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Abstract Cellular networks are intrinsically subject to stochastic fluctuations, but analysis of the

resulting noise remained largely limited to gene expression. The pathway controlling chemotaxis of

Escherichia coli provides one example where posttranslational signaling noise has been deduced

from cellular behavior. This noise was proposed to result from stochasticity in chemoreceptor

methylation, and it is believed to enhance environment exploration by bacteria. Here we combined

single-cell FRET measurements with analysis based on the fluctuation-dissipation theorem (FDT) to

characterize origins of activity fluctuations within the chemotaxis pathway. We observed

surprisingly large methylation-independent thermal fluctuations of receptor activity, which

contribute to noise comparably to the energy-consuming methylation dynamics. Interactions

between clustered receptors involved in amplification of chemotactic signals are also necessary to

produce the observed large activity fluctuations. Our work thus shows that the high response

sensitivity of this cellular pathway also increases its susceptibility to noise, from thermal and out-of-

equilibrium processes.

DOI: https://doi.org/10.7554/eLife.26796.001

Introduction
It is well established that cellular processes are intrinsically stochastic and therefore prone to fluctua-

tions (ten Wolde et al., 2016; Rao et al., 2002; Tsimring, 2014). The best-characterized examples

of cellular noise relate to the variability in expression of genes or proteins, observed either across a

population of genetically identical cells or within one cell over time (Raj and van Oudenaarden,

2008; Elowitz et al., 2002). The molecular origins and physiological effects of such expression noise

are comparatively well understood (Rao et al., 2002; Tsimring, 2014; Raj and van Oudenaarden,

2008; Paulsson, 2004; Balázsi et al., 2011; Eldar and Elowitz, 2010). In contrast, noise that arises

in cellular networks at the posttranslational level remains much less characterized. Although such

noise is expected to be ubiquitous, for example, in signaling networks, it was mostly observed indi-

rectly through its effects on gene expression or cell behavior (ten Wolde et al., 2016;

Tsimring, 2014).

Chemotaxis of Escherichia coli, a bacterial model for signal transduction, previously provided one

example where signaling noise has been predicted based on analyses of cell motility and flagellar

rotation (Korobkova et al., 2004; Emonet and Cluzel, 2008; Berg and Brown, 1972;

Dufour et al., 2016; Spudich and Koshland, 1976; Park et al., 2010; He et al., 2016). E. coli swims

by a succession of straight runs during which the bacterium advances, that are interrupted by short

reorientations, or tumbles, which results in a random walk. In chemical gradients, this random walk

becomes biased by lengthening the runs towards more favorable conditions. The chemotaxis path-

way controlling this behavior is composed of two modules, one mediating signal transduction and
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another adaptation, that operate on different time scales (Parkinson et al., 2015; Colin and Sourjik,

2017; Shimizu et al., 2010) (Figure 1—figure supplement 1A). The signal transduction module

includes sensory complexes consisting of the dimers of transmembrane receptors, the kinase CheA

and the scaffold protein CheW. Signaling by these complexes can be understood in terms of a two-

state model: In the absence of stimulation, receptor dimers are at equilibrium between the active

(ON) and inactive (OFF) states, resulting in an intermediate level of autophosphorylation activity of

the receptor-associated CheA. Positive chemotactic stimuli (attractants) shift the equilibrium towards

the OFF state, thus inhibiting CheA, whereas repellent stimulation has the opposite effect. Down-

stream signal transduction occurs via phosphorylation of the response regulator CheY that can sub-

sequently bind to the flagellar motors to induce tumbles. CheY is dephosphorylated with the help of

the phosphatase CheZ. All reactions within the signal transduction module occur within a few hun-

dred milliseconds (Sourjik and Berg, 2002a), ensuring that swimming bacteria can faithfully monitor

their current local environment.

The adaptation module operates on a much longer time scale of seconds to minutes. It includes

two enzymes, the methyltransferase CheR and the methylesterase CheB, which add or remove

respectively methyl groups at four specific glutamyl residues of the chemoreceptors. Since receptor

methylation increases the activity of the chemosensory complexes, these changes gradually compen-

sate for the effects of both attractant and repellent stimulation via a negative feedback loop

(Barkai and Leibler, 1997; Hansen et al., 2008; Tu et al., 2008). This enables bacteria to robustly

maintain an intermediate steady-state activity of CheA, and thus the level of CheY phosphorylation

and frequency of cell tumbles, even in the presence of steady background stimulation. Notably, in

both major E. coli chemoreceptors Tar and Tsr, two of the four methylated residues are initially

encoded as glutamines, for example Tar is expressed as TarQEQE. Glutamines are functionally similar

to methylated glutamates (Dunten and Koshland, 1991; Sourjik and Berg, 2004; Li and Weis,

2000; Endres et al., 2008), and they are subsequently deamidated to glutamates by CheB

(Rice and Dahlquist, 1991; Kehry et al., 1983).

Despite this importance of the adaptation system for robust maintenance of the average signaling

output, it was suggested that the relatively small number of methylation enzymes (Li and Hazelba-

uer, 2004) and their slow exchange rates at their receptor substrates (Li and Hazelbauer, 2005;

Schulmeister et al., 2008) lead to fluctuations of the level of phosphorylated CheY

(Korobkova et al., 2004; Emonet and Cluzel, 2008; Dufour et al., 2016; Tu and Grinstein, 2005;

Pontius et al., 2013). Further amplified by the cooperative response of the flagellar motor (Tu and

Grinstein, 2005; Cluzel et al., 2000), these fluctuations were proposed to explain the observed

large variation in the motor rotation (Korobkova et al., 2004; Emonet and Cluzel, 2008; He et al.,

2016) and in the swimming behavior (Korobkova et al., 2004; Berg and Brown, 1972;

Spudich and Koshland, 1976; Taute et al., 2015) of individual cells over time. Subsequent theoreti-

cal analyses suggested that such behavioral fluctuations might provide physiological benefit, by

enhancing environmental exploration (Emonet and Cluzel, 2008; Viswanathan et al., 1999;

Matthäus et al., 2009; Bénichou et al., 2011; Matthäus et al., 2011; Flores et al., 2012).

Another distinctive feature of the bacterial chemotaxis pathway is the clustering of chemorecep-

tors in large signaling arrays, formed through a complex network of interactions between trimers of

receptor dimers, CheA and CheW (Parkinson et al., 2015). Although signaling arrays are stable on

the time scale of signal transduction (Schulmeister et al., 2008; Gegner et al., 1992), they appear

to locally reorganize within minutes (Frank and Vaknin, 2013). Within arrays, the activity states of

neighboring receptors are coupled, resulting in amplification and integration of chemotactic signals

(Sourjik and Berg, 2004; Li and Weis, 2000; Tu, 2013; Piñas et al., 2016; Duke and Bray, 1999;

Mello and Tu, 2003; Monod et al., 1965; Keymer et al., 2006). These allosteric receptor interac-

tions have been previously described using either the Monod-Wyman-Changeux (MWC) model

(Monod et al., 1965) which assumes that receptors operate in units (signaling teams) of 10–20

dimers where activities of individual receptors are tightly coupled (Sourjik and Berg, 2004;

Mello and Tu, 2003; Monod et al., 1965; Keymer et al., 2006; Mello and Tu, 2005) or using an

Ising model of a receptor lattice with intermediate coupling (Duke and Bray, 1999; Mello and Tu,

2003). In both models, the sensitivity of signaling arrays is highest at intermediate levels of receptor

activity where receptors can easily switch between ON and OFF states, with optimal intermediate

activity being maintained by the adaptation system (Tu, 2013; Piñas et al., 2016). Another connec-

tion between the adaptation system and receptor clustering is through adaptation assistance
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neighborhoods, where adaptation enzymes that are transiently tethered to one receptor molecule

can methylate (or demethylate) multiple neighboring receptors (Li and Hazelbauer, 2005).

In this work we directly quantify signaling noise in E. coli chemotaxis, using Förster (fluorescence)

resonance energy transfer (FRET) to monitor pathway activity in single cells and with high time reso-

lution. We show that the pathway activity fluctuations arise from interplay of multiple factors,

Figure 1. Fluctuations of the chemotaxis pathway activity in individual CheR+CheB+ cells. (A) Time course of the FRET measurements for the CheR+

CheB+ strain expressing the FRET pair CheY-YFP and CheZ-CFP and Tar as the sole receptor (see Materials and methods for details of expression), for

cell population (upper panel) and for representative single cells (lower panel). Cells immobilized in a flow chamber under steady flow (see Materials and

methods and Figure 1—figure supplement 1B) were initially adapted in buffer (red) and subsequently stimulated by addition and subsequent removal

of indicated concentrations of a non-metabolizable chemoattractant MeAsp (blue and green). The measurement traces for single cells have been

shifted along the y-axis to facilitate visualization. (B) Power spectral density (PSD) of the FRET ratio for single cells adapted in buffer (red curve) or in 10

mM MeAsp (blue curve), as well as for the control receptorless strain in buffer (black curve). (C) The corresponding time autocorrelation functions of the

single-cell FRET ratio. Dashed lines show fits by exponential decay (see Materials and methods). The error bars represent standard errors of the mean

(SEM), and the sample sizes are 265 (buffer), 69 (10 mM) and 103 (receptorless control) single cells coming from at least three independent experiments

in each case.

DOI: https://doi.org/10.7554/eLife.26796.002

The following figure supplements are available for figure 1:

Figure supplement 1. Schematic representation of the FRET experiment.

DOI: https://doi.org/10.7554/eLife.26796.003

Figure supplement 2. Additional FRET measurement for CheR+CheB+ cells.

DOI: https://doi.org/10.7554/eLife.26796.004

Figure supplement 3. Negative controls.

DOI: https://doi.org/10.7554/eLife.26796.005

Figure supplement 4. Additional analyses for CheR+CheB+ cells.

DOI: https://doi.org/10.7554/eLife.26796.006

Figure supplement 5. Correction of the PSDs for CheR+CheB+ cells for measurement noise.

DOI: https://doi.org/10.7554/eLife.26796.007
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Figure 2. Pathway activity fluctuations in DcheRDcheB cells. (A) Time course of population-averaged (black; upper panel) and typical single-cell (colors;

lower panel) measurements of the FRET ratio for DcheRDcheB strain expressing TarQEEE as the sole receptor. Measurements were performed as in

Figure 1. Cells were first equilibrated in buffer (red) and subsequently stimulated by addition (blue) and subsequent removal of 30 mM MeAsp,

saturating stimulus for this receptor. (B) Same as (A) but for DcheRDcheB strain expressing TarQEQE as the sole receptor and upon stimulation with 30

mM (blue) and then 100 mM (green) MeAsp. Note that for this receptor, 30 mM MeAsp is the sub-saturating stimulus whereas 100 mM MeAsp is the

saturating stimulus. The measurement traces for single cells in (A) and (B) have been shifted along the y-axis to facilitate visualization. (C) PSD of the

single-cell FRET ratio for TarQEEE in buffer (blue) or in 30 mM MeAsp (cyan), TarQEQE in buffer (orange), in 30 mM MeAsp (red) or in 100 mM MeAsp

(green). (D) Corresponding time autocorrelation functions of the single-cell FRET ratio for indicated strains/conditions. Dashed lines show fits by single

exponential decay. Error bars represent standard errors of the mean (SEM), and the sample sizes are 153 (TarQEEE, buffer), 65 (TarQEEE, 30 mM), 471

(TarQEQE, buffer), 404 (TarQEQE, 30 mM) and 136 (TarQEQE, 100 mM) single cells coming from at least three independent experiments in each case.

DOI: https://doi.org/10.7554/eLife.26796.008

The following figure supplements are available for figure 2:

Figure supplement 1. Correction of the PSDs for DcheRDcheB cells for measurement noise.

Figure 2 continued on next page

Colin et al. eLife 2017;6:e26796. DOI: https://doi.org/10.7554/eLife.26796 4 of 32

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.26796.008
https://doi.org/10.7554/eLife.26796


including not only the stochasticity of the methylation system but also cooperative interactions and

slow rearrangements of receptors within clusters. Finally, using analysis based on the fluctuation-dis-

sipation theorem (FDT) we could distinguish between equilibrium and out-of-equilibrium fluctuations

within the chemotaxis network and elucidate respective contributions of receptor clusters and meth-

ylation to the overall noise.

Results

Fluctuations of chemotaxis pathway activity in single cells
To perform time-resolved measurements of the chemotaxis pathway activity in individual E. coli cells,

we adapted the microscopy-based ratiometric FRET assay (Sourjik et al., 2007) that relies on the

phosphorylation-dependent interaction between CheY, fused to yellow fluorescent protein (CheY-

YFP), and its phosphatase CheZ, fused to cyan fluorescent protein (CheZ-CFP) (Figure 1—figure

supplement 1A). The amount of this complex, and thus the level of FRET, provides a direct intracel-

lular readout of CheA activity (Endres et al., 2008; Sourjik et al., 2007; Sourjik and Berg, 2002b;

Oleksiuk et al., 2011). In previous studies where this assay was applied to investigate chemotactic

signaling in E. coli populations (Shimizu et al., 2010; Sourjik and Berg, 2004; Endres et al., 2008;

Frank and Vaknin, 2013; Piñas et al., 2016; Sourjik et al., 2007; Sourjik and Berg, 2002b;

Oleksiuk et al., 2011; Neumann et al., 2014a; Krembel et al., 2015a; Meir et al., 2010;

Frank et al., 2016; Krembel et al., 2015b; Neumann et al., 2014b; Neumann et al., 2012;

Clausznitzer et al., 2010), bacteria expressing the FRET pair were immobilized in a flow chamber

and fluorescent signals were collected using photon counters from an area containing several hun-

dred cells (Sourjik et al., 2007). Here, we used a similar setup but instead imaged fluorescence of

the FRET pair with an electron multiplication charge-coupled device (EM-CCD) camera (see Materials

and methods and Figure 1—figure supplement 1B,C).

As done previously (Sourjik and Berg, 2004; Endres et al., 2008; Oleksiuk et al., 2011;

Meir et al., 2010), we analyzed E. coli cells that express the CheY-YFP/CheZ-CFP FRET pair instead

of the native CheY and CheZ and have Tar as the only chemoreceptor (see Materials and methods).

The level of Tar expression in these cells and under our conditions is ~104 dimers per cell

(Sourjik and Berg, 2004; Endres et al., 2008), comparable to the total level of endogenous chemo-

receptors (Li and Hazelbauer, 2004). When integrated over the population, the chemotactic

response of these cells measured using EM-CCD (Figure 1A and Figure 1—figure supplement 2,

upper panel) was very similar to the one observed previously using area detectors (Sourjik and

Berg, 2002b; Meir et al., 2010). When bacteria in the flow chamber were stimulated with the Tar-

specific chemoattractant a-methyl-DL-aspartate (MeAsp), the ratio of the YFP to CFP fluorescence

(FRET ratio, R tð Þ ¼ YFP tð Þ=CFP tð Þ) first rapidly decreased. This is consistent with the fast attractant-

mediated inhibition of the kinase activity, which results in decreased formation of the FRET complex,

and therefore reduced energy transfer from the donor (CFP) to the acceptor (YFP) fluorophore. As

10 mM MeAsp is known to fully inhibit the kinase activity in this strain (Sourjik and Berg, 2004;

Endres et al., 2008), the value of the FRET ratio immediately after stimulation reflects the zero activ-

ity baseline. Subsequently, the pathway adapted to the new background level of attractant via the

CheR-dependent increase in receptor methylation. But as previously reported adaptation of Tar-only

cells to high levels of MeAsp was only partial (Neumann et al., 2014a; Krembel et al., 2015a;

Meir et al., 2010), meaning that the adapted pathway activity remained lower than in buffer. Subse-

quent removal of attractant resulted in a transient increase in kinase activity, followed by the CheB-

mediated adaptation through the demethylation of receptors.

Although the FRET ratio measured for individual cells during the same experiment was expect-

edly noisier than the population-averaged data, both the initial response and subsequent adaptation

were clearly distinguishable (Figure 1A and Figure 1—figure supplement 2, lower panel). In

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.26796.009

Figure supplement 2. Comparison of DcheRDcheB and CheR+CheB+ power spectra.

DOI: https://doi.org/10.7554/eLife.26796.010
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Figure 3. Fluctuation analysis in CheW-X2 cells. (A) Population-averaged (upper panel) and typical single-cell (lower panel) measurements of the FRET

ratio for DcheRDcheB strain carrying CheW-X2 and TarQEQE as the sole receptor. Cells, which have a high activity in buffer, were first exposed to 100 mM

MeAsp (saturating stimulus), and then to 10 mM MeAsp (sub-saturating stimulus), as indicated. The single-cell measurement traces have been shifted

along the y-axis to facilitate visualization. (B) Power spectral density of the FRET ratio fluctuations in CheW-X2 DcheRDcheB TarQEQE cells at

intermediate activity (i.e., with 10 mM MeAsp) (red) compared to the equivalent strain carrying native (wild-type; WT) CheW and at 30 mM MeAsp (black

– same data as Figure 2C). Error bars represent SEM, with sample sizes 404 (WT CheW; black) and 208 (CheW-X2; red) cells. (C) Same as (A) but for

CheR+ CheB+ strain. The activity in buffer is at intermediate level (Figure 3—figure supplement 2), with 300 mM MeAsp completely inhibiting the

kinase activity. (D) Power spectral density of the FRET ratio fluctuations in CheR+ CheB+ CheW-X2 strain in buffer (red) compared to the native WT

CheW (black – same data as Figure 1C). Error bars represent SEM, with sample sizes 265 (WT CheW; black) and 191 (CheW-X2; red) cells.

DOI: https://doi.org/10.7554/eLife.26796.011

The following figure supplements are available for figure 3:

Figure supplement 1. Dose response to MeAsp of DcheRDcheB CheW-X2 cells expressing TarQEQE.

DOI: https://doi.org/10.7554/eLife.26796.012

Figure supplement 2. Response of CheR+CheB+ strain expressing CheW-X2 and TarQEQE to attractant MeAsp and repellent Ni2+.

Figure 3 continued on next page
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contrast to the population measurement, however, a majority of individual cells also exhibited large

fluctuations in the FRET ratio on the time scale of 10–100 s. For cells adapted in buffer, the ampli-

tude of these fluctuations could be as large as the response to strong attractant stimulus. Confirming

that this low-frequency noise reflects fluctuations of the pathway activity, it was not observed when

imaging either fluorescent beads or the same FRET pair in receptorless cells that do not activate

CheA (Figure 1—figure supplement 3A,B). Furthermore, inhibition of the pathway activity by satu-

rating stimulation with 10 mM or 25 mM MeAsp also transiently suppressed long-term fluctuations,

which subsequently (partly) reappeared upon (partial) recovery of the pathway activity due to adap-

tation (Figure 1A and Figure 1—figure supplement 2). In contrast, the higher-frequency noise in

the FRET ratio could be observed in all strains and conditions, including receptorless cells, indicating

that it represents the noise of the measurement. High-frequency noise was also observed in the con-

trol measurements using fluorescent beads, although its magnitude was lower, consistent with

higher brightness of beads compared to the YFP/CFP expressing cells.

To analyze these activity fluctuations in greater detail, we computed the power spectral density

(PSD) of the single-cell FRET ratio, sR !ð Þ (see Materials and methods). The PSD extracts the average

spectral content of the temporal variations of the single-cell FRET ratio, that is determines the fre-

quencies at which this ratio fluctuates, with sR !ð Þ representing the magnitude of fluctuations at a

given frequency !. We observed that at high frequency (! > 0.1 Hz) the PSD kept a constant fre-

quency-independent low value that was similar in all strains (Figure 1B). We thus conclude that the

noise in the FRET ratio in this frequency range is dominated by the shot noise of the measurement.

At lower frequency, however, the PSD measured for the Tar-expressing cells adapted in buffer

increased dramatically (roughly as 1=!), reaching a low frequency plateau at !=2p ’ 0:015 Hz. A simi-

lar result was obtained for cells expressing Tar in the unmodified (TarEEEE) state, where all gluta-

mates are directly available for methylation by CheR (Figure 1—figure supplement 4A). The

increase of the PSD at low frequency was also observed for cells adapted to either 10 or 25 mM

MeAsp (Figure 1B and Figure 1—figure supplement 4A), although the amplitude of this increase

was smaller than for the buffer-adapted cells, apparently consistent with their lower pathway activity

(Figure 1A and Figure 1—figure supplement 2). The receptorless strain showed nearly constant

noise level over the entire frequency range, as expected for white shot noise, although the PSD

increased weakly at the lowest frequency. As such increase was not observed for the control using

fluorescent beads (Figure 1—figure supplement 3A), it might be due to the slow drift of the FRET

ratio arising as a consequence of the slightly different bleaching rates of CFP and YFP, but possibly

also to slow changes in cell physiology. In any case, the contribution of this low-frequency compo-

nent to the overall PSD of the Tar-expressing cells is only marginal (note the log scale in Figure 1B),

and subtracting it did not markedly change our results (Figure 1—figure supplement 5).

The PSD was further used to calculate the average time autocorrelation function of the single-cell

FRET ratio, which reflects the characteristic time scale of activity fluctuations (see Materials and

methods). For cells adapted in buffer, the autocorrelation time constant was 9.5 ± 0.5 s, as deter-

mined by an exponential fit to the autocorrelation function (Figure 1D). This value is similar to the

characteristic time of the pathway activity fluctuation previously deduced from behavioral studies

(Korobkova et al., 2004; Park et al., 2010). The same characteristic time was observed in MeAsp-

adapted cells, although the amplitude of the correlation was considerably smaller in this case

(Figure 1D and Figure 1—figure supplement 4B). Interestingly, at longer times the autocorrelation

function becomes weakly negative, indicating an overshoot that is likely caused by the negative

feedback in the adaptation system (Berg and Tedesco, 1975). As expected, no autocorrelation was

observed for the receptorless cells.

Finally, the variance of activity was evaluated from the PSD using Parseval’s formula

(Gasquet and Witomski, 1999). After subtracting the variance measured for the receptorless strain,

which reflects the contribution of the shot noise, the specific variance of the FRET ratio for cells

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.26796.013

Figure supplement 3. Response function for DcheRDcheB CheW-X2 cells expressing TarQEQE as sole receptor.

DOI: https://doi.org/10.7554/eLife.26796.014
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Figure 4. Fluctuation-dissipation analysis of the pathway activity. (A) Step response function g tð Þ both in presence (red) and in absence (blue) of the

adaptation enzymes, evaluated in cells expressing TarQEQE that respond to a step change from buffer to 0.3 mM MeAsp (CheR+ CheB+) or 30 mM

MeAsp (DcheRDcheB). The step response function was calculated from the measurements shown in Figure 4—figure supplement 5 and in Figure 2B

as described in text and in Appendix 1, ’Phenomenological step response function’. (B,C) The PSD of the FRET ratio fluctuations sR !ð Þ at Ah i ¼ 0:5

(blue in B and red in C), and the corresponding dissipation GR !ð Þ (black) calculated using Equation (2), for DcheRDcheB (B) and CheR+CheB+ (C) cells.

The measurement shot noise �2n, determined as the PSD of the receptorless cells (Figure 1B), was subtracted from sR !ð Þ. Insets show the ratio between

the physical and effective temperatures, calculated using Equation (1). Dashed and dotted lines in B and C indicate T=Teff !ð Þ ¼ 1 and T=Teff !ð Þ ¼ 0,

respectively. (D) Contribution of thermal noise (blue) and the adaptation enzyme dynamics (red) to the PSD in CheR+ CheB+ cells, calculated from

Equation (3) as explained in Appendix 1, ’Separating the contribution of methylation enzymes dynamics to the PSD in CheR+ CheB+ cells’. In all

panels, error bars represent SEM, with sample sizes for the power spectra calculations being 540 (DcheRDcheB) and 468 (CheR+ CheB+; aggregating

data from cells expressing TarQEQE and TarEEEE as sole receptor) single cells from at least five biological replicates.

DOI: https://doi.org/10.7554/eLife.26796.015

The following figure supplements are available for figure 4:

Figure supplement 1. Validation of the linear response regime in DcheRDcheB cells.

DOI: https://doi.org/10.7554/eLife.26796.016

Figure supplement 2. Power spectral density computed on subsets of the cell populations sorted according to their activity.

DOI: https://doi.org/10.7554/eLife.26796.017

Figure supplement 3. Effect of the receptor expression level on the noise in DcheRDcheB cells.

DOI: https://doi.org/10.7554/eLife.26796.018

Figure supplement 4. Power spectra of thermal fluctuations in a simulated model of the sensory cluster.

DOI: https://doi.org/10.7554/eLife.26796.019

Figure supplement 5. Example of FRET measurement used for the evaluation of gþ tð Þ.

DOI: https://doi.org/10.7554/eLife.26796.020

Figure supplement 6. Evaluation of the adaptation time.

DOI: https://doi.org/10.7554/eLife.26796.021

Figure supplement 7. Calculated effective temperatures.

Figure 4 continued on next page
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adapted in buffer was DR2

 �þ

¼ 0:0046� 0:0002 (where ‘+’ refers to the presence of adaptation

enzymes, CheR+ CheB+). As shown previously (Sourjik et al., 2007), the FRET ratio R is related to

the relative pathway activity Ah i as R ¼ l Ah i þ �, where l is the conversion factor and m is a con-

stant corresponding to the baseline FRET ratio at zero pathway activity (i.e., upon stimulation with

saturating attractant concentration; Figure 1A). The value l ¼ 0:10� 0:01 could be estimated as the

mean difference between the measured FRET ratio values corresponding to the fully active (i.e.,

Ah i ¼ 1) and fully inactive (i.e., Ah i ¼ 0) pathway (see Materials and methods). The calculated vari-

ance of the pathway activity was thus DA2

 �þ

¼ 0:46� 0:04, indicating concerted activity fluctua-

tions across much of the signaling array.

Activity fluctuations in absence of adaptation system
We next monitored the single-cell pathway activity in a strain lacking CheR and CheB, to test

whether the observed fluctuations could be solely explained by the action of the adaptation system.

Given the observed dependence of the fluctuations on the level of pathway activity, we first analyzed

a DcheRDcheB strain that was engineered to express Tar receptor in one-modified state (TarQEEE).

This closely mimics the average modification state and intermediate activity of Tar in CheR+ CheB+

cells adapted in buffer (Endres et al., 2008; Sourjik and Berg, 2002b). Expectedly, DcheRDcheB

TarQEEE cells responded to MeAsp but showed no adaptation comparable to CheR+ CheB+ cells

(Figure 2A). But despite the lack of the adaptation system, pathway activity in individual

DcheRDcheB TarQEEE cells showed pronounced long-term fluctuations when cells were equilibrated

in buffer (Figure 2A, lower panel). These methylation-independent long-term fluctuations were sup-

pressed upon saturating pathway inhibition with 30 mM MeAsp, leaving only the shot noise of the

measurement.

In contrast to TarQEEE, DcheRDcheB cells expressing the half-modified TarQEQE as the sole recep-

tor showed no long-term activity fluctuations in buffer (Figure 2B). Because TarQEQE is known to be

highly active (i.e., strongly biased towards the ON state) in absence of attractants (Endres et al.,

2008; Oleksiuk et al., 2011) and therefore insensitive to stimulation, we lowered its activity to an

intermediate value by stimulating cells with 30 mM MeAsp (Figure 2B, upper panel). This partial

stimulation indeed restored low-frequency fluctuations in DcheRDcheB TarQEQE cells (Figure 2B,

lower panel). Again, these activity fluctuations were completely abolished upon saturating attractant

stimulation. Cumulatively, these results clearly demonstrate that, at intermediate level of activity

where the receptors are highly sensitive, pathway output fluctuates even in the absence of the meth-

ylation system. These fluctuations were clearly identifiable above shot noise in the PSD of the FRET

ratio (Figure 2C), and they were absent under conditions of very low or very high activity. Notably,

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.26796.022

Figure supplement 8. Inferred spectrum of the binding dynamics of CheR and CheB.

DOI: https://doi.org/10.7554/eLife.26796.023

Figure supplement 9. Simulation of the pathway activity fluctuations in adapting cells.

DOI: https://doi.org/10.7554/eLife.26796.024

Table 1. Parameters of the FDT analysis

Parameter Value

l 0:10� 0:01

N 14

Ah i 0:5

XA¥ N Ah ið1� Ah iÞ

NT 10
4

�2n 0:9 10
�3

DOI: https://doi.org/10.7554/eLife.26796.025
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these methylation-independent fluctuations were slower than those observed in CheR+ CheB+ cells

(Figure 2—figure supplement 2), with a typical time scale of 34 ± 4 s, as determined by fitting the

time autocorrelation functions with an exponential decay (Figure 2D), although this time might be

slightly under-evaluated since it is already comparable to the total duration of acquisition (400 s).

Their amplitude, evaluated again using Parseval’s formula, was DR2

 ��

¼ 0:0025� 0:0001, corre-

sponding to DA2

 ��

¼ 0:25� 0:01, and thus roughly half of the amplitude of fluctuations observed

in CheR+ CheB+ cells.

Role of receptor clustering in signaling noise
To investigate whether the observed fluctuations depend on clustering of chemotaxis receptors, we

utilized a recently described CheW-X2 version of the adaptor protein CheW that disrupts formation

of the receptor arrays without abolishing signaling (Frank et al., 2016). This CheW mutant carries

two amino acid replacements, R117D and F122S, which are believed to break the receptor arrays

into smaller complexes consisting of two trimers of receptor dimers coupled to one CheA

(Piñas et al., 2016; Frank et al., 2016). The CheW-X2 is expressed at a level similar to the native

CheW (Piñas et al., 2016). Consistent with reported functionality of such complexes (Piñas et al.,

2016; Frank et al., 2016; Li and Hazelbauer, 2014), a DcheRDcheB strain expressing CheW-X2 and

TarQEQE showed basal activity and response to MeAsp which were similar to the respective strain

expressing the native CheW (Figure 3A and Figure 3—figure supplement 1). Nevertheless, this

strain showed no apparent long-term fluctuations in the pathway activity above the shot noise, even

when its activity was tuned to an intermediate level by addition of 10 mM MeAsp (Figure 3A,B). Sim-

ilarly, the array disruption allowed signaling but abolished the long-term activity fluctuations in

CheR+ CheB+ cells equilibrated in buffer (Figure 3C,D). Importantly, buffer-adapted CheR+ CheB+

CheW-X2 cells had intermediate receptor activity and could respond to both attractant (MeAsp) and

repellent (Ni2+) stimuli, that is, both down- and upregulation of the pathway activity (Figure 3—fig-

ure supplement 2). This confirms that the observed loss of fluctuations was not caused by locking

the receptor in the extreme activity state. In summary, these results demonstrate that the observed

long-term fluctuations in activity, seen both with and without the receptor methylation system,

require receptor clustering.

Fluctuation-dissipation relation for receptor clusters
We next used mathematical analysis to better understand the respective contributions of receptor

clustering and the methylation enzymes to the observed fluctuations and to determine whether

methylation-independent fluctuations are generated by some out-of-equilibrium random process.

We considered the fluctuation-dissipation theorem (FDT), which postulates – for systems at equilib-

rium – that thermal fluctuations of a quantity are related, via the temperature, to the response of

this quantity to a small externally applied perturbation (Kubo, 1966). The FDT framework can be

used to determine whether a system is at equilibrium, by comparing fluctuations and responses to

small perturbations via their ratio, the so-called effective temperature Teff !ð Þ (Robert et al., 2010;

Martin et al., 2001; Mizuno et al., 2007; Cugliandolo, 2011). In equilibrium systems the FDT is sat-

isfied and Teff !ð Þ equals the physical temperature T. In out-of-equilibrium (biological) systems, the

deviation of Teff !ð Þ from T provides a first characterization of the underlying out-of-equilibrium noisy

process generating the fluctuations, since Teff !ð Þ is linked to the energy scale and frequency content

of such process (Robert et al., 2010; Martin et al., 2001; Mizuno et al., 2007; Cugliandolo, 2011).

In our case, the magnitude of activity fluctuations could be expressed as the PSD corrected for

the measurement shot noise, sR !ð Þ � �2n, where �2n was experimentally determined as the PSD of the

receptorless cells. We therefore define the effective temperature as:

T

Teff !ð Þ
¼

GR !ð Þ

sR !ð Þ� �2n
: (1)

The dissipation GR !ð Þ could be determined by formulating the fluctuation dissipation relation for

the activity of individual receptors within the signaling array, using the Ising-like model (Duke and

Bray, 1999; Hansen et al., 2010; Shimizu et al., 2003) to describe cooperative receptor interac-

tions as (see Appendix 1, ’Modeling activity fluctuations in the framework of fluctuation-dissipation

relation’):
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GR !ð Þ ¼�2 l2
3N2 Ah i 1� Ah ið Þ

NT
Re ĝ !ð Þð Þ: (2)

Here Ah i is the average activity around which fluctuations occur, estimated from experimental

data as described above, NT is the total number of Tar dimers per cell, N is the average number of

effectively coupled allosteric signaling units in the cluster, and l is defined as before. Consistent

with several recent reports (Piñas et al., 2016; Frank et al., 2016; Li and Hazelbauer, 2014) and

with our analysis of the apparent response cooperativity in the CheW-X2 strain (Figure 3—figure

supplement 1 and Appendix 1, ’Definition of the effective temperature’), we assumed that signaling

units within the cluster correspond to trimers of receptor dimers. Finally, Re ĝ !ð Þð Þ is the real part of

the Fourier transform of the normalized step response function g tð Þ, which could be experimentally

determined by measuring the FRET response to sufficiently small (subsaturating) stepwise attractant

stimulation as g tð Þ ¼ DR tð Þ= �lX¥

A �0
� �

, where �lX¥

A �0
� �

is the normalized stimulation strength (see

Appendix 1, ’Phenomenological step response function’).

For subsaturating stimulation of the non-adapting DcheRDcheB cells (Figure 2B), the normalized

step response function g� tð Þ exhibited a relatively rapid initial increase and then slowly approached

its final value, possibly with a slight transient overshoot (Figure 4A). Nearly identical response

dynamics was observed for weaker stimulations (Figure 4—figure supplement 1), validating the

small perturbation assumption of the FDT for this response function measurement. This slow

response dynamics is consistent with a previous report that attributed it to gradual stimulation-

dependent changes in packing of receptors within clusters (Frank and Vaknin, 2013). Consistent

with this interpretation, the CheW-X2 DcheRDcheB strain with disrupted receptor clustering showed

neither comparable latency nor overshoot in its response (Figure 3—figure supplement 3).

As the pathway activity in the CheW-X2 DcheRDcheB strain also showed no long-term fluctuations

(Figure 3B,C), we hypothesized that these fluctuations might be indeed caused by the slow

response dynamics stimulated by some random process. We thus calculated the corresponding dissi-

pation using Equation (2), considering that under our conditions NT ~ 10
4 (Endres et al., 2008)

and N ~ 14 (Endres et al., 2008; Neumann et al., 2014a; Neumann et al., 2014b;

Clausznitzer et al., 2010) (see Table 1 for all parameter values). At low frequencies, the dissipation

GR !ð Þ was approximately equal to the shot-noise corrected sR !ð Þ at Ah i ’0.5 (Figure 4B), as pre-

dicted by Equation (1) for equilibrium systems where Teff !ð Þ equals T. Consistently, the correspond-

ing ratio T=Teff !ð Þ was nearly independent of ! and close to unity in the range of frequencies for

which sR !ð Þ is above the measurement noise (Figure 4B Inset). This suggested that in absence of

adaptation enzymes the system is close to equilibrium and thermal fluctuations are the major source

of noise. Although the deviation of T=Teff !ð Þ from unity might indicate second-order contributions of

out-of-equilibrium processes, it is comparable to what was observed for other equilibrium systems

with measurement methods of similar precision (Martin et al., 2001; Wang et al., 2006; Abou and

Gallet, 2004). Thus, an equilibrium model can fairly accurately describe the details of observed

long-time activity fluctuations in DcheRDcheB cells. This agreement suggests that the receptor clus-

ter in these cells largely acts as a passive system, where thermal fluctuations stimulate the long-term

response dynamics, possibly due to slow changes in receptor packing within clusters, to generate

activity fluctuations.

Furthermore, the PSD of DcheRDcheB cells followed the scaling Ah i 1� Ah ið Þ, which is expected

from the underlying receptor activity being a two-state variable, as evident for subpopulations of

cells sorted according to their activity (Figure 4—figure supplement 2), with which our FDT analysis

is consistent (Equation 2). Fluctuations were apparently unaffected by the expression level of Tar, in

the tested range of induction (Figure 4—figure supplement 3). In the FDT framework, this implies

that N2=NT must be constant for varying receptor expression, and previous measurements indeed

suggest that the cooperativity rises with the expression level of TarQEQE in a way that N2=NT remains

unchanged (Endres et al., 2008).

To evaluate the respective effects of signal amplification and the slow dynamics of the cluster

activity response, we performed stochastic simulations of a simple model of sensory complexes with-

out adaptation and under thermal noise (see Appendix 1, ’Simulation of a simplified model for the

array of receptors’). In this model, receptors are clustered in signaling teams that respond to alloste-

rically amplified free energy changes on an effective time scale averaging the fast switching dynam-

ics and the slow dynamics of the receptor cluster, which accounts qualitatively for the pathway
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behavior. Expectedly, larger amplification led to larger fluctuations, and the time scale of the fluctua-

tions followed the imposed response time scale of the cluster. Less trivially, slower response also led

to higher maximal amplitude of the fluctuations (Figure 4—figure supplement 4).

Out-of-equilibrium dynamics in presence of adaptation system
The normalized step response function of CheR+ CheB+ cells, gþ tð Þ (Figure 4A), was determined

using weak stimulation by 0.3 mM MeAsp, with the activity change DA= Ah i ¼ 0:25 (Figure 4—figure

supplement 5 and Appendix 1, ’Phenomenological step response function’). Describing adaptation

according to the classical two-state models of receptors (Barkai and Leibler, 1997;

Clausznitzer et al., 2010; Mello and Tu, 2007), the responses of DcheRDcheB and CheR+ CheB+

cells could be linked via the rate of adaptation !RB, which yielded !RB ¼ 0:06� 0:01 Hz (Appendix 1,

’Link between the response functions in DcheRDcheB and CheR+ CheB+ cases’ and Figure 4—figure

supplement 6), consistent with previous estimates (Park et al., 2010).

The corresponding dissipation Gþ
R !ð Þ, calculated as above according to Equation (2), differed

strongly from the PSD of the activity fluctuations (Figure 4C), confirming that the system operates

out of equilibrium. The corresponding T=Teff !ð Þ << 1 (Figure 4D Inset) is consistent with strong out-

of-equilibrium drive. It decreased at low frequencies, crossing zero at !=2p ’ 0:015 Hz where Teff !ð Þ

diverges (Figure 4—figure supplement 7) and dissipation becomes negative. Such crossing indi-

cates a transition to the range of frequencies where the active process dominates (Martin et al.,

2001; Sartori and Tu, 2015), with the frequency of divergence of Teff !ð Þ representing interplay

between the time scales of the passive receptor response and adaptation (Appendix 1, ’Frequency

of effective temperature divergence’).

To further separate specific contributions of the methylation system and thermally activated

receptor cluster rearrangements to the power spectrum of activity fluctuations in CheR+ CheB+ cells,

we followed previous modeling approaches (Clausznitzer and Endres, 2011; Sartori and Tu, 2011;

Aquino et al., 2011) (Appendix 1, ’Separating the contribution of methylation enzymes dynamics to

the PSD in CheR+ CheB+ cells’). Assuming that thermal noise behaves the same in presence and in

absence of the methylation system, sþR !ð Þ can be decomposed into a ‘’thermal’’ contribution sTR !ð Þ

and a contribution of the methylation noise smR !ð Þ:

sþR !ð Þ ¼ smR !ð Þþ sTR !ð Þ ¼ smR !ð Þþ
gþ !ð Þ

g� !ð Þ

�

�

�

�

�

�

�

�

2

s�R !ð Þ: (3)

Although relatively noisy, particularly at low frequencies, smR !ð Þ inferred from equation (3) peaked

around !peak=2p ¼ 0:01 Hz (Figure 4D), which equals the independently determined adaptation rate

(see above), !peak ’ !RB ¼ 0:06 Hz. The contribution of the thermal noise sTR !ð Þ had a similar magni-

tude but dominated at lower frequencies. The power spectrum of the CheR and CheB binding

events was inferred from smR !ð Þ using the previous model and previous conclusion that the methyla-

tion-dependent activity fluctuations mainly arise from the intermittent binding of the small number

of CheR and CheB molecules to the receptors (Pontius et al., 2013). This spectrum was consistent

with the common assumption that CheR (CheB) loads and acts only on the inactive (active) receptor

(Appendix 1, ’Separating the contribution of methylation enzymes dynamics to the PSD in CheR+

CheB+ cells’ and Figure 4—figure supplement 8).

We further extended our simulation model of the receptor array composed of independent sig-

naling teams, to test whether we can reproduce the observed power spectrum in presence of adap-

tation enzymes. Consistent with the large excess of receptors compared to the methylation enzymes

(Li and Hazelbauer, 2004), in these simulations only one CheR (or CheB) molecule can bind to the

inactive (respectively active) receptor team, methylate (respectively demethylate) the receptors, and

unbind once the team has turned active (respectively inactive) (Appendix 1, ’Simulation of a simpli-

fied model for the array of receptors’). The simulations agreed qualitatively well with the experi-

ments, including the power spectra of CheR/CheB binding and effective temperature (Figure 4—

figure supplement 9), although absolute amplitudes of the fluctuations were clearly underestimated

by the model, as already observed in a previous theoretical work (Sartori and Tu, 2015). The simula-

tion also reproduced the loss of slow fluctuations upon disruption of clusters in CheR+ CheB+ cells,

which arises from the dependence of sR !ð Þ on the size N of signaling teams. In contrast, simulating
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less efficient neighborhood assistance by reducing the (de)methylation rate of the bound enzymes

had only modest effects (Figure 4—figure supplement 9C).

Discussion
Stochastic activity fluctuations are likely to have major impact on signal processing within cellular

networks (ten Wolde et al., 2016; Tsimring, 2014). Nevertheless, direct visualization and characteri-

zation of such fluctuations at the posttranslational level remain limited to a small number of cases

(Conlon et al., 2016; Aoki et al., 2013) primarily due to high requirements for the sensitivity and

time resolution of the necessary single-cell measurements. Although fluctuations of the signaling

activity can in some cases be deduced from the downstream output of the network, either gene

expression (Paliwal et al., 2007; Bowsher and Swain, 2012) or behavior (Korobkova et al., 2004;

Emonet and Cluzel, 2008; Park et al., 2010; Pontius et al., 2013), this output may strongly filter

and reshape fluctuations. Consequently, the theoretical framework for the analysis of noise at the

posttranslational level remains less developed than for variations in gene expression (Raj and van

Oudenaarden, 2008; Paulsson, 2004).

Here we directly monitored activity fluctuations in the chemotaxis pathway of E. coli, a common

model for quantitative analysis of signal transduction (Tu, 2013; Sourjik and Wingreen, 2012;

Micali and Endres, 2016). One fascinating feature of the chemotaxis pathway is the amplification of

Figure 5. Multiple sources of signaling fluctuation in the chemotaxis pathway. (A) In the absence of adaptation enzymes, thermal fluctuations

stimulating – and amplified by – the dynamic receptor cluster lead to low frequency fluctuations (<0.01 Hz) around intermediate cluster activity. The

blue springs symbolize the plasticity of the receptor array, the green
L

its cooperativity. (B) In adapted wild-type cells, thermal fluctuations and

fluctuations in the dynamics of CheR and CheB are amplified by the dynamic chemoreceptor cluster, which leads to fluctuations of the activity at

frequencies around 0.03 Hz. (C) In the absence of clustering, responsive but non-amplifying receptor complexes do not produce observable activity

fluctuations, whether or not adaptation enzymes are present. Graphs show the PSD of the FRET ratio measured in each respective case (black). In (A,C)

the wild-type curve is shown for comparison (gray).

DOI: https://doi.org/10.7554/eLife.26796.026
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chemotactic signals through cooperative interactions within the clusters (arrays) of chemoreceptors,

where at least ~10–20 receptor dimers show concerted transitions between active and inactive states

(Sourjik and Berg, 2004; Li and Weis, 2000; Duke and Bray, 1999; Mello and Tu, 2003;

Monod et al., 1965; Keymer et al., 2006). The pathway is also robust against external and internal

perturbations, largely thanks to its methylation-based adaptation system (Barkai and Leibler, 1997;

Oleksiuk et al., 2011; Yi et al., 2000; Kollmann et al., 2005; Alon et al., 1999). At the same time,

the stochastic activity of the adaptation enzymes was also proposed as the reason for the observed

strong variability in the signaling output, the duration of straight runs of the swimming cells

(Korobkova et al., 2004; Emonet and Cluzel, 2008; Pontius et al., 2013). Indeed, inspired by so-

called fluctuation-response theorems, previous analyses established a fluctuation-response relation

between the adaptation time to stimuli (called response time) and the typical time scale of fluctua-

tions of the tumbling rate in individual E. coli cells (Emonet and Cluzel, 2008; Park et al., 2010) –

which we confirmed at the level of CheY phosphorylation (!peak ’ !RB) – demonstrating that behav-

ioral fluctuations originate within the chemotaxis pathway and pointing to the methylation system as

their likely cause. Subsequently, the fluctuations in straight run durations were proposed to enhance

environmental exploration, partly since the occasional long run allows exploring wider territories

(Emonet and Cluzel, 2008; He et al., 2016; Matthäus et al., 2009; Matthäus et al., 2011;

Flores et al., 2012).

Here we combined experimental and mathematical analyses to demonstrate that both, the adap-

tation system and receptor clustering contribute to the signaling noise in the chemotaxis pathway.

Experimentally, we adapted the FRET-based assay that was previously applied to study average sig-

naling properties in cell populations (Shimizu et al., 2010; Sourjik and Berg, 2004; Endres et al.,

2008; Frank and Vaknin, 2013; Piñas et al., 2016; Sourjik et al., 2007; Sourjik and Berg, 2002b;

Oleksiuk et al., 2011; Neumann et al., 2014a; Krembel et al., 2015a; Meir et al., 2010;

Frank et al., 2016; Krembel et al., 2015b; Neumann et al., 2014b, Neumann et al.,

2012Neumann et al., 2012; Clausznitzer et al., 2010), to be used at the single-cell level. Whereas

previous studies have relied on the output provided by flagellar motor rotation (Korobkova et al.,

2004; Park et al., 2010), using FRET enabled us to characterize the activity fluctuations directly,

before their amplification by the motor. Our measurements showed that fluctuations can be compa-

rable to the average adapted activity of the pathway and thus significantly larger than previous esti-

mates (Tu and Grinstein, 2005). This surprisingly large amplitude of fluctuations indicates concerted

variations of receptor activity across the signaling arrays containing hundreds to thousands of recep-

tors. Furthermore, we showed that the stochasticity of receptor methylation could not be the sole

cause of the pathway noise, because activity fluctuations were also observed in absence of the meth-

ylation system. In contrast, disruption of receptor clustering completely abolished these long-term

activity fluctuations, even in presence of the methylation system, implying that receptor interactions

are essential for the observed fluctuations.

To better understand the nature of the observed fluctuations, we applied analysis based on the

fluctuation-dissipation theorem (FDT), following a recent theoretical study (Sartori and Tu, 2015).

The FDT establishes a fundamental relationship between thermal fluctuations and the response to

externally applied perturbations for an equilibrium system. Although being a powerful tool for study-

ing equilibrium and out-of-equilibrium systems in physics (Kubo, 1966), so far it has found only lim-

ited application in biology (Paulsson, 2004; Robert et al., 2010; Mizuno et al., 2007;

Chevry et al., 2013; Bialek and Setayeshgar, 2005). For the chemotaxis system, the FDT in its equi-

librium form was used to predict the magnitude of thermally activated ligand binding noise with

implications for maximal sensing accuracy (Aquino et al., 2011; Bialek and Setayeshgar, 2005).

The present approach is also complementary to the previous fluctuation-response analysis men-

tioned above (Emonet and Cluzel, 2008; Park et al., 2010), itself conceptually related to the fluctu-

ation theorems extending the FDT for certain systems in non-equilibrium steady states (Park et al.,

2010; Seifert, 2012). Comparison of fluctuations and dissipation to evaluate whether the system

deviates from the FDT, together with the analysis of mutants deficient in adaptation and/or cluster-

ing, enabled to identify multiple factors contributing to the pathway noise. These factors include (i)

the input thermal noise, (ii) the amplification of this noise by cooperative interactions among recep-

tors, (iii) the delayed response function of receptor clusters, and (iv) the dynamics of the methylation

system (Figure 5).
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Unexpectedly, the activity fluctuations in absence of the adaptation system could be explained

for the most part by thermal noise acting on the receptors, which is amplified through the coopera-

tive interactions of clustered receptors and subsequently converted into long-term pathway activity

fluctuations by their slow response dynamics (Figure 5A). The contribution of out-of-equilibrium pro-

cesses to these activity fluctuations seems to be minor if any. This phenomenon demonstrates that

thermal noise can induce measurable fluctuations in activity of a cellular network, even in absence of

active processes that are usually considered to be the main contributors to cellular dynamics. Even

more striking is the amplitude of these fluctuations, suggesting that up to a half of the chemorecep-

tor array – that may contain thousands of receptors – flips its activity.

The slow cluster dynamics was recently observed using fluorescence anisotropy measurements

and attributed to the stimulation-induced changes in packing of receptors within clusters (Frank and

Vaknin, 2013). Indeed, in our experiments both slow response and activity fluctuations were abol-

ished by mutations that disrupt clustering, suggesting that it corresponds to some large-scale plas-

ticity within the receptor array (Piñas et al., 2016). Interestingly, such stimulation-induced slow

reconfiguration had been also proposed to modulate cooperativity within the receptor array in an

earlier theoretical study (Hansen et al., 2010). Although the precise mechanism behind this slow

dynamics was not yet characterized, meaning that it could neither be experimentally disentangled

from signal amplification nor mechanistically modeled, our simulations suggest that while slow

dynamics sets the time scale of activity fluctuations, both this dynamics and amplification contribute

to their amplitude. It thus seems that this previously little considered feature of the receptor array

plays a large role in producing and shaping the activity fluctuations.

Our analysis also suggests that an effective subunit of the allosteric signaling teams corresponds

to one trimer of dimers, rather than a dimer itself as assumed in previous computational models

(Endres et al., 2008; Mello and Tu, 2007). This conclusion is consistent with several recent studies

(Piñas et al., 2016; Frank et al., 2016; Li and Hazelbauer, 2014), and it could be easily reconciled

with the previous formulations of the Monod-Wyman-Changeux models by rescaling the free-energy

change per methylated glutamate by a factor of three. Since large size of the cooperative units

implies fewer units per receptor array, it further helps to account for the large activity fluctuations

even in absence of the methylation enzymes.

Notably, on the studied range of time scales the previously proposed contribution of the high-fre-

quency ligand binding noise (Aquino et al., 2011; Bialek and Setayeshgar, 2005) to overall fluctua-

tions must be very small, since the observed power spectral densities depended on activity but not

on the absolute ligand concentration. The dynamics of CheY/CheZ interaction is also unlikely to con-

tribute to the observed fluctuations because the turnover rate of this complex (>1 Hz) (Li and Hazel-

bauer, 2004; Oleksiuk et al., 2011) is above the frequency range of our experiments.

In the presence of the adaptation system the noise within receptor arrays is apparently added to

the noise coming from the stochasticity of methylation events (Figure 5B), with both noise sources

having comparable strength. The adaptation system not only shifts the frequency spectrum of fluctu-

ations but also eliminates the latency of the response to stimuli, thus likely accelerating the response

through its negative feedback activity. The statistics of methylation events inferred from the power

spectra was compatible with previous understanding of the enzyme kinetics, including the hypothe-

sis that methylation noise is enhanced by the ultrasensitivity to changes in the ratio of methylation

enzymes (Korobkova et al., 2004; Emonet and Cluzel, 2008). Nevertheless, receptor clustering is

required for the observed activity fluctuations even in presence of the adaptation system

(Figure 5C), likely because of signal amplification as well as accelerated adaptation dynamics within

clusters due notably to assistance neighborhoods (Li and Hazelbauer, 2005; Pontius et al., 2013;

Frank et al., 2016). Our simulations suggested that the former likely plays a more prominent role in

generating large activity fluctuations.

Altogether, the overall picture of the signaling noise in the chemotaxis pathway is more complex

than previously suggested, with the noise being first processed through a slow responding amplifier

(the chemoreceptor cluster) and then fed back through the methylation system, resulting in complex

colored fluctuations of the pathway activity and therefore of the swimming behavior.

More generally, our study provides another example of the general relation between fluctuations

and response in biological systems and it demonstrates that FDT-based analysis can distinguish

between active and passive processes also within an intracellular network. Although activity fluctua-

tions in biological systems are commonly shaped by active, out-of-equilibrium processes, meaning
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that in many cases the FDT will not be satisfied (Park et al., 2010), the properties of a system can

nevertheless be inferred when studying the deviation of its behavior from the FDT (Robert et al.,

2010; Martin et al., 2001; Mizuno et al., 2007; Chevry et al., 2013). The approach of quantifying

such deviations by means of an effective temperature, or fluctuation-dissipation ratio, has been used

in a variety of out-of-equilibrium systems (Cugliandolo, 2011), from glasses to biological systems.

Although in some systems, for example glasses, this ratio can have indeed properties normally asso-

ciated with the thermodynamic temperature, in biological systems the effective temperature rather

relates to the energy scale and frequency content of the underlying out-of-equilibrium processes.

This relation was previously demonstrated for several systems, including the hair bundle of the inner

ear (Martin et al., 2001) and active transport in eukaryotic cells (Robert et al., 2010; Mizuno et al.,

2007; Chevry et al., 2013), and we show that it also applies to a signaling pathway. Notably, the

present analysis differs both in its aims and technicalities from the aforementioned fluctuation-

response analysis (Emonet and Cluzel, 2008; Park et al., 2010). For instance, the FDT breakdown

in CheR+CheB+ cells does not contradict the previously observed relation between fluctuation and

adaptation time scales, since these two observations provide different information: that the noise

source encompasses an out-of-equilibrium process and that the fluctuations originate in the chemo-

taxis pathway, respectively. An interesting emergent feature of our analysis is the negative effective

temperature, which arises as a hallmark of the delayed adaptive negative feedback (Sartori and Tu,

2015). A similar effect was also observed in inner ear hair bundles, where it is related to the mechan-

ical adaptation feedback (Martin et al., 2001). Negative dissipation associated to the negative tem-

perature was predicted to indicate a reversal of causality, induced here by adaptation (Sartori and

Tu, 2015): Whereas positive dissipation means that changes in receptor free energy induce activity

changes, negative dissipation results from the methylation system counteracting preceding activity

changes (Sartori and Tu, 2015; Sartori and Tu, 2011; Lan et al., 2012) and actively translating

them into free energy changes, thus opposing the passive behavior of the receptors. Importantly,

because the FDT-based analysis requires only knowledge of system’s fluctuations and its response, it

is widely applicable for studying dynamics of diverse cell signaling processes, including those where

molecular details are not known.

Materials and methods

Cell growth, media and sample preparation
E. coli strains and plasmids are listed in Supplementary file 1A,B, respectively. Cells carrying two

plasmids that encode respectively Tar in the indicated modification states and the FRET pair were

grown at 30˚C overnight in tryptone broth (TB) supplemented with appropriate antibiotics. The cul-

ture was subsequently diluted 17:1000 in TB containing antibiotics, 2 mM salicylate (unless otherwise

stated) for induction of Tar and 200 mM isopropyl b-D-1-thiogalactopyranoside (IPTG) for induction

of the FRET pair, and grown at 34˚C under vigorous shaking (275 rpm) to an OD600 = 0.55. Bacteria

were harvested by centrifugation, washed thrice in tethering buffer (10 mM KPO4, 0.1 mM EDTA, 1

mM methionine, 10 mM lactic acid, pH 7) and stored at least 20 min at 4˚C prior to the experiments.

Microscopy
Bacterial cells were attached to poly-lysine coated slides which were subsequently fixed at the bot-

tom of a custom-made, air-tight flow chamber, which enables a constant flow of fresh tethering

buffer using a syringe pump (Pump 11 Elite, Harvard Apparatus, Holliston, Massachusetts, United

States) at 0.5 ml/min. This flow was further used to stimulate cells with indicated concentrations of

a-methyl-D,L-aspartate (MeAsp). The cells were observed at 40x magnification (NA = 0.95) using an

automated inverted microscope (Nikon Ti Eclipse, Nikon Instruments, Tokyo, Japan) controlled by

the NIS-Elements AR software (Nikon Instruments). The cells were illuminated using a 436/20 nm fil-

tered LED light (X-cite exacte, Lumen Dynamics, Mississauga, Canada), and images were continu-

ously recorded at a rate of 1 frame per second in two spectral channels corresponding to CFP

fluorescence (472/30 nm) and YFP fluorescence (554/23 nm) using an optosplit (OptoSplit II, CAIRN

Research, Faversham, United Kingdom) and the Andor Ixon 897-X3 EM-CCD camera (Andor Tech-

nology, Belfast, UK) with EM Gain 300 and exposure time of 1 s (Figure 1—figure supplement 1B).

For each measurement, the field of view was chosen to contain both a small region of high density
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with confluent cells and a few hundred well-separated single cells (Figure 1—figure supplement

1C). During our approximately 30 min long measurements, the focus was maintained using the

Nikon perfect focus system.

Image processing and data analysis
The image analysis was performed using the NIS-Elements AR software. The CFP and YFP images,

each recorded by a half of the camera chip (256 � 512 px2, 1 px = 0.40 mm), were aligned with each

other by manual image registration. A gray average of the two channels was then delineated to

enhance contrast and create binary masks with a user-defined, experiment-specific threshold. Indi-

vidual cells were detected by segmentation of the thresholded image into individual objects, filtered

according to size (3–50 mm2) and shape (excentricity < 0.86). This step resulted in a collection of dis-

tinct regions of interest (ROIs) for each frame of the movie. The ROIs were then tracked from frame

to frame, using the NIS build-in tracking algorithm. Only ROIs that could be tracked over the entire

duration of the experiment were further analyzed. The selected ROIs were then inspected manually

and those not representing individual single cells well attached to the cover glass were discarded.

Each individual measurement contained on the order of 100 tracked single cells.

All further analyses were carried out using MATLAB 8.4 R2014b (The MathWorks, Inc., Natick,

Massachusetts, United States). For each tracked cell, the average CFP and YFP values over the ROI

were extracted as a function of time. These values were also extracted for an ROI corresponding to

the confluent population of cells. The ratio R of the YFP signal to the CFP signal was computed for

both the single cells and the population, with the population response being used as a reference.

Cells with a FRET ratio change of less than 10% of the population response were discarded as unre-

sponsive. The PSD was computed over T = 400 frames long segments as

sR !ð Þ ¼ 1

T

R̂i !ð ÞR̂i
� !ð Þ

Ri

� 2

� �

i

; (4)

where R̂i !ð Þ is the discrete Fourier transform of the FRET ratio of cell i at frequency !=2p, R̂i
� its

complex conjugate, :� represents a temporal average over the given time interval and �h ii an aver-

age over all single cells considered. The error for the PSD was evaluated as 1

NcT
var

R̂i !ð ÞR̂i
� !ð Þ

Ri

� 2

� �

i

; where

Nc is the number of cells. The time autocorrelation function is simply the inverse Fourier transform of

the PSD. The time autocorrelation functions were fitted by C tð Þ ¼C0 exp �t=t0ð Þ , for t>0 to measure

the correlation time t0, C0 being a free parameter accounting for the camera white shot noise.

Although this fit was moderately accurate (0:96 � R2 � 0:98 in all cases), it provided a simple estimate

of the fluctuation time scale.

Quantification of measurement noise
Contributions of technical fluctuations (vibrations, focus drift, etc.) and of the camera shot noise to

the noise on the FRET ratio was quantified using fluorescent beads (BD FACSDiva CS and T

Research beads #655050) that emit both in CFP and in YFP channels. The resulting shot noise was

found to be perfectly white (Figure 1—figure supplement 3A). Additional negative control experi-

ments were performed using a receptorless strain, where no CheA-based signaling occurs. In this

case, the noise in FRET ratio was also mostly white, except at very low frequency (Figure 1—figure

supplement 3B). Where indicated, the power spectra of other strains were corrected by subtracting

the power spectrum of the receptorless strain, to obtain the ‘pure’ activity fluctuation spectra.

Evaluation of the conversion factor l
The value of l; 0:10� 0:01; converting FRET ratio changes to kinase activity changes, was estimated

using data for the DcheRDcheB TarQEQE strain as l ¼ R
�

0ð Þ
D E

� R
�
100 �Mð Þ

D E

, the difference, aver-

aged over all cells, between the FRET ratio in buffer, where the activity should be maximal (i.e.,

equal to one), and the ratio upon saturating stimulation with 100 mM MeAsp. A similar value l ¼

0:09� 0:01 could be estimated in the adaptation-proficient strains, as the difference between the

minimal FRET ratio value reached just after stimulation with 100 mM MeAsp and the maximal value

reached upon removal of this stimulus. However, this latter value was slightly less precise because it
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is not certain that full receptor activity is reached upon stimulation removal, and the more reliable

DcheRDcheB value was used in all cases.

Activity sorting
For TarQEQE receptors in non-adapting strains, we assumed that all the receptors are fully active in

buffer conditions and fully inactive upon stimulation with 100 mM MeAsp. The pathway activity in

each cell was thus evaluated as A ¼ 1� R
�

preStim�30�Mð Þ� R
�
30 �Mð Þ

R
�

preStim�100 �Mð Þ �R
�
100 �Mð Þ

. The use of the two different presti-

mulus values in buffer enables to minimize the effect of FRET baseline variation due to bleaching of

fluorophores during image acquisition. Cells were then sorted according to their activity and divided

into n equally populated subpopulations, and for each subpopulation the average PSD sR !ð Þh iA at

average activity A of the subpopulation was evaluated for the set of frequencies displayed in Fig-

ure 4—figure supplement 2. This procedure was implemented for several values of n, namely

n ¼ 10; 9; 6; 5 and 4, and the whole resulting data was used to plot sR !ð Þh iA as a function of A (Fig-

ure 4—figure supplement 2A).

Acknowledgements
The authors would like to thank R Somavanshi for assistance with experiments and NS Wingreen and

SM Murray for comments on the manuscript.

Additional information

Funding

Funder Grant reference number Author

European Research Council 294761-MicRobE Remy Colin
Christelle Rosazza
Victor Sourjik

Deutsche Forschungsge-
meinschaft

German-Israeli Project
Cooperation SO568/1-1

Remy Colin
Victor Sourjik

Deutsche Forschungsge-
meinschaft

German-Israeli Project
Cooperation AM441/1-1

Ady Vaknin

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Remy Colin, Conceptualization, Data curation, Software, Formal analysis, Investigation, Visualization,

Methodology, Writing—original draft, Writing—review and editing; Christelle Rosazza, Data cura-

tion, Software, Formal analysis, Validation, Investigation, Visualization, Methodology, Writing—

review and editing; Ady Vaknin, Resources, Funding acquisition, Investigation, Writing—review and

editing; Victor Sourjik, Conceptualization, Formal analysis, Supervision, Funding acquisition, Valida-

tion, Methodology, Writing—original draft, Project administration, Writing—review and editing

Author ORCIDs

Remy Colin http://orcid.org/0000-0001-9051-8003

Ady Vaknin http://orcid.org/0000-0002-4723-4600

Victor Sourjik http://orcid.org/0000-0003-1053-9192

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.26796.032

Author response https://doi.org/10.7554/eLife.26796.033

Colin et al. eLife 2017;6:e26796. DOI: https://doi.org/10.7554/eLife.26796 18 of 32

Research article Computational and Systems Biology Microbiology and Infectious Disease

http://orcid.org/0000-0001-9051-8003
http://orcid.org/0000-0002-4723-4600
http://orcid.org/0000-0003-1053-9192
https://doi.org/10.7554/eLife.26796.032
https://doi.org/10.7554/eLife.26796.033
https://doi.org/10.7554/eLife.26796


Additional files
Supplementary files
. Supplementary file 1 List of strains and plasmids used in the study.

DOI: https://doi.org/10.7554/eLife.26796.027

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.26796.028

References
Abou B, Gallet F. 2004. Probing a nonequilibrium einstein relation in an aging colloidal glass. Physical Review
Letters 93:160603. DOI: https://doi.org/10.1103/PhysRevLett.93.160603, PMID: 15524967

Alon U, Surette MG, Barkai N, Leibler S. 1999. Robustness in bacterial chemotaxis. Nature 397:168–171.
DOI: https://doi.org/10.1038/16483, PMID: 9923680

Aoki K, Kumagai Y, Sakurai A, Komatsu N, Fujita Y, Shionyu C, Matsuda M. 2013. Stochastic ERK activation
induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation. Molecular Cell 52:
529–540. DOI: https://doi.org/10.1016/j.molcel.2013.09.015, PMID: 24140422

Aquino G, Clausznitzer D, Tollis S, Endres RG. 2011. Optimal receptor-cluster size determined by intrinsic and
extrinsic noise. Physical Review E 83:021914. DOI: https://doi.org/10.1103/PhysRevE.83.021914

Balázsi G, van Oudenaarden A, Collins JJ. 2011. Cellular decision making and biological noise: from microbes to
mammals. Cell 144:910–925. DOI: https://doi.org/10.1016/j.cell.2011.01.030, PMID: 21414483

Barkai N, Leibler S. 1997. Robustness in simple biochemical networks. Nature 387:913–917. DOI: https://doi.org/
10.1038/43199, PMID: 9202124

Bénichou O, Loverdo C, Moreau M, Voituriez R. 2011. Intermittent search strategies. Reviews of Modern Physics
83:81–129. DOI: https://doi.org/10.1103/RevModPhys.83.81

Berg HC, Brown DA. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:
500–504. DOI: https://doi.org/10.1038/239500a0, PMID: 4563019

Berg HC, Tedesco PM. 1975. Transient response to chemotactic stimuli in Escherichia coli. PNAS 72:3235–3239.
DOI: https://doi.org/10.1073/pnas.72.8.3235, PMID: 1103143

Berg HC. 2003. The rotary motor of bacterial flagella. Annual Review of Biochemistry 72:19–54. DOI: https://doi.
org/10.1146/annurev.biochem.72.121801.161737, PMID: 12500982

Bialek W, Setayeshgar S. 2005. Physical limits to biochemical signaling. PNAS 102:10040–10045. DOI: https://
doi.org/10.1073/pnas.0504321102, PMID: 16006514

Bowsher CG, Swain PS. 2012. Identifying sources of variation and the flow of information in biochemical
networks. PNAS 109:E1320–E1328. DOI: https://doi.org/10.1073/pnas.1119407109, PMID: 22529351

Chevry L, Colin R, Abou B, Berret JF. 2013. Intracellular micro-rheology probed by micron-sized wires.
Biomaterials 34:6299–6305. DOI: https://doi.org/10.1016/j.biomaterials.2013.05.002, PMID: 23746859

Clausznitzer D, Endres RG. 2011. Noise characteristics of the Escherichia coli rotary motor. BMC Systems
Biology 5:151. DOI: https://doi.org/10.1186/1752-0509-5-151, PMID: 21951560

Clausznitzer D, Oleksiuk O, Løvdok L, Sourjik V, Endres RG. 2010. Chemotactic response and adaptation
dynamics in Escherichia coli. PLoS Computational Biology 6:e1000784. DOI: https://doi.org/10.1371/journal.
pcbi.1000784

Cluzel P, Surette M, Leibler S. 2000. An ultrasensitive bacterial motor revealed by monitoring signaling proteins
in single cells. Science 287:1652–1655. DOI: https://doi.org/10.1126/science.287.5458.1652, PMID: 10698740

Colin R, Sourjik V. 2017. Emergent properties of bacterial chemotaxis pathway. Current Opinion in Microbiology
39:24–33. DOI: https://doi.org/10.1016/j.mib.2017.07.004, PMID: 28822274

Conlon P, Gelin-Licht R, Ganesan A, Zhang J, Levchenko A. 2016. Single-cell dynamics and variability of MAPK
activity in a yeast differentiation pathway. PNAS 113:E5896–E5905. DOI: https://doi.org/10.1073/pnas.
1610081113, PMID: 27651485

Cugliandolo LF. 2011. The effective temperature. Journal of Physics A: Mathematical and Theoretical 44:483001.
DOI: https://doi.org/10.1088/1751-8113/44/48/483001

Dufour YS, Gillet S, Frankel NW, Weibel DB, Emonet T. 2016. Direct correlation between motile behavior and
protein abundance in single cells. PLoS Computational Biology 12:e1005041. DOI: https://doi.org/10.1371/
journal.pcbi.1005041, PMID: 27599206

Duke TA, Bray D. 1999. Heightened sensitivity of a lattice of membrane receptors. PNAS 96:10104–10108.
DOI: https://doi.org/10.1073/pnas.96.18.10104, PMID: 10468569

Dunten P, Koshland DE. 1991. Tuning the responsiveness of a sensory receptor via covalent modification. The
Journal of Biological Chemistry 266:1491. PMID: 1846357

Eldar A, Elowitz MB. 2010. Functional roles for noise in genetic circuits. Nature 467:167–173. DOI: https://doi.
org/10.1038/nature09326, PMID: 20829787

Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. Science 297:1183–
1186. DOI: https://doi.org/10.1126/science.1070919, PMID: 12183631

Emonet T, Cluzel P. 2008. Relationship between cellular response and behavioral variability in bacterial
chemotaxis. PNAS 105:3304–3309. DOI: https://doi.org/10.1073/pnas.0705463105, PMID: 18299569

Colin et al. eLife 2017;6:e26796. DOI: https://doi.org/10.7554/eLife.26796 19 of 32

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.26796.027
https://doi.org/10.7554/eLife.26796.028
https://doi.org/10.1103/PhysRevLett.93.160603
http://www.ncbi.nlm.nih.gov/pubmed/15524967
https://doi.org/10.1038/16483
http://www.ncbi.nlm.nih.gov/pubmed/9923680
https://doi.org/10.1016/j.molcel.2013.09.015
http://www.ncbi.nlm.nih.gov/pubmed/24140422
https://doi.org/10.1103/PhysRevE.83.021914
https://doi.org/10.1016/j.cell.2011.01.030
http://www.ncbi.nlm.nih.gov/pubmed/21414483
https://doi.org/10.1038/43199
https://doi.org/10.1038/43199
http://www.ncbi.nlm.nih.gov/pubmed/9202124
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1038/239500a0
http://www.ncbi.nlm.nih.gov/pubmed/4563019
https://doi.org/10.1073/pnas.72.8.3235
http://www.ncbi.nlm.nih.gov/pubmed/1103143
https://doi.org/10.1146/annurev.biochem.72.121801.161737
https://doi.org/10.1146/annurev.biochem.72.121801.161737
http://www.ncbi.nlm.nih.gov/pubmed/12500982
https://doi.org/10.1073/pnas.0504321102
https://doi.org/10.1073/pnas.0504321102
http://www.ncbi.nlm.nih.gov/pubmed/16006514
https://doi.org/10.1073/pnas.1119407109
http://www.ncbi.nlm.nih.gov/pubmed/22529351
https://doi.org/10.1016/j.biomaterials.2013.05.002
http://www.ncbi.nlm.nih.gov/pubmed/23746859
https://doi.org/10.1186/1752-0509-5-151
http://www.ncbi.nlm.nih.gov/pubmed/21951560
https://doi.org/10.1371/journal.pcbi.1000784
https://doi.org/10.1371/journal.pcbi.1000784
https://doi.org/10.1126/science.287.5458.1652
http://www.ncbi.nlm.nih.gov/pubmed/10698740
https://doi.org/10.1016/j.mib.2017.07.004
http://www.ncbi.nlm.nih.gov/pubmed/28822274
https://doi.org/10.1073/pnas.1610081113
https://doi.org/10.1073/pnas.1610081113
http://www.ncbi.nlm.nih.gov/pubmed/27651485
https://doi.org/10.1088/1751-8113/44/48/483001
https://doi.org/10.1371/journal.pcbi.1005041
https://doi.org/10.1371/journal.pcbi.1005041
http://www.ncbi.nlm.nih.gov/pubmed/27599206
https://doi.org/10.1073/pnas.96.18.10104
http://www.ncbi.nlm.nih.gov/pubmed/10468569
http://www.ncbi.nlm.nih.gov/pubmed/1846357
https://doi.org/10.1038/nature09326
https://doi.org/10.1038/nature09326
http://www.ncbi.nlm.nih.gov/pubmed/20829787
https://doi.org/10.1126/science.1070919
http://www.ncbi.nlm.nih.gov/pubmed/12183631
https://doi.org/10.1073/pnas.0705463105
http://www.ncbi.nlm.nih.gov/pubmed/18299569
https://doi.org/10.7554/eLife.26796


Endres RG, Oleksiuk O, Hansen CH, Meir Y, Sourjik V, Wingreen NS. 2008. Variable sizes of Escherichia coli
chemoreceptor signaling teams. Molecular Systems Biology 4:211. DOI: https://doi.org/10.1038/msb.2008.49,
PMID: 18682701

Flores M, Shimizu TS, ten Wolde PR, Tostevin F. 2012. Signaling noise enhances chemotactic drift of E. coli.
Physical Review Letters 109:148101. DOI: https://doi.org/10.1103/PhysRevLett.109.148101, PMID: 23083290
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Matthäus F, Mommer MS, Curk T, Dobnikar J. 2011. On the origin and characteristics of noise-induced Lévy
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Appendix 1

DOI: https://doi.org/10.7554/eLife.26796.029

This Appendix presents four partially independent theoretical derivations of equations and

concepts presented in the main text.

Modeling activity fluctuations in the framework of
fluctuation-dissipation relation

Fluctuation dissipation relation and effective temperature
In a system at equilibrium, a fluctuation-dissipation relation links the thermal fluctuations of

any physical quantity to its response to an external small perturbation applied to the system

via the temperature. It extends the corresponding fluctuation-response relation, which links

the amplitudes of the fluctuation and the response, including their evolution in time. For the

quantity a, it reads (Kubo, 1966):

�
d

dt
Ca t;0ð Þ ¼ kT

qDa tð Þ

qDh 0ð Þ
; (A1)

Where:

. Ca t; 0ð Þ ¼ a tð Þa 0ð Þh i � a tð Þh i a 0ð Þh i is the time autocorrelation function of a,

. h is the conjugate of a in the Hamiltonian of the system, that is the Hamiltonian (i.e. the free

energy) can be written H ¼ Hunperturbed � ah

.
qDa tð Þ
qDh 0ð Þ is the response of a at time t > 0 to the small impulse perturbation Dh applied tran-

siently at time 0. It is called impulse response function, usually denoted �a tð Þ:

This relation can also be expressed in Fourier space (decomposing all temporal signals in

terms of periodic functions) as: sa !ð Þ ¼ � 2 kT
! Im �̂a !ð Þ; where sa !ð Þ is the power spectrum of a

and �̂a !ð Þ is the Fourier transform of�a tð Þ, typically referred to as ‘dynamic susceptibility’.

In a system which is not at equilibrium, but nonetheless at steady state, one can define the

so-called fluctuation-dissipation ratio (Cugliandolo, 2011):

kTeff !ð Þ

kT
¼�

!sa !ð Þ

2kTIm �̂a !ð Þ
: (A2)

This FDT ratio is a way to quantify some ‘’distance to equilibrium’’, introducing the effective

temperature Teff !ð Þ. The system is in equilibrium only if the ratio equals one at all frequencies.

Choice of model for the chemotaxis pathway
We model the receptors by two-state objects, being either kinase activating (ON) or kinase

inhibiting (OFF). The free energy difference between ON and OFF is f0 ¼ g mð Þ þ h cð Þ for a

single receptor, with h cð Þ ¼ ln 1þ c
KOFF

� �

= 1þ c
KON

� �� �

being the contribution of attractant

binding and g mð Þ ¼ k0 � k1m being the contribution of the receptor methylation.

Two models can describe the coupling between neighboring receptors and kinases in the

chemoreceptor cluster, the Monod-Wyman-Changeux (MWC) and the Ising models (Mello and

Tu, 2003; Keymer et al., 2006; Mello and Tu, 2007; Skoge et al., 2006). The MWC model

considers that receptors are grouped by teams of NMWC infinitely coupled receptors and their

associated kinases. The Hamiltonian of the whole chemoreceptor cluster

is HMWC ¼
P

Nteam

j¼1

aj
PNMWC

k¼0
Df0 kð Þ

� �

, aj being the Boolean state of team j. The Ising model on the

contrary considers finite coupling between receptors, and the Hamiltonian of the cluster is
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HIM ¼ Hint þ
X

NT

k¼1

ak Df0 kð Þ; (A3)

where ak is now the state of the single receptor dimer k and Hint describes the coupling

between and among receptors and kinases. The interaction term Hint can be written in all

generality

Hint ¼�Jaa
X

i;j

Ai� 0:5ð ÞSi;j Aj� 0:5
� �

� Jar
X

i;k

Ai� 0:5ð ÞVi;k ak � 0:5ð Þ� Jrr
X

l;k

al � 0:5ð ÞWl;k ak � 0:5ð Þ;

where J are the coupling strengths, S, V and W describe the network by determining whether

two components are coupled and Ai is the Boolean activity of the kinase i.

At steady state, the average activity of the cluster is given in both cases by

A¼ ah i ¼
1

Z

Z Z

1

NT

X

NT

k¼1

ak exp �bH akf gð Þð Þ
Y

dak; (A4)

where Z is a normalization factor, and NT is the total number of Tar dimers. In the MWC, it is

solved exactly as AMWC ¼ 1þ exp NMWC f0ð Þð Þ�1: In the Is, analytical solutions exist only for a

limited set of network topologies, but numerical solutions in most cases are well fitted by

AIs ¼
1

1þ exp N Df0ð Þ
; (A5)

where N is a fitted parameter, corresponding to an effective "team size", which is proportional

to the average number of neighboring receptors with the same activity (see ’Definition of the

effective temperature’).

The MWC does not allow individual receptors to fluctuate within their team nor any team

rearrangement. This is unsatisfactory since individual receptors are expected to undergo

independent thermal and/or active perturbations and the slow dynamics in the DcheRDcheB

strain might come from some remodeling of teams of receptors with the same activity

(Hansen et al., 2010). The Ising model, which possesses those two properties, was therefore

preferred.

Finally, the average methylation state of the receptor evolves under the action of CheR and

CheB according to

dm

dt
¼ kR 1�Að Þ� kB A; (A6)

with kR and kB being the rates of methylation and de-methylation, respectively

(Clausznitzer et al., 2010).

Phenomenological step response function
To define the effective temperature (Equation A2), the activity state of a single receptor

dimer, a, will be used as the variable. Considering the definition of the dynamic susceptibility

(paragraph 1.1) and Equation A3, within the Ising model, the dynamic susceptibility �a tð Þ in

response to a perturbation þ� of the free energy difference Df0 is

da tð Þh i ¼

Z t

�¥

�� tð Þ �a t� tð Þdt; (A7)

where �h i is an ensemble average. In the case of a constant perturbation �0 starting at t = 0,

da tð Þh i ¼��0

Z t

0

�a tð Þ dt: (A8)

In the absence of adaptation enzymes, Equation A5 implies that at steady

state da þ¥ð Þh i ¼ �N ah i 1� ah ið Þ �0, which yields
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Z þ¥

0

��
a tð Þ dt¼N ah i 1� ah ið Þ �X¥

A : (A9)

Here and in the following, we use a superscript ‘-’ to refer to quantities in the DcheRDcheB

case, and superscript ‘+’ for the CheR+CheB+ case.

In the all models so far, the activity switches very rapidly to its steady state value da þ¥ð Þh i,

meaning that ��
a tð Þ is well approximated by a delta function. However, as observed in

Figure 4A of the main text, step stimulation with MeAsp, which corresponds to the

application of a constant �0 to the receptors, induces also a long term dynamics of the activity,

not captured by the models. A phenomenological description of this long term dynamics was

therefore used, leading to a more complex form of ��
a tð Þ.

We experimentally defined the step response function g� tð Þ, measured as the response of

a DcheRDcheB strain to small step-like attractant stimulation, as

g� tð Þ �
da tð Þh i

�X¥

A �0
¼

da tð Þh i

da þ¥ð Þh i
¼

DR tð Þ

�lX¥

A �0
¼

DR tð Þ

DR þ¥ð Þ
; (A10)

which goes from 0 at t ¼ 0 to 1 at t ¼ þ¥.

Combining Equation A8, A9 and A10, the dynamic susceptibility of a receptor in

the DcheRDcheB strain is
R t

0
��
a tð Þ dt ¼ X¥

A g� tð Þ, which is expressed in Fourier space as

�̂�
a !ð Þ ¼X¥

A i!ĝ� !ð Þ (A11)

Here the Fourier transform of x is defined as

x̂ !ð Þ ¼

Z þ¥

�¥

x tð Þe�i!tdt (A12)

In the CheR+CheB+ case, by analogy we experimentally define the step response function

to small step-like attractant stimulation as:

gþ tð Þ �
daþ tð Þh i

�X¥

A �0
¼

DRþ tð Þ

�lX¥

A �0
; (A13)

Here DRþ tð Þ is the measured YFP/CFP ratio during a small stimulation of free energy �0 in

CheR+ CheB+ cells expressing Tar only and l is the experimentally determined proportionality

factor between FRET ratio and activity. Since the response is adaptive, the stimulation �lX¥

A �0
cannot be deduced from the final change in FRET ratio (DR þ¥ð Þ). It was rather computed

using Ah i ¼ 0:5 and �0 ¼ ln 1þ Dc=Koff

� �

, with Koff = 7 mM, which is lower than the value

typically used for WT cells (Koff=18 mM) (Kalinin et al., 2009), to account for the increased

sensitivity of the Tar-only strain at our expression level (Krembel et al., 2015b).

Similarly to the DcheRDcheB case, the following relation holds:

�̂þ
a !ð Þ ¼X¥

A i!ĝþ !ð Þ (A14)

Role of CheY/CheZ dynamics
In the previous sections, we have assumed that the concentration of CheY-P follows

instantaneously the average activity of the cell. In practice, however, [CheY-P] is delayed

compared to the activity. The CheY phosphorylation (by CheA)-dephosphorylation (by CheZ)

cycle can be modeled by (Vladimirov et al., 2008):

dy

dt
¼ !AYA ytot � yð Þ�!ZYZy (A15)

In Fourier space, assuming that CheZ is abundant, the CheY-P perturbation dy !ð Þ follows

the activity perturbation as (Vladimirov et al., 2008):
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dy !ð Þ ¼ dymax
!Y

!Y þ i!
da !ð Þ (A16)

The characteristic frequency is !Y ¼ 2Hz (Vladimirov et al., 2008), which lies in the range

of frequencies for which our measurements are dominated by instrumental noise. Therefore

CheY/CheZ dynamics was neglected.

Effect of diffusive smoothing of the step function
We assumed a step increase of the attractant concentration when measuring the response

functions. In practice, because of mixing while delivering the media to the cells, the attractant

concentration step is smoothed and it takes about 1 s to reach maximal concentration. We

note � tð Þ ¼ �0�s tð Þ the actual experimental free energy change experienced by the cells, with

�s tð Þ a function which is zero for t<0, and rise to one in a time scale of the order of 1 s.

Typically, �s tð Þ ¼ 1� exp �t=tsð Þ with ts ¼ 0:5 s. In Fourier space, the actually measured activity

change is

dameas !ð Þh i ¼�X¥

A �0
�a !ð Þ

X¥

A

�s !ð Þ (A17)

Equation A7, A10, A13 and Equation A17 yield a relation between the actually measured

response functions g�meas !ð Þ and their ideal counterpart g�ideal !ð Þ– if the perturbation were purely

step-like:

dameas tð Þh i

�X¥

A �0
� g�meas !ð Þ ¼ i!�s !ð Þ g�ideal !ð Þ (A18)

For the typical exponential perturbation, when ! 6¼ 0

i!�s !ð Þ ¼ 1�
i!ts

1þ i!ts
(A19)

Equation A19 reduces to one in the range of frequencies for which our measurement is

above noise, and g�meas !ð Þ ¼ g�ideal !ð Þ was assumed for most of the analysis. Only for measuring

the time scale of adaptation gþ and the relation between g� and (’Effect of diffusive

smoothing of the step function’) of this supplement) was the full Equation A18 needed.

Definition of the effective temperature
Equation A2 and Equation A11 or Equation A14 lead to:

kTeff !ð Þ

kT
¼�

sa !ð Þ

2 X¥

ARe ĝ !ð Þð Þ
; (A20)

Thus, to compute the effective temperature, we need to evaluate the power spectral

density (PSD) of the activity of a single receptor dimer, sa !ð Þ. We experimentally have access

to the PSD of the YFP/CFP ratio, the fluctuations of which are proportional to the ones of the

average activity of the cell Acell with the factor l, modulo the camera noise, so that

sR !ð Þ ¼ l2 sAcell
!ð Þþ �2n: (A21)

The average activity of the cell is given by Acell ¼
1

NT

P

NT

k¼1

ak, so that

sAcell
!ð Þ ¼

1

TN2
T

X

NT

k¼1

X

NT

k0¼1

dak !ð Þda�
k
0 !ð Þ


 �

; (A22)

Since receptors are coupled, dak !ð Þ dak0 !ð Þ

 �

is not necessarily zero. In the Ising model, we

have dak !ð Þda�
k
0 !ð Þ

D E

¼ dak !ð Þj j2
D E

C rkk0
� �

, where C rkk0
� �

is the correlation function between

receptors distant from rkk0 on the lattice, which decreases exponentially on a given length
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scale (Berg, 2003), so that
P

NT

k¼1

P

NT

k
0¼1

dak !ð Þda�
k
0 !ð Þ

D E

¼ NTNr dak !ð Þj j2
D E

, where Nr is the average

number of correlated receptors in the cluster (the loose equivalent of the team size of the

MWC model), which is expected to be proportional to the cooperativity number N

(Equation A5).

To accurately count the number of correlated receptors, we noted that recent works

measured in vitro (Li and Hazelbauer, 2014) and in vivo (Piñas et al., 2016; Frank et al.,

2016) the response function of the minimal functional chemosensory assembly, believed to

consist of two trimers of receptor dimers (TD) coupled to one CheA dimer, and found a

cooperativity number close to 2. The dose-response curve of DcheRDcheB CheW-X2

expressing TarQEQE, featuring such minimal complexes (Piñas et al., 2016; Frank et al., 2016),

was fitted using Equation A5 (Figure 3—figure supplement 1), also yielding N’2. These

results strongly suggest that N effectively accounts for the number of TDs coupled in a

‘signaling team’, thus Nr ¼ 3N and:

sAcell
!ð Þ ¼

3N

NT

sa !ð Þ (A23)

Finally, Equation A9, A20, A21 and A23 yield:

kTeff !ð Þ

kT
¼�

NT

6 l2N2A 1�Að Þ

sR !ð Þ� �2n
Re ĝ !ð Þð Þ

; (A24)

corresponding to Equation 1 and 2 of the main text, which defines the dissipation

GR !ð Þ ¼ �2 l2
3N2A 1�Að Þ

NT
Re ĝ !ð Þð Þ.

Note that although we expressed the fluctuation dissipation relation in terms of activity,

which allows us to directly compare the analysis with experimental data, this relation can be

formulated for any variable (e.g., receptor conformation) that itself determines the activity.

Link between the response functions in DcheRDcheB and
CheR+ CheB+ cases
In presence of the adaptation system, the receptor cluster is assumed to respond to free

energy perturbations in the same way as in the adaptation-deficient cells, but this response

induces a methylation change adding up to the free energy perturbation. In Fourier space, for

a small perturbation of the free energy difference � !ð Þ, the resulting perturbations for the

average activity and methylation are then given – from Equation A6 and Equation A7 – by

the set of equations:

daþ !ð Þh i ¼X¥

A i!ĝ� !ð Þ �� !ð Þþ k1 dm !ð Þh ið Þ (A25)

i! dmh i ¼ � kRþ kBð Þ daþ !ð Þh i (A26)

Defining !RB ¼ X¥

Ak1 kR þ kBð Þ, the activity dependent rate of adaptation, this set of

equations is easily solved as

dþa !ð Þ

 �

¼
X¥

A i! ĝ� !ð Þ

1þ!RB ĝ� !ð Þ
ð�"ð!ÞÞ (A27)

We thus inferred the dynamic susceptibility in CheR+ CheB+ as

�̂þ
a !ð Þ ¼

X¥

A i! ĝ� !ð Þ

1þ!RB ĝ� !ð Þ
(A28)

Note that the DcheRDcheB case is obtained again if !RB ¼ 0.

From Equation A14, the step response functions in the CheR+ CheB+ and

DcheRDcheB cases are linked by:
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ĝþ !ð Þ ¼
ĝ� !ð Þ

1þ!RB ĝ� !ð Þ
(A29)

Effect of diffusive smoothing of the step function
In the case where the stimulation is not a perfect step function, modeled

by � !ð Þ ¼ �0�s !ð Þ, using Equation A17 and Equation A18, the relation of equivalence can be

easily shown to become:

ĝþmeas !ð Þ ¼
i!�s !ð Þ ĝ�meas !ð Þ

i!�s !ð Þþ!RB ĝ�meas !ð Þ
: (A30)

Using �s tð Þ ¼ 1� exp � t
ts

� �

, with ts ¼ 0:5 s, the equivalent of Equation A30 in real space

was fitted using the experimentally determined ĝ�meas !ð Þ and !RB, with ĝþmeas !ð Þ as a free

parameter, yielding !RB ¼ 0:06 Hz (Figure 4—figure supplement 5).

Frequency of effective temperature divergence
In the CheR+ CheB+ case, the effective temperature diverges when Re ĝþ !ð Þ ¼ 0.

Equation A29 thus yield an implicit equation for the frequency at which this divergence

occurs, �Re ĝ� !dvg

� �

¼ !RB ĝ� !dvg

� ��

�

�

�

2
, which has a solution since Re ĝ� !ð Þ is negative. This

equation clearly represents a balance between the action of the cluster cooperative response

(represented by g�) and adaptation (represented by !RB). The solution is however not trivial,

in particular !dvg 6¼ !RB, and will depend on both the time scales of cluster dynamics and

adaptation. Notably, in (Sartori and Tu, 2015) the typical time scale of the cluster dynamics

was chosen to be much shorter than the one suggested by our measurements, resulting in

higher frequency of effective temperature divergence.

Separating the contribution of methylation enzymes
dynamics to the PSD in CheR+ CheB+ cells
A complementary approach to the modeling of the fluctuating activity of chemoreceptor

clusters, which has been used in a number of previous theoretical works (Clausznitzer and

Endres, 2011; Sartori and Tu, 2011; Aquino et al., 2011), is to introduce noise terms in

Equation A25 and Equation A26, which describe the average behavior of the system, in

order to describe the behavior of single receptor k:

dak !ð Þ ¼ X¥

A i!ĝ� !ð Þ ��k !ð Þþ k1dmk !ð Þð Þ (A31)

i! dmk ¼ � kRþ kBð Þdak !ð Þþ drk !ð Þþ dbk !ð Þ (A32)

Here �k !ð Þ represents thermal noise acting on the receptor, and drk !ð Þ and dbk !ð Þ represent

noise coming from the intermittent action of CheR and CheB, respectively (see below for

possible interpretation of these fluctuations).

This set of equations is easily solved as

dak !ð Þ ¼X¥

A ĝ
þ !ð Þ �i!�k !ð Þþ k1 drk þ dbkð Þð Þ; (A33)

where ĝþ !ð Þ is defined by Equation A29, and can be measured using Equation A13.

Assuming that the power spectra of drk and dbk are identical, denoted srb !ð Þ, the power

spectrum of the activity of one receptor is:

sþa !ð Þ ¼ X¥

A ĝ
þ !ð Þ

�

�

�

�

2
!2s� !ð Þþ 2k2

1
srb !ð Þ

� �

: (A34)
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This equation highlights the contributions of thermal fluctuations and methylation noise to

the PSD. If the methylation system is absent, this latter equation reduces to the DcheRDcheB

case:

s�a !ð Þ ¼ X¥

A ĝ
� !ð Þ

�

�

�

�

2
!2s� !ð Þ: (A35)

Under the non-trivial assumption that the thermal noise term (which can be explicitly

evaluated using the FDT, Equation A20) remains the same whether adaptation enzymes are

present or not, the contribution of the enzymes to the PSD in CheR+ CheB+ is:

sma !ð Þ ¼ sþa !ð Þ�
gþ !ð Þ

g� !ð Þ

�

�

�

�

�

�

�

�

2

s�a !ð Þ ¼ k1X
¥

A ĝ
þ !ð Þ

�

�

�

�

2
srb !ð Þ; (A36)

which yields in terms of the FRET ratio, from Equation A21 and Equation A23:

smR !ð Þ ¼ sþR !ð Þ�
gþ !ð Þ

g� !ð Þ

�

�

�

�

�

�

�

�

2

s�R !ð Þ ¼
3Nl2

NT

k1X
¥

A ĝ
þ !ð Þ

�

�

�

�

2
srb !ð Þ: (A37)

Here the thermal noise contribution in presence of adaptation is sTR !ð Þ ¼ gþ !ð Þ
g� !ð Þ

�

�

�

�

�

�

2

s�R !ð Þ.

Possible interpretation of the methylation-based noise term
The non-perturbative equation for the evolution of the methylation of receptor k reads:

dmk

dt
¼ � wbbkak þwrrk 1� akð Þ (A38)

Here bk and rk evaluate whether, respectively, CheB or CheR is present on the site to act on

the receptor, with respective rates wb and wr, in an activity-dependent manner. This equation

accounts for the fact that CheR and CheB, which are in low amounts compared to the total

amount of receptors, bind and unbind in the vicinity of only a given number of receptors.

Hence not all receptors are (de)methylated at a given time (Pontius et al., 2013). The

ensemble average of Equation A38, describing the average methylation dynamics, is:

d mh i

dt
¼ � wb

NB

NT

Ah iþwr

NR

NT

1� Ah ið Þ (A39)

This identifies the ensemble averaged rate of (de)methylation, kR ¼ wr
NR

NT
(kB ¼ wb

NB

NT
).

Subtracting Equation A39 from Equation A38 leads to the perturbative Equation A32. This

enables to define dbk and drk as:

drk ¼wr 1� Ah ið Þ rk �
NR

NT

� �

(A40)

dbk ¼wb Ah i bk �
NB

NT

� �

(A41)

These equations enable to identify drk (dbk) as the fluctuations in occupancy of a given

receptor by CheR (CheB) and thus srb !ð Þ as the power spectrum of enzyme binding dynamics.

Although noisy, srb !ð Þ appeared to decrease at low frequency (Figure 4—figure

supplement 8). Such a decrease indicates anti-correlations (Peng et al., 1993) in the binding

dynamics of the methylation enzymes at their substrates, which is consistent with the common

assumption that CheR (CheB) loads and acts only on the inactive (active) receptor. For the

example of CheR, this activity dependence implies that once receptor is active, it will not allow

CheR to reload and restart acting until it switches back into the inactive state, thus introducing

a delay in the rebinding of the enzyme. As a consequence, enzyme binding anti-correlates on

the time scale of this delay.
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Simulation of a simplified model for the array of
receptors
In order to reproduce semi-qualitatively the features of the CheR+ CheB+ behavior displayed

in Figure 4, a simple model of the receptor array was simulated. The standard values of all

simulation parameters are given in Appendix 1–table 1. The simulated array is composed of

Nteam ¼ 300 independent MWC signaling teams. The MWC model was chosen for simplicity,

and it is expected to lead to qualitative but not necessarily quantitative match between

simulations and experiments. Each signaling team is composed of Nrcp ¼ 3N receptor dimers –

each of which counts eight methylation sites. The Boolean activity ak of the signaling team

evolves according to:

dak

dt
¼�wa ak �

1

1þ eF

� �

; F ¼N Df0� k1 mk �Nrcp m0

� �

(A42)

Here, Df0 is the attractant dependant stimulation, wa is the flipping rate of the kinase and

mk is the total methylation level of the team.

Appendix 1—table 1. Parameters used in the simulations.

Parameter Value Reference

N 14 This study (based on experimental values)

Nteam 300 This study (based on experimental values)

k1 0.016 Adapted from (Clausznitzer et al., 2010)

wm 1 s�1 This study

wl 0.15 s�1 This study

wu 0.5 s�1 This study

wy 1 s�1 (Vladimirov et al., 2008)

wa 0.25 s�1 This study

btot 240 (Li and Hazelbauer, 2004)

rtot 140 (Li and Hazelbauer, 2004)

DOI: https://doi.org/10.7554/eLife.26796.030

If mk is fixed, Equation A42 is a simple model for the DcheRDcheB case. Since the activity

of a single team can only take 0 or 1 as a value, it fluctuates between these two values, being

only on average equal to 1= 1þ eFð Þ. Since the teams are uncoordinated, the average activity

of the whole cluster will fluctuate as well. This dynamics represents the thermal fluctuations in

a MWC model. This dynamics was simulated for T = 1000 s after an equilibration period from

a random initial condition of same duration, for n ¼ 100 repeats, with F ¼ 0, that is

ah i ¼ 0:5. Increasing latencies in the response to stimulations of the receptor cluster were

modeled by decreasing wa, for a fixed amplification factor N ¼ 14. As expected, the

thermal fluctuations were slower for lower wa. The maximal amplitude of the fluctuations was

also larger when wa was larger (Figure 4—figure supplement 4). Increasing N while keeping

the total number of receptors constant (i.e. decreasing Nteam accordingly), at fixed wa, led to

an increased amplitude of the fluctuations, their temporal dependences being however not

affected (Figure 4—figure supplement 4). The power spectra however differed from

experimental data. The amplitude was underestimated because the MWC does not allow

applying thermal fluctuations to individual receptor. The time dependence was also different

because we modeled the slow receptor cluster dynamics by lengthening the switching rate

wa, which is the only time scale of the model, where in reality they probably are different

processes.

In the CheR+ CheB+ case, the methylation level evolves according to:
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dmk

dt
¼wm rk & mk<8Nrcp

� �

� bk & mk>0ð Þ
� �

(A43)

Here rk (bk) represents whether a CheR (CheB) protein is tethered to the team.

Importantly, the model assumes that only one enzyme may be tethered to the team at a

time. (De)methylation occurs at the rate wm if CheR (CheB) is present and mk has not reached

its maximal (minimal) value. The enzyme tethering dynamics is given by the set of equation:

drk

dt
¼wl 1� rkð Þ 1� bkð Þ 1� akð Þ�wurkak (A44)

dbk

dt
¼wl 1� rkð Þ 1� bkð Þak �wubk 1� akð Þ (A45)

under the constraint
P

k bk � btot and
P

k rk � rtot. This means that CheR (CheB) may only

load, if free enzymes are available, on free inactive (active) receptors with rate wl and unload

once the receptor turned active (inactive) with rate wu.

The typical dynamics in the simulation will then be the following. Take, for example, a

weakly methylated team. Its activity will get to zero (Equation A42). If free CheR is available,

it will load on the team (Equation A44) and methylate it (Equation A43), until the

methylation level is high enough to activate the team (Equation A42). CheR will then unload

(Equation A44), and a hypothetic free CheB can then load on the team (Equation A45) to

demethylate it and bring it to its initial state.

The level of phosphorylated CheY of the simulated cell, also used as an output of the

model, evolves according to:

dy

dt
¼ wy

1

Nteam

X

Nteam

k¼1

ak � y

 !

(A46)

Output quantities were averaged over n = 100 independent simulations of single cells.

In practice, wu, wl, and wa were chosen of the same order of magnitude, and they were

the slowest dynamics, whereas wm was the fastest, in order to obtain reasonable dynamics.

Starting from a random initial condition, the system was let to equilibrate at Df0 ¼ 0 for

100 times the slowest time scale of the system (1=wl). The system was then challenged with

free energy perturbation Df0 ¼ ln 1þ 0:3=7ð Þ (mimicking the experimental conditions) to

measure the step response function, computed as gsimu tð Þ ¼ Dy tð Þ
NeffDf0

. Figure 4—figure

supplement 9A shows the normalized step response function compared to its experimental

counterpart with excellent agreement (although absolute amplitudes differed moderately).

A T = 800 s equilibrated run was further used to compute power spectra, using

Equation A5 of the main text. The power spectra of rk and bk, corresponding to the inferred

srb !ð Þ defined in Equation A36, show good qualitative agreement with the experimental

data, with a transition from high values at frequencies larger than 0.01 Hz to low values

below this threshold (Figure 4—figure supplement 9B). This transition indicates anti-

correlations in the occupancy of the receptor teams by the enzymes, which emerge from

their activity-dependant loading and unloading. The two spectra are equal within noise by

construction of the model (r and b play symmetric roles). Furthermore, the simulated power

spectrum of the activity sA !ð Þ was similar to the experimental power spectrum corrected for

long term cluster dynamics (compare Figure 4D with Figure 4—figure supplement 9C). The

amplitude of the power spectrum was however ~ 100 fold lower than in experiments, but in

line with previous simulations (Sartori and Tu, 2015).

Finally, from the power spectrum of the CheY-P level sY !ð Þ, which was very close to sA !ð Þ,

an effective temperature can be computed as

T

Teff

¼
2 Ah i 1� Ah ið Þ

Nteam

ĝsimu !ð Þ

sY !ð Þ
(A47)
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It compares qualitatively well with the experimental effective temperature, with

concordant frequencies of divergence (Figure 4—figure supplement 9D). Differences

appear for the lowest frequencies, probably because of the long-term dynamics of the

receptor clusters, which was not accounted for by these simulations.

All things being otherwise equal, modifying N to 2 and Nteam to 2100, which models

the disruption of the chemoreceptor clusters into individual trimers of dimers, reduced

strongly the fluctuations in activity (Figure 4—figure supplement 9C). Decreasing the

specific rate of receptor (de)methylation when the enzyme is bound to the receptors, wm , to

wm = 0.016 s-1 had however little effect (Figure 4—figure supplement 9C). Note that in both

cases the adaptation time is reduced by a similar factor (7 and 6, respectively), since this time

is proportional to the product N!m , as evident from (Equation A41) and (A42).

Conditional tethering of the adaptation enzymes to the receptors therefore seems to

account relatively well for the observed dynamics. One important discrepancy between

simulations and experiments is in the amplitudes of the fluctuations, which are much larger

than expected in experiments, when the simple MWC model is considered.
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