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A B S T R A C T   

Background and Objectives: Deep brain stimulation (DBS) is a well-established surgical treatment for certain movement disorders and involves the implantation of 
brain electrodes connected to implantable pulse generators (IPGs). As more device manufacturers have entered the market, some IPG technology has been designed 
to be compatible with brain electrodes from other manufacturers, which has facilitated the hybridization of implant technology. The aim of this study was to assess 
the benefits of hybridization of non-rechargeable, constant voltage IPGs to rechargeable, constant current IPGs. 
Methods: A list of DBS movement disorder patients who had their non-rechargeable, constant voltage IPGs replaced with rechargeable, constant current IPGs from a 
different manufacturer was compiled. Structured surveys of these patients, and their caregivers when applicable, were undertaken to determine both patient and 
caregiver satisfaction in this DBS hybridization strategy. 
Results: Eighteen patients met inclusion criteria and twelve patients or their caregivers completed the structured survey (67% response rate). Nine patients had 
Parkinson’s disease (75%), three had essential tremor (25%). Nine (75%) were converted from bilateral single-channel IPGs, and three (25%) were converted from a 
unilateral dual-channel IPGs. Overall, 92% of patients and caregivers surveyed reported improvement or no change in their symptoms, 92% reported a decrease or no 
change in their medication requirements, and 92% report they are satisfied or very satisfied with their IPG hybridization and would recommend the surgery to similar 
patients. There were no immediate surgical complications. 
Conclusion: In this series of movement disorder DBS patients, surgery was safe and patient and caregiver satisfaction were high with a hybridization of non- 
rechargeable, constant voltage IPGs to rechargeable, constant current IPGs.   

1. Introduction 

Deep brain stimulation (DBS) is an effective therapy for movement 
disorders such as Parkinson’s disease (PD), essential tremor (ET), and 
dystonia [1–5]. DBS incorporates implantable pulse generators (IPGs) to 
deliver current to electrodes placed in specific deep brain structures [4]. 
The IPG may be non-rechargeable or rechargeable and may be classified 
as constant current, constant voltage, or both. As more device manu-
facturers have entered the market and as patients with aging implants 
increase, there have been new demands on methods to upgrade devices. 
Some IPG technology has been designed to be compatible with brain 
electrodes from other companies which has facilitated the “hybridiza-
tion” of implant technology. We present a method of hybridizing either 
bilateral single-channel/unilateral dual channel, non-rechargeable, 
Medtronic IPGs to unilateral, dual channel, rechargeable, Boston Sci-
entific IPGs and a satisfaction survey of its patients/caregivers. 

2. Methods 

Eighteen patients who underwent replacement of their Medtronic, 
non-rechargeable, constant voltage IPG with a Boston Scientific unilat-
eral, rechargeable, constant current IPG with at least 6 months of follow 
up data were identified through previous medical records, and a patient 
list was compiled (Table 1.). In all eighteen cases, IPG replacement was 
performed due to insufficient batteries. Every patient/caregiver was 
informed pre-operatively about the difference between hybridization 
and non-hybridization plus the associated advantages/disadvantages of 
each route. A structured survey (Figs. 1 and 2) of these patients, and 
caregivers when applicable, was conducted to determine patient and 
caregiver satisfaction (Table 2.). Survey topics include programming, 
recharging, symptom control, and medication requirements. The survey 
answers were compiled for descriptive statistical analysis. Further chart 
review was undertaken on each patient to evaluate for potential harm to 
patients due to loss of MRI conditionality, for any reprogramming 
challenges after hybridization, and for any other complications. 
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Our method for conversion of bilateral single channel Medtronic 
Activa SC IPGs to a unilateral dual channel Boston Scientific Vercise or 
Vercise Gevia IPG is as follows. Pre-operatively, the existing IPGs are 
interrogated with a Medtronic (MDT 8840) programmer, and their 
therapy settings, therapy impedance, and system impedance are recor-
ded. The patient is identified, marked, and taken to the operating room. 
The existing non-rechargeable IPGs are exposed and removed bilaterally 
through the prior incision sites. On one side, a 55 cm extension/con-
version lead developed by Boston Scientific is attached to the existing 
Medtronic extension and tunneled subcutaneously across the anterior 
chest to the pocket on the other side. A 15 cm extension/conversion lead 
is attached to the existing Medtronic extension on the side that will 
receive the dual channel Boston Scientific IPG. The fastening site in the 
M8 adaptor has a rubber flange covering the fastener screw with a slit to 
allow tightening. This septum seal plug is sealed with medical adhesive 
(Dow Corning Silastic® Medical Adhesive Silicone) on both adaptors 

after tightening and prior to closure. Both adaptor leads are then con-
nected to the now unilateral IPG, it is placed in the pocket, and 
impedance is checked prior to closure. 

Pre-operatively, the current delivery settings are recorded in voltage 
given the constant voltage nature of the Medtronic IPG. Post- 
operatively, the current delivery settings are converted from voltage 
to milliamps (mA) due to constant current status of the new IPG. Settings 
are programs to a value 0.5 mA lower than the pre-operative current 
delivery setting, with the patient/caregiver given a range of +/-1 mA of 
adjustability through their new Boston Scientific programmer. No 
changes are made to pre-operative pulse width or frequency settings 
(Table 3). The patient is checked by neurosurgery, and the patient plus 
caregivers are introduced to the Boston Scientific representative prior to 
discharge. Patients/caregivers are given contact information for both 
neurosurgery and the Boston Scientific coordinators. The patient is seen 
in clinic two weeks afterwards for symptomatology evaluation, wound 

Table 1 
Patient Demographics.  

Patient 
no. 

Age 
(y) 

Sex Duration 
(y) 

Diagnosis Prior IPG 
Replacements 

Pre-hybridization IPG Post-hybridization IPG 

1 72 M 10 PD 1 Medtronic Activa SCs Boston Scientific Vercise DB-1110-C 
2 84 M 6 ET 0 Medtronic Activa SC Boston Scientific Vercise DB-1110-C 
3 58 M 9 PD 3 Medtronic Activa SCs Boston Scientific Vercise DB-1110-C 
4 73 M 7 PD 2 Medtronic Activa SCs Boston Scientific Vercise DB-1110-C 
5 66 M 6 PD 0 Left Chest Medtronic 

Activa PC 
Boston Scientific Vercise DB-1110-C 

6 82 M 7 PD 2 Medtronic Activa SCs Boston Scientific Vercise Gevia DB-1200-S 
7 71 M 10 PD 3 Medtronic Activa SCs Boston Scientific Vercise Gevia DB-1200-S 
8 75 M 8 PD 1 Right Chest Medtronic 

Activa PC 
Boston Scientific Vercise Gevia DB-1200-S 

9 69 F 8 ET 1 Medtronic Activa SCs Boston Scientific Vercise Gevia DB-1200-S 
10 69 M 20 ET 4 Abdominal Medtronic 

Activa PC 
Boston Scientific Vercise Gevia DB-1200-S Boston Scientific 
Vercise Gevia DB-1200-S 

11 78 F 8 PD 1 Medtronic Activa SCs Boston Scientific Vercise Gevia DB-1200-S 
12 53 M 9 PD 3 Medtronic Activa SCs Boston Scientific Vercise Gevia DB-1200-S 

Abbreviations: M, Male; F, Female; Age, age at time of survey; Duration, duration of DBS treatment, PD, Parkinson’s Disease; ET, essential tremor. 

Fig. 1. Legend- These were the scripts used for patient and caregiver interviews. Answers to each question were based on a 1–5 scale.  
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check, and programming check. The IPG is re-programmed as needed 
from that point either in the neurosurgery functional clinic or the 
neurology office. All data analyzed in this study is included in this 
article. This study was conducted in accordance with Institutional Re-
view Board approval. Consent was obtained from all participating 
patients. 

3. Results 

Across the eighteen identified patients, two were deceased, and four 
more were unable to be reached. In total, 12 patients or their caregivers 
were reached for our structured survey (Table 2), a 67 % response rate 
(mean age 70.8 years). Nine (75 %) were converted from bilateral, 
Medtronic Activa SC IPGs, and three (25 %) were converted from a 
unilateral Medtronic PC IPG. Five (42 %) were implanted with Vercise 
DB-1110-C IPGs, and seven (58 %) were implanted with Vercise Gevia 
DB-1200-S IPGs. Nine (75 %) had Parkinson’s disease (mean age 69.78 
years), and three (25 %) had essential tremor (mean age 74 years). 92 % 
of respondents reported either improvement or no change in symp-
tomatology since conversion, 92 % reported a decrease or no change in 
medication requirements, and 92 % reported satisfaction with their new 
generators and would recommend them. Two patients reported initial 
difficulty with learning to recharge their IPG early after implantation 
but stated there was no difficulty after the initial learning process. One 
patient reported rare difficulty with remembering to charge his system 

with rare interruptions in therapy as a result. 
There were no immediate surgical complications reported from the 

hybridization procedure. One patient reported dissatisfaction with his 
symptom control after conversion to a rechargeable system and 
requested re-implantation of Medtronic non-rechargeable IPGs. His 
condition continued to deteriorate after re-implantation of a Medtronic 
system, and he experienced delayed post-operative infection requiring 
removal of his generators and extension cables. He also experienced an 
overall decline in his health, likely explaining his dissatisfaction. A final 
patient experienced left scalp incision breakdown several months post 
conversion, but this was not an incision opened during the procedure. 
Two attempts at wound revision were undertaken, and finally, his left 
extension cable was removed to allow full wound healing before re- 
implantation. Three patients had been denied an MRI after this con-
version, two for low back pain with neurogenic claudication or radi-
culopathy who both required CT myelograms, and one for altered 
mental status who underwent CT perfusion to rule out stroke. There 
were no complications from the myelograms, and the altered mental 
status was due to non-compliance with psychiatric medication. Stroke 
was successfully ruled out without MRI. 

Eight patients (67 %) reported stable to improved symptoms 
immediately after conversion, while four (33 %) required additional 
visits for programming to achieve optimal control. Of those four, only 
one was unable to achieve satisfactory symptomatic control including 
after re-implantation, while the rest (n = 11 or 92 %) reported stable to 

Fig. 2. Legend- Connections of Vercise™ Adaptors to Medtronic Lead Extensions and Boston Scientific IPG and Medical Adhesive Covering the Septum Seal Plug39, 
(Dow Corning Silastic® Medical Adhesive Silicone)39. 

Table 2 
Survey Responses.  

Patient no. Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 

1 3 2 5 1 1 5  
*2 2 3 4 2 3 1 2 
3 4 4 3 1 1 5  
*4 4 3 3 1 1 1 5 
5 4 5 5 1 3 5  
6 4 5 2 1 3 4  
7 3 3 3 1 1 5  
*8 3 3 4 1 1 1 5 
9 3 5 3 1 1 5  
10 3 3 3 1 1 5  
*11 3 3 3 1 1 1 5 
12 3 3 4 1 1 5  

*caregiver surveys. 
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improved control after hybridization (Table 2). 

4. Discussion 

There are three manufacturers of DBS systems approved by the FDA 
for implantation in the United States, Medtronic, Boston Scientific, and 
Abbott Neuromodiulation [4,6,7], with additional systems now in pro-
duction [7] that are not FDA approved. Historically, non-rechargeable 
IPG replacement could be necessary as often as yearly depending on 
the specific device and programming settings, and each surgery carries 
risks of infection, device failure, electrode damage, etc [1,3,8,9]. The 
early movement disorder DBS patient population from this institution, 
consisting of PD and ET patients, was implanted with Medtronic bilat-
eral sub clavicular IPGs that were non-rechargeable. Rechargeable IPGs 
were introduced with the aim of lowering replacement frequency and 
complication risks [1,8,10,11]. In some series, rechargeability was 
correlated with higher risk of need for explanation in spinal cord stim-
ulation [12,13], but this does not appear to be the case with DBS to date 
[1,2,8]. A commonly implanted non-rechargeable IPG is the Medtronic 
Activa PC, which has an average battery lifespan ranging from 2.6 to 4.5 
years [7,14,15]. In currently available rechargeable systems, battery 
lifespan ranges from 10 to 25, years [7,16]. 

Very few of our early patients were converted to Medtronic 
rechargeable IPGs due to replacement burden, but in our local health 
care market, the Medtronic rechargeable IPG has generally been cost 
prohibitive due to fees and specifics of local insurance policy. Boston 
Scientific developed a method of connecting a Medtronic DBS brain lead 
to their Vercise rechargeable IPG line by developing the Vercise M8 
adaptor, which is available in both 15 and 55 cm lengths. 

Early IPGs had a single source supplying all of the electrode contacts, 
while newer devices were developed that had multi-source power de-
livery [5]. Multiple source current delivery was later developed plus 
directional contacts, allowing for more precise programming, battery 
usage, and effective modulation [4,10,16]. Early single channel systems 
required bilateral IPGs for bilateral cranial leads, with the first dual 
channel unilateral IPG that could provide stimulation to bilateral cranial 
leads appearing in 1998 [8,17]. Unilateral IPGs reduce surgical incisions 
with accompanying reduction in possible operative morbidity [4,16]. 

The therapeutic impact of DBS is related to the amount of current 
delivered to neural tissue. An IPG can deliver current on a constant 
voltage basis, a constant current basis, or both [18–22]. Early DBS IPGs 
were developed as an adaptation of constant voltage cardiac pace-
makers, and thus operated on a constant voltage basis [18]. The 
impedance effect of the interface between the lead and the neural tissue 
varies over time due to changes in the micro-environment, especially in 
the weeks and months following surgery as encapsulation occurs. 

The primary driver of hybridization in these cases was to provide 
rechargeability, but a preliminary financial review was undertaken. 
Hybridization of bilateral non-rechargeable Medtronic IPGs to a uni-
lateral Boston Scientific rechargeable IPG reduced implant expense by 
$30,000. This is compared to conversion of bilateral non-rechargeable 
Medtronic IPGs to bilateral Medtronic rechargeable IPGs. Hybridiza-
tion also allowed patients with more insurance carriers to be offered a 
rechargeable system. Further follow up will be necessary to determine 
the cost savings over time given the longer battery life in a rechargeable 
system. Several series revealed significant long term cost savings in 
patients who received rechargeable IPGs due to reduced battery 
replacement surgeries [11,23,24]. As for the safety of switching manu-
facturers, a previous study from 2019 investigates 10 patients who 
switched from Medtronic to Boston Scientific, and it reflects stable 
clinical outcomes with no post operative complications [22]. Informa-
tion on patient safety is limited at this time due to a small sample size, 
but there is also no data in current literature to suggest that DBS hy-
bridization puts its patients at risk. 

Longer term complications specific to rechargeable IPGs include 
failed recharges, occurring in 8.7 % of cases in one series, with 3.7 % 
experiencing unintended temporary interruption of therapy [8]. In rare 
cases, the failures of recharging can require reoperation for reposition-
ing of the IPG [25]. In prior DBS series, most patients have not found 
rechargeable IPGs difficult to recharge, but some clinicians have 
expressed concerns with elderly, cognitively impaired patients [1,8]. 
The frequency of recharging varies from daily to once weekly, based on 
the indication for DBS and the stimulation parameters [1,2,8,16,26]. 
Several DBS series show that patients also favored the rechargeable 
variants based on durability and cost, but few evaluate the role of the 
caregiver [2,11,24,26,27]. 

In this series, only one patient reported rare therapy interruptions 
due to forgetting to recharge his IPG. 

Another concern with the hybridization of DBS technology is the 
immediate loss of MRI conditionality. One study estimated that 56–57 % 
of DBS patients will need an MRI within 5 years, and 66–75 % would 
need an MRI within 10 years [28]. Several series show it appears 
generally safe to use MRI in these patients, but concern for MRI related 
injury, mostly due to potential for heating of electrode leads or inter-
ruption of IPG function, remains [5,29–36]. The major manufacturers 
maintain strict policies of MRI conditionality for their respective sys-
tems, with limitations on field strength and other parameters of scan-
ning [5,32,37,38]. Hybridization of neuromodulation technology like 
DBS abolishes MRI conditionality in most cases. However, Boston Sci-
entific has published approval of certain hybrid systems in certain select 
situations [38]. For example, if a patient is converted from a unilateral 
Medtronic Activa PC to a Vercise Genus, and if they are not implanted 
with both a Medtronic 95 mm extension and a 55 mm Vercise M8 
adaptor. Overall, it is unlikely that FDA approval would ever be war-
ranted for the majority of these patients [22]. In our series, three pa-
tients were recommended for MRI and were unable to undergo the study 
due to their IPG hybridization and loss of MRI conditionality. Two un-
derwent CT myelograms of the lumbar spine and another CT perfusion of 
the brain. Aside from the additional need for the intrathecal injection of 
contrast and ionizing radiation, no apparent harm has been caused by 
the lack of MRI conditionality in this series to date. Further follow up 
will be necessary to determine the potential risk of harm to these pa-
tients from loss of MRI conditionality. It is also important to discuss the 
loss of MRI conditionality with patients and the potential risks prior to 

Table 3 
Pre and Post Op Generator Settings.  

Patient Pre-op Settings Most Recent Follow Up Settings 

1 Left 5.8 V 70 pw 180 Hz 
Right 5.4 V 70 pw, 180 Hz 

Left 5.4 mA 70 pw 179 Hz 
Right 5.0 mA 70 pw 179 Hz 

2 Left 5.3 V 90 pw 180 Hz Left 8.4 mA 120 pw 180 Hz 
3 Left 5.0 V, 80 pw, 190 Hz 

Right 3.6 V, 60 pw, 180 Hz 
Left 6.2 mA, 70 pw, 143 Hz 
Right 3.2 mA, 60 pw, 179 Hz 

4 Left 4.4 V, 60 pw, 160 Hz 
Right 5.2 V, 160 pw, 145 Hz 

Left 5.0 mA, 60 pw, 132 Hz 
Right 4.8 mA, 60 pw, 132 Hz 

5 Left 3.6 V, 80 pw, 165 Hz, 
Right 4.1 V, 90 pw, 165 Hz 

Left 2.5 mA, 80 pw, 136 Hz 
Right 3.3 mA, 90 pw, 170 Hz 

6 Left 2.6 V, 60 pw, 160 Hz 
Right 5.1 V, 150 pw, 200 Hz 

Left 2.5 mA, 80 pw, 170 Hz 
Right 5.2 mA, 150 pw, 200 Hz 

7 Left 2.5 V, 60 pw, 160 Hz 
Right 4.4 V, 90 pw, 160 Hz 

Left 4.4 mA, 60 pw, 159 Hz, 
Right 4.7 mA, 70 pw, 159 Hz 

8 Left 4.3 V, 60 pw, 160 Hz 
Right 4.3 V, 60 pw, 160 Hz 

Left 4.2 mA, 60 pw, 159 Hz, 
Right 4.9 mA, 60 pw, 159 Hz 

9 Left 3.5 V, 80 pw, 130 Hz 
Right 4.8 V, 90 pw, 130 Hz 

Left 3.9 mA, 90 pw, 130 Hz 
Right 3.8 mA, 90 pw, 140 Hz 

10 Left 5.0 V, 60 pw, 170 Hz 
Right 4.6 V, 110 pw, 170 Hz 

Left 3.6 mA, 60 pw, 170 Hz 
Right 3.1 mA, 90 pw, 170 Hz 

11 Left 5.1 V, 60 pw, 145 Hz 
Right 5.0 V, 60pw, 145 Hz 

Left 4.2 mA, 50 pw, 170 Hz 
Right 5.8 mA, 80 pw, 170 Hz 

12 Left 4.6 V, 70 pw, 170 Hz 
Right 5.8 V, 90 pw, 170 Hz 

Left 4.2 mA, 50 pw, 170 Hz 
Right 5.8 mA, 80 pw, 170 Hz 

Abbreviations: V, volts; pw, pulse width; Hz, Hertz; mA, milliamps. Note: The 
Medtronic devices use voltage by convention because they are constant voltage, 
some with additional constant current settings. Boston Scientific programmers 
use milliamps by convention, all are constant current. 
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hybridization. 
This is a relatively new procedure with somewhat low numbers 

performed to date. The survey sample size in our survey is small, with 
only four caregiver surveys and eight patient surveys. It was hoped that 
it would be possible to interview both patient and caregiver for as many 
cases as possible, but it was found that when the patient was reached, 
they felt that they exclusively managed their own DBS routine. When a 
caregiver was reached, they reported that the patient had little 
involvement in their own IPG management due to overall health and 
functional status. Therefore, this study is limited in regards to assessing 
caregiver education about IPG usage, which is especially important to 
consider among patients with cognitive impairment. 

Another limitation in this study is the lack of pre and post hybridi-
zation standardized objective measures, like UDPRS scores on this pa-
tient cohort. The IPGs in this series are managed in more than one clinic, 
and thus in this series these measures are not always obtained or 
documented. Also, objective measures would be needed to determine if 
symptomatic improvement is due to patient novelty bias, placebo effect, 
or if there were objective improvements after conversion to constant 
current programming. 

5. Conclusion 

The primary objectives of IPG hybridization in our movement dis-
order patients were to achieve IPG longevity and reduced replacement 
burden. We did not suggest to patients a guaranteed improvement of 
symptomatic control. However, many reported subjective improvement 
after conversion to constant currant programming. In this series, 
reprogramming after hybridization was generally effective and was 
accomplished with minimal to no additional appointments. Both patient 
and caregiver satisfaction are high with the addition of rechargeability. 
We experienced no major, immediate post-operative complications and 
no unexpected morbidity or mortality. Overall, our hybridization 
strategy appears to be a safe and effective procedure for carefully 
selected and informed patients. Further follow up with more objective 
measures will be needed to determine if symptom control is improved 
after conversion to constant current programming. Careful patient se-
lection and discussions of risks and benefits remain key in patient safety 
and satisfaction. 
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