess recovery
at our primary end point of day-28 after CAR T-cell infusion, we
applied a nonparametric smoother to longitudinal data (Figure 3)
grouping subjects by CRS grade. Mean ANC (3109/L) at day-28
was 1.54, 1.21, 1.42, and 0.65 and mean platelet count (3109/L)
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was 70.8, 63.1, 44.7, and 26.1 for CRS grades 0, 1, 2, and 3-5
respectively. Mean time to ANC recovery by CRS grade was 4.2,
5.9, 6.5, and 12.8 days for CRS grades 0, 1, 2, and 3-5, respec-
tively. ANC and platelet counts (median and interquartile range) at
day-28 after CAR T-cell infusion in evaluable patients overall and by
baseline characteristics are shown in Table 2, with continuous varia-
bles stratified by quartile.

Cumulative incidence of hematopoietic recovery. After a
median follow-up time of 40.8 months (ALL, 45.7 months; CLL, 26.6
months; NHL, 47.3 months), the proportion of evaluable patients
demonstrating ANC and platelet recovery according to the CIBMTR
criteria after CD19 CAR T-cell therapy were 91% (ALL, 85%; CLL,
95%; NHL, 98%) and 86% (ALL, 82%; CLL, 83%; NHL, 90%),

respectively. Median time to ANC recovery was 8 days (range, 0-
146) and the cumulative incidence of ANC recovery at days 28, 60,
and 90 were 81% (95% CI, 75-87), 88% (95% CI, 83-93), and
89% (95% CI, 85-94), respectively (Figure 4A). Median time to plate-
let recovery was 0 days (range, 0-173) and the cumulative incidence
of platelet recovery on the day of CAR T-cell infusion was 58% (95%
CI, 50-65); rising to 76% (95% CI, 69-82), 84% (95% CI, 78-89),
and 84% (95% CI, 79-90) at days 28, 60, and 90, respectively (Fig-
ure 4B). When patients who never met the criteria for neutropenia or
thrombocytopenia (supplemental Figure 3) were excluded, the
median time to ANC recovery was 8.75 days (range, 1-146) and the
median time to platelet recovery was 36.5 days (range, 3-173). The
cumulative incidence of hematopoietic recovery stratified by disease
type is shown in supplemental Figure 4.

Table 1. Patient and treatment characteristics by disease cohort

Disease cohort (n, %)

ALL

(n 5 62; 36%)

CLL

(n 5 48; 28%)

NHL

(n 5 63; 36%)

Total

(N 5 173)

Age (y), median (IQR) [range] 40 (28, 54)
[20-76]

61 (55, 66)
[40-73]

58 (52, 64)
[28-71]

55 (43, 64)
[20-76]

Sex, n (%)

Female
Male

26 (42)
36 (58)

15 (31)
33 (69)

17 (27)
46 (73)

58 (34)
115 (66)

Race, n (%)

White
Nonwhite
Unknown

50 (80.6)
12 (19.4)
0 (0)

43 (90)
4 (8.3)
1 (2.1)

58 (92)
5 (7.9)
0 (0)

151 (87)
21 (12)
1 (0.6)

Prior therapies, median n (IQR)
[range]

3 (2, 4)
[1-11]

5 (4, 7)
[1-10]

4 (4, 6)
[1-11]

4 (3, 6)
[1-11]

Prior HSCT, n (%)

Autologous
Allogeneic
Both
None

0 (0)
24 (39)
0 (0)

38 (61)

1 (2)
7 (15)
0 (0)

40 (83)

22 (35)
4 (6.3)
3 (4.8)
34 (54)

23 (13)
35 (20)
3 (1.7)

112 (65)

Pre-LD marrow abnormal B-cells (%), median (IQR)
[range]

22.2 (1, 71)
[0-98]

52 (20, 74)
[0-96]

0 (0, 0)
[0-92]

8 (0, 57)
[0-98]

Pre-LD ANCs (3109/L),
median (IQR) [range]

1.86 (0.88, 3.06)
[0-7.62]

2.13 (0.94, 4.30)
[0-13.65]

3.24 (1.98, 5.50)
[0.23-23.17]

2.41 (1.25, 4.23)
[0-23.2]

Pre-LD ALCs (3109/L),
median (IQR) [range]

0.7 (0.4, 1.3)
[0-5.1]

1.9 (1.0, 7.6)
[0.2-58.9]

0.6 (0.4, 1.1)
[0-8.8]

0.9 (0.5, 1.7)
[0-58.9]

Pre-LD hemoglobin (g/dL),
median (IQR) [range]

10.6 (9.8, 11.7)
[7.3-14.8]

10.6 (9.8, 12.35)
[7.4-16]

11.1 (9.8, 12.7)
[7.2-15]

10.8 (9.8, 12.2)
[7.2-16]

Pre-LD platelets (3109/L),
median (IQR) [range]

110 (48, 200)
[9-339]

114 (86, 146)
[7-434]

143 (80, 214)
[9-448]

123 (64, 196)
[7-448]

Lymphodepletion, n (%)

High-intensity CyFlu
Low-intensity CyFlu
Non-CyFlu

31 (50)
19 (31)
12 (19)

15 (31)
29 (60)
4 (8.3)

34 (54)
18 (29)
11 (17)

80 (46)
66 (38)
27 (16)

CAR T-cell dose, n (%)

DL1
DL2
DL3

38 (61)
22 (35)
2 (3.2)

5 (10)
42 (88)
1 (2.1)

4 (6)
50 (79)
9 (14)

47 (27)
114 (66)
12 (6.9)

CRS grade, n (%)

0
1
2
3-5

14 (23)
12 (19)
23 (37)
13 (21)

8 (17)
15 (31)
18 (38)
7 (15)

30 (48)
13 (21)
14 (22)
6 (9.5)

52 (30)
40 (23)
55 (32)
26 (15)

Neurotoxicity grade, n (%)

0-1
2-3
4-5

39 (63)
19 (31)
4 (6.5)

32 (67)
15 (31)
1 (2.1)

50 (79)
11 (17)
2 (3.2)

121 (70)
45 (26.0)
7 (4.0)

High-intensity CyFlu, cyclophosphamide (Cy) 60 mg/kg or .1500 mg/m2 with fludarabine (Flu) 75-125 mg/m2; low-intensity CyFlu, Cy 30 mg/kg or #1500 mg/m2 with Flu 75-90
mg/m2; Non-CyFlu, any conditioning regimen other than as noted above including single agent Cy or Flu. CAR T-cell dose level (DL): DL1 5 2 3 105 cells/kg, DL2 5 2 3 106 cells/kg,
DL3 5 2 3 107 cells/kg. CRS grade as defined by Lee criteria.24 Neurotoxicity grade as defined by CTCAE 4.0.3. ALC, absolute lymphocyte count; IQR, interquartile range.
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0 (n=35, 20.3%)

1 (n=13, 7.6%)

2 (n=23, 13.4%)

3 (n=19, 11%)

4 (n=82, 47.7%)

0 (n=47, 28.1%)

1 (n=9, 5.4%)

2 (n=29, 17.4%)

3 (n=44, 26.3%)

4 (n=38, 22.8%)

0 (n=32, 20.4%)

1 (n=17, 10.8%)

2 (n=36, 22.9%)

3 (n=40, 25.5%)

4 (n=32, 20.4%)

0 (n=12, 35.3%)

1 (n=2, 5.9%)

2 (n=10, 29.4%)

3 (n=5, 14.7%)

4 (n=5, 14.7%)

0 (n=2, 25%)

1 (n=1, 12.5%)

2 (n=2, 25%)

3 (n=2, 25%)

4 (n=1, 12.5%)

0 (n=5, 62.5%)

1 (n=1, 12.5%)

2 (n=1, 12.5%)

3 (n=1, 12.5%)

0 (n=5, 55.6%)

1 (n=1, 11.1%)

3 (n=1, 11.1%)

4 (n=2, 22.2%)

0

25

50

75

100

180120906028140

Day

Pe
rc

en
ta

ge

Neutropenia CTCAE Grade 43210

Neutropenia grade by post–infusion dayA

0 (n=35, 20.3%)

1 (n=52, 30.2%)

2 (n=22, 12.8%)

3 (n=31, 18%)

4 (n=32, 18.6%)

0 (n=31, 18.6%)

1 (n=44, 26.3%)

2 (n=18, 10.8%)

3 (n=25, 15%)
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Figure 2. Severity of hematologic toxicities. Percentage of patients with neutropenia (A), thrombocytopenia (B), and anemia (C) by post-CAR T-cell infusion day,

stratified by CTCAE grade. Because of the variability in collection dates, for day 5 n, the minimum cell count falling within an arbitrary range of n was selected for each

patient (ie, day 0 5 days 27 and 0, day 14 5 days 12-16, day-28 5 days 23-33, day 60 5 days 55-65, day 90 5 days 85-95, day 120 5 days 110-130, and day

180 5 days 160-200). Patients were no longer included in this analysis pending receipt of a subsequent line of therapy, second CAR T-cell infusion, or withdrawal from the study.
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Multivariable analyses of day-28 ANC and

platelet count

We applied debiased LASSO in a high-dimension linear regression
model to identify independent predictors of ANC (Figure 5A) and
platelet (Figure 5B) recovery. We considered patient, disease, and
treatment-related predictors in our models as described in “Methods.”
Univariate analyses are shown in supplemental Table 2A-B).

A higher CRS grade was associated with a lower day-28 platelet
count (b, 20.09 per CRS grade; 95% CI, 2 0.16 to 20.014;
P 5 .019) and suggested a similar trend for ANC, but we could not
reject the null hypothesis with a similar but nonsignificant trend for
ANC (b, 20.07; 95% CI, 20.17 to –0.04; P 5 .24). In contrast,
higher pre-LD platelet count was associated with higher day-28 ANC
(b, 0.22 per log10 platelet3 109/L; 95% CI, 0.127-0.32; P, .00001)
and higher day-28 platelet count (b, 0.21 per log10 platelet 3 109/L;
95% CI, 0.150-0.279). Confirming our observations, the univariate
cumulative incidence of ANC recovery at day-28 by pre-LD platelet
count was 58% (95% CI, 43-72), 84% (95% CI, 72-95), 90% (95%
CI, 81-100), and 93% (95% CI, 85-100) for pre-LD platelet counts of
7-66, 67-124, 125-197, and 198-448 3 109/L, respectively (Figure
4C) and the univariate CI of platelet recovery at day-28 by pre-LD plate-
let count was 44% (95% CI, 30-59), 86% (95% CI, 75-97), 90%
(95% CI, 81-100), and 84% (95% CI, 72-95) for the same quartiles,
respectively (Figure 4D).

We could not confirm associations between several patient, dis-
ease, and treatment factors and hematopoietic recovery that were

suggested in other studies. Notably, these included pre-LD bone
marrow disease burden (ANC: b,20.01; 95% CI,20.145 to 0.123;
P 5 .87; platelet: b, 0.08; 95% CI, 20.009 to 0.17; P 5 .08) and
number of prior treatment regimens (ANC: b, 0.00 per additional treat-
ment; 95% CI, 20.10 to 0.10; P 5 .96; platelet: b, 20.03; 95% CI,
20.099 to 0.036; P 5 .36). Similarly, the association between CAR
T-cell dose level and hematopoietic recovery was undetermined
(ANC: b, 0.05 per dose level; 95% CI, 20.053 to 0.148, P 5 .36;
platelet: b,20.02, 95%CI,20.09 to 0.04;P5 .49).

Cytokine levels and day-28 ANC and platelet count

Because our findings suggested that the CRS grade is a key factor in
hematopoietic recovery, we included a panel of selected CRS-related
cytokines in our high-dimensional linear regression models, in addition
to cytokines known to have a role in hematopoiesis (Figures 5C-D), and
retaining key baseline variables, preinfusion ANC, and platelet counts.

Discussion

CAR T-cell therapy has been associated with significant cytopenia
responsible for prolonged transfusion requirements and with increased
risk of infection and bleeding. Because this complication remains poorly
characterized, we studied the kinetics of hematopoietic recovery and
the factors associated with hematologic toxicity after CD19 CAR T-cell
therapy in a large cohort of 173 patients.

Importantly, the day-28 cumulative incidences of neutrophil and
platelet recovery in all patients were 81% and 89%, respectively,
indicating that a significant proportion of patients had impaired
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hematopoiesis after CD19 CAR T-cell therapy. Using the debiased
LASSO for high-dimensional linear regression modeling, we identi-
fied key factors independently associated with hematopoietic recov-
ery. Our approach achieves robust variable selection in multivariable
analysis, as it can account for large numbers of covariates and
highly correlated covariates. Importantly, it provides statistical infer-
ence, with robust estimates for coefficients, and allows for the com-
putation of confidence intervals for all coefficients, which cannot be
achieved by other approaches, such as stepwise regression or lin-
ear regression using nondebiased LASSO.30 The severity of CRS
was independently predictive of day-28 platelet count and the pre-
LD platelet count was an independent predictor of both day-28
ANC and platelet count, although prior work from our group also
noted an association between baseline platelet count and severity
of subsequent CRS.19 The identification of pre-LD platelet count
suggests that poor bone marrow reserve or treatment-related bone
marrow injuries may be key factors associated with impaired hema-
topoietic recovery after CD19 CAR T-cell therapy. Results in other
studies have suggested that the intensity of the lymphodepletion
regimen31 and prior treatment regimens affect hematopoietic recov-
ery after CAR T-cell therapy. Our study did not determine an associ-
ation with either the number of prior treatment regimens or the
status of prior autologous or allogeneic transplant and the day-28
ANC or platelet count. Because the selection of lymphodepletion
regimen intensity was influenced by patients’ pretreatment baseline
counts and the disease type, we did not include this variable in our
analysis.

Because our multivariable modeling suggested a strong detrimental
effect of CRS severity on hematopoietic recovery, we sought to
investigate the impact of 20 serum cytokines associated with CRS
on ANC and platelet recovery. Higher peak serum concentration of
IL-6, known to be strongly associated with CRS severity,19 was
independently associated with impaired hematopoietic recovery in
our multivariable analysis, whereas a higher peak concentration of
TGF-b was associated with improved recovery.

In our study, we noted an association between higher peak IL-6
serum concentration and slower hematopoietic recovery. IL-6 is a
cytokine known to have pleiotropic effects on the hematologic sys-
tem, including megakaryocytic maturation and platelet release from
the bone marrow, myeloid differentiation during neutropenia, T-cell
differentiation, and stimulation of antibody production from B-
cells.32-35 Further studies are needed to clarify the role of IL-6 in
hematologic toxicity after CAR T-cell therapy. We hypothesize that
high IL-6 serum concentrations reflect a homeostatic increase that
stimulates hematopoiesis in response to cytopenia, although we
acknowledge that IL-6 serum concentrations in the bone marrow
were not measured in our study. Furthermore, the effects of a thera-
peutic IL-6R blockade with tocilizumab on hematopoietic precursors
and its contribution to hematologic toxicities of CAR T-cells remain
unknown. We did not identify an independent association between
the use of tocilizumab and hematopoietic recovery (supplemental
Table 4).

Table 2. ANC and platelet count at day-28 after CAR T-cell

infusion

Variable

ANCs (3109/L)

median (IQR)

Platelets (3109/L)

median (IQR)

Disease cohort

Total (n 5 164)
ALL (n 5 59)
CLL (n 5 46)
NHL (n 5 59)

1.52 (0.87, 2.46)
1.27 (0.62, 2.02)
1.61 (0.88, 2.82)
1.64 (1.06, 2.51)

82 (46, 149)
77 (32, 146)
84 (43, 121)
88 (60, 179)

Sex

Female (n 5 52)
Male (n 5 112)

1.50 (0.92, 2.20)
1.55 (0.84, 2.54)

72 (42, 130)
91 (51, 153)

Race, n (%)

White (n 5 143)
Nonwhite (n 5 20)
Unknown (n 5 1)

1.53 (0.88, 2.41)
1.35 (0.84, 2.61)
3.60 (3.60, 3.60)

79 (44, 150)
112 (58, 154)
140 (140, 140)

Number of prior therapies

,Q1 (1-2)
Q1-Q2 (3-4)
Q2-Q3 (5-6)
.Q3 (7-11)

1.71 (0.95, 2.23)
1.31 (1.07, 2.50)
1.41 (0.78, 3.10)
1.60 (0.54, 2.44)

126 (51, 171)
78 (43, 162)
66 (46, 116)
78 (42, 114)

Prior HSCT

Autologous (n 5 22)
Allogeneic (n 5 34)
Both (n 5 3)
None (n 5 105)

1.42 (1.02, 2.34)
1.36 (0.49, 1.74)
3.91 (3.56, 4.96)
1.58 (0.91, 2.53)

70 (58, 149)
76 (28, 112)
88 (80, 152)
94 (50, 155)

Pre-LDmarrow abnormal B-cells (%)

,Q1 (0-0.006)
Q1-Q2 (0.006-7.99)
Q2-Q3 (8.00-60.0)
.Q3 (60.1-98.5)

1.61 (1.02, 2.58)
1.72 (1.22, 2.55)
1.68 (1.24, 2.65)
0.80 (0.26, 1.93)

91 (61, 178)
104 (56, 149)
78 (49, 147)
55 (27, 115)

Pre-LD ANC (310
9
/L)

,Q1 (0-1.35)
Q1-Q2 (1.36-2.43)
Q2-Q3 (2.44-4.34)
.Q3 (4.35-23.17)

1.00 (0.43, 1.90)
1.47 (1.14, 2.13)
1.74 (1.10, 2.84)
2.14 (1.17, 3.20)

50 (24, 90)
101 (60, 147)
128 (62, 156)
86 (49, 201)

Pre-LD ALC (310
9/L)

,Q1 (0.00-0.51)
Q1-Q2 (0.52-0.89)
Q2-Q3 (0.90-1.94)
.Q3 (1.95-58.92)

1.58 (0.79, 2.00)
1.36 (0.93, 2.45)
1.77 (1.24, 2.48)
1.35 (0.72, 2.31)

61 (42, 113)
116 (45, 174)
83 (60, 147)

100 (41, 133)

Pre-LD hemoglobin (g/dL)

,Q1 (7.2-9.8)
Q1-Q2 (9.9-10.8)
Q2-Q3 (10.9-12.1)
.Q3 (12.2-16.0)

1.37 (0.58, 2.51)
1.69 (0.56, 2.22)
1.52 (1.03, 2.20)
1.70 (1.24, 2.71)

64 (32, 107)
74 (37, 143)
83 (52, 142)

137 (70, 188)

Pre-LD platelet (310
9/L)

<Q1 (7-66)
Q1-Q2 (67-126)
Q2-Q3 (127-197)
.Q3 (198-448)

0.66 (0.24, 1.41)
1.53 (1.10, 2.84)
1.68 (1.17, 2.23)
2.20 (1.24, 3.32)

33 (20, 64)
79 (55, 115)

125 (62, 164)
174 (76, 215)

Lymphodepletion

High-intensity CyFlu (n 5 77)
Low-intensity CyFlu (n 5 61)
Non-CyFlu (n 5 26)

1.58 (1.07, 2.53)
1.53 (0.82, 2.39)
1.23 (0.88, 2.09)

107 (55, 161)
62 (31, 113)

104 (60, 196)

CAR T-cell dose

DL1 (n 5 46)
DL2 (n 5 108)
DL3 (n 5 10)

1.21 (0.46, 2.10)
1.63 (1.02, 2.70)
1.53 (1.03, 2.15)

86 (36, 155)
80 (54, 138)

144 (61, 217)

CRS grade

0 (n 5 50)
1 (n 5 39)
2 (n 5 53)
3-5 (n 5 22)

1.62 (1.01, 2.31)
1.97 (1.12, 3.11)
1.27 (0.81, 2.14)
1.44 (0.42, 2.22)

89 (57, 172)
105 (58, 144)
84 (32, 147)
50 (26, 98)

Neurotoxicity grade, n (%)

0-1 (n 5 117)
2-3 (n 5 44)
4-5 (n 5 3)

1.64 (0.99, 2.55)
1.28 (0.76, 2.04)
1.68 (1.17, 3.35)

82 (50, 155)
85 (48, 130)
29 (28, 47)

High-intensity CyFlu, cyclophosphamide (Cy) 60 mg/kg or . 1500 mg/m2 with
fludarabine (Flu) 75-125 mg/m2; low-intensity CyFlu, Cy 30 mg/kg or #1500 mg/m2 with
Flu 75-90 mg/m2; Non-CyFlu, any conditioning regimen other than as noted above
including single agent Cy or Flu. CAR T-cell dose level (DL): DL1 5 2 3 105 cells/kg,

DL2 5 2 3 106 cells/kg, DL3 5 2 3 107 cells/kg. CRS grade as defined by Lee
criteria.24 Neurotoxicity grade as defined by CTCAE 4.0.3. ALC, absolute lymphocyte
count; IQR, interquartile range; LD, lymphodepletion; Q1, 25% quantile (1st quartile); Q2,
50% quantile (median); Q3, 75% quantile (3rd quartile).
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Figure 4. Multivariable analysis of factors associated with day-28 ANC and platelet counts. Forest plots of regression coefficients for day-28 neutrophil (A,C) or

platelet (B,D) counts determined by high-dimensional inference for selected patient, disease, and treatment characteristics (A-B) or serum cytokine concentrations (C-D). Regression

coefficient and associated 95% CI, denoted by circles and lines from a linear regression model, respectively. P-value of regression coefficient denoted by color gradient. CRS

and ICANS variables are stratified by grade. Disease cohorts (CLL and NHL) and sex (female) are compared against a reference variable, ALL and male, respectively. All other

variables are modeled as continuous variables. ALC, absolute lymphocyte count; IFN, interferon; MCP, monocyte chemoattractant protein; MIP, macrophage inflammatory protein;

PT, prothrombin time; PTT, partial thromboplastin time, TIM, T-cell immunoglobulin and mucin domain-containing protein; TNF, tumor necrosis factor; sTNFR, soluble TNF-receptor.
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Figure 5. Cumulative incidence of hematopoietic recovery. Cumulative incidence of neutrophil (A,C) and platelet (B,D) recovery, as defined by CIBMTR criteria.

Cumulative incidence estimated by the Kalbfleisch and Prentice method with univariate comparisons across categories according to Gray’s test and stratified by entire

cohort (A-B) or by pre-LD platelet count (C-D, grouped by quartiles). Shaded areas represent 95% CIs.

12 APRIL 2022 • VOLUME 6, NUMBER 7 CYTOPENIA AND CD19 CAR T-CELL THERAPY 2065



Higher serum concentrations of TGF-b were associated with
improved hematopoietic recovery. TGF-b is a pleiotropic cytokine
expressed in a variety of tissues and stored in high concentrations
within the a-granules of platelets.36 TGF-b has complex effects on
the hematopoietic system, on both mature cells37 and stem cell pro-
genitors.38 Although it is known to mediate cell cycle arrest in
CD341 cells, more recent evidence suggest differential response to
TGF-b signaling by different subsets of HSCs, with proliferation of
myeloid-producing HSCs and inhibition of lymphoid-producing
HSCs,39 and our findings may reflect this activity. Alternatively,
lower TGF-b serum concentrations may be reflective of decreased
platelet production or CRS-related platelet consumption; we and
other groups have shown that severe CRS is associated with con-
sumptive coagulopathy.19,40,41 Maintenance of higher TGF-b serum
concentrations may also reflect its homeostatic immunomodulatory
effects during CAR T-cell activation.37

Although further studies are needed to characterize the biological
effects of CRS-related cytokines under these conditions on hemato-
poiesis, our findings suggest interventions that may have immediate
clinical impact. In our cohort, patients with pre-LD platelet counts
falling into the lowest quartile exhibit prolonged hematopoietic recov-
ery. This result suggests that risk stratification taking pre-LD platelet
count into consideration when enrolling patients in CAR T-cell clini-
cal trials, selecting lymphodepletion regimen intensity, number of
CAR T-cell infusions, or CAR T-cell dose may be beneficial. The
identification of CRS and CRS-related cytokines as predictors of
delayed hematopoietic recovery in our study suggests that both
early identification, through frequent monitoring of cytokines and
inflammatory markers, and early interventions, to prevent high-grade
CRS, may be beneficial to mitigate hematopoietic toxicity.

In summary, we characterized the kinetics and pattern of hematopoi-
etic recovery in 173 patients treated with CD19 CAR T-cell therapy
for R/R B-cell malignancies. Pre-LD blood counts, CRS severity and
CRS-related cytokines independently affected hematopoietic recov-
ery after CD19 CAR T-cell therapy. Our study suggests that both
patient selection and advancing CRS management may improve
hematopoietic recovery after CD19 CAR T-cell therapy.
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