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Background: Temporal fractals are characterized by prominent scale-invariance and

self-similarity across time scales. Monofractal analysis quantifies this scaling behavior in a

single parameter, the Hurst exponent (H). Higher H reflects greater correlation in the signal

structure, which is taken as being more fractal. Previous fMRI studies have observed

lower H during conventional tasks relative to resting state conditions, and shown that H

is negatively correlated with task difficulty and novelty. To date, no study has investigated

the fractal dynamics of BOLD signal during naturalistic conditions.

Methods: We performed fractal analysis on Human Connectome Project 7T fMRI data

(n= 72, 41 females, mean age 29.46± 3.76 years) to compare H acrossmovie-watching

and rest.

Results: In contrast to previous work using conventional tasks, we found higher H values

for movie relative to rest (mean difference = 0.014; p = 5.279 × 10−7; 95% CI [0.009,

0.019]). H was significantly higher in movie than rest in the visual, somatomotor and

dorsal attention networks, but was significantly lower during movie in the frontoparietal

and default networks. We found no cross-condition differences in test-retest reliability of

H. Finally, we found that H of movie-derived stimulus properties (e.g., luminance changes)

were fractal whereas H of head motion estimates were non-fractal.

Conclusions: Overall, our findings suggest that movie-watching induces fractal

signal dynamics. In line with recent work characterizing connectivity-based brain state

dynamics during movie-watching, we speculate that these fractal dynamics reflect the

configuring and reconfiguring of brain states that occurs during naturalistic processing,

and are markedly different than dynamics observed during conventional tasks.

Keywords: Hurst exponent, movie fMRI, signal dynamics, default network, HCP 7T data, scale invariance,

multistability

HIGHLIGHTS

- Fractal analysis of fMRI data reveals differences in temporal signal dynamics between
movie-watching and resting state conditions.

- Movie vs. rest differences in fractal dynamics emerge at both the whole-brain level and by resting
state networks.

- The Hurst exponent has moderate-strong test-retest reliability in both conditions.
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INTRODUCTION

Fractals emerge when the repetition of a simple process creates
a recursive structure (Eke et al., 2000), such as the growth of
a tree from one branch to two. They are defined by scale-
invariance, meaning that the pattern that emerges when the
process is repeated remains the same regardless of the scale
at which it is viewed. While fractal patterns may be easiest to
visualize in the spatial domain, such as in the geometric structure
of a snowflake, tree, or perfect fractal, they also exist in the
time domain. In temporal fractals, a sequence of events occurs
at no dominant time-scale and a recursive structure emerges
in the corresponding time-series. As such, temporal fractals
are also characterized by self-affinity and power-law behavior
(Eke et al., 2002). The former refers to the notion that when a
smaller element of the signal is magnified along the time axis
it resembles a larger element of the whole. The latter denotes
that if you double the frequency, the power diminishes by the
same fraction [the spectral index, or Beta (β)] regardless of the
chosen frequency on the signal’s power spectral density (PSD).

More formally, the power law is expressed as
∣

∣A
(

f
)∣

∣

2
∝ c · f−β

on the log-log representation of the PSD, where β is the negative
slope of a straight line fitting the distribution (Eke et al., 2000).

Scaling behavior is a pervasive and powerful phenomenon
in the universe. Since fractals were first identified in the
1980s (Mandelbrot et al., 1983), they have been recognized
in natural objects, physiological systems, and more recently,
the brain. In the past two decades, numerous neuroimaging
studies have reported scaling behavior in both the spatial domain
(i.e., dendritic branching) and time domain (i.e., neuronal
activity) (Caserta et al., 1995; Mazzoni et al., 2007; Bédard and
Destexhe, 2009). Where spatial fractals can provide information
about anatomical neurodevelopment and organization, temporal
fractals present an exciting opportunity to explore the signal
dynamics that mediate neural functioning over time. Among
other functional imaging modalities (Bullmore et al., 1994;
Bassett et al., 2006; Moser et al., 2019; Zhu et al., 2020), the
temporal scaling patterns in the brain are captured in the
fMRI BOLD signal, which measures hemodynamic variation in
brain tissue over time (Ogawa et al., 1990). The persistence
of fractal properties in the BOLD signal can be quantified
with fMRI fractal analysis, which describes the dynamics of the
hemodynamic fluctuations in the brain. While other analyses
of fMRI data often report topological or connectivity patterns
that emerge at a specific scale (He, 2011), fractal analysis is a
signal-based method that describes the correlation structure of
a process across temporal scales (Eke et al., 2002). Thus, the
technique provides novel and complementary information about
the structural mechanisms that underlie neuronal oscillations
and meditate functional processes.

In monofractal (as opposed to multifractal) analysis, fractal
signals are described by a single parameter, the Hurst exponent
(H), that reflects the global scaling behavior of a system. H is a
measure of the correlation structure in a signal (Eke et al., 2000),
where H < 0.5 indicates anticorrelation in the signal, H = 0.5
indicates there is no correlation (it is a random white noise or
walk), and H > 0.5 indicates positive correlation or the presence

of long-memory in the process. Like many other physiological
signals, the BOLD time-series exhibits long-range correlations
across a hierarchy of time-scales as shown by consistent findings
of H > 0.5 in cortical regions of the brain (Fadili and Bullmore,
2002; von Wegner et al., 2018). In fMRI fractal analysis, higher
H values suggest that there is longer memory in the BOLD
signal, meaning that past dynamics more strongly mediate future
processes in the brain. Conversely, lower H values reflect less
correlated fluctuations and a more disordered structure in the
BOLD signal. Importantly, the strength of correlation in neural
signals largely impacts how the brain is able to process and
function. This has been demonstrated in numerous studies that
have highlighted the physiological relevance of H in the BOLD
signal (Maxim et al., 2005; Wink et al., 2006; Barnes et al., 2009;
He, 2011; Lei et al., 2013; Sokunbi et al., 2014; Churchill et al.,
2015, 2016; Gentili et al., 2015, 2017; Dong et al., 2018).

BOLD signal H values seem to reflect internal changes in the
brain (i.e., aging and disease progression) (Maxim et al., 2005;
Sokunbi et al., 2014; Dong et al., 2018). They are also affected by
external perturbations to the system as demonstrated by various
task-based studies. He (2011) showed that H values in all 21
brain regions analyzed were lower while performing a button-
pressing task relative to during resting state conditions (watching
cross-hair). This finding of weaker correlation in the BOLD signal
during task has been observed in multiple studies (Barnes et al.,
2009; Ciuciu et al., 2014; Churchill et al., 2016). Furthermore,
task novelty and cognitive effort correlate with reductions in H
across multiple task conditions; more novel and demanding tasks
predict lower H values (Churchill et al., 2016). In line with these
findings, Barnes et al. (2009) showed that task difficulty relates
to the recovery time of scale-free dynamics using a rest-task-rest
paradigm. It takes more time for the brain to return to its pre-
task H value when the preceding task requires more cognitive
effort, suggesting that greater cognitive load causes a larger shift
from more correlated to less correlated dynamics. In this lower-
H task state, the signal is less constrained by a strongly-correlated
and redundant signal structure characteristic of the resting state.
It has been suggested that this shift in signal dynamics may
allow for more efficient processing of new information and better
performance on discrete tasks (He, 2011).

In addition to the use of conventional tasks and resting state
conditions, researchers are increasingly interested in using more
complex, naturalistic conditions to study brain function. Such
conditions (e.g., movie-watching, listening to stories, playing
video games) are thought to be more ecologically valid, and in
some instances, have been shown to impart advantages for fMRI
studies (Vanderwal et al., 2015, 2017, 2019; Sonkusare et al.,
2019; Eickhoff et al., 2020; Finn and Bandettini, 2021). One
motivating idea within naturalistic imaging is that naturalistic
conditions evoke neural responses that are unique (Hasson
et al., 2010; Nastase et al., 2020). For example, as noted by
Hasson et al. (2010), individual neurons in primary visual
cortex of anesthetized cats showed different firing rates during
naturalistic viewing compared to frequently used conventional
task conditions like visual grating stimuli, suggesting that in
some brain regions the timing of neural responses may be more
precise during naturalistic conditions (Dan et al., 1996; also
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see Gallant et al., 1998 for similar findings in the macaque).
At the BOLD signal level, we know that signal changes during
movie-watching are concerted across subjects, and that this
synchronized activity covers a large portion of the cortex
(Hasson et al., 2004). These intersubject correlations demonstrate
predominantly lower frequency bands in temporal and frontal
regions, and high frequency bands in visual cortex (Kauppi et al.,
2010). Recent dynamic analyses in movie fMRI showed that
functional connectivity networks interact and reconfigure into
a reliable repertoire of states during movies, and that relative
to rest, these brain states are more plentiful and varied (Meer
et al., 2020). Using MEG to measure band-limited power during
movie-watching, Betti et al. (2013) showed that most resting
state networks had a decrease in power during movies, and
showed greater variability in power in the visual occipital cortex.
They concluded that though the spatial topography of networks
was maintained from rest to movies, the frequency domain
underwent significant modulation (Betti et al., 2013). In a small
sample of healthy adults, multi-scale entropy of the signal overall
was greater during movies and rest relative to task (Vanderwal
et al., 2019). Together, these findings indicate that naturalistic
conditions alter temporal and frequency characteristics of BOLD
signal in unique ways, but to date, few papers have attempted
to directly assess signal characteristics during movie fMRI
compared to conventional eyes-open rest.

In this context, we wanted to determine if the BOLD signal
during movie-watching had different fractal dynamics than
during rest, whether any cross-condition differences in H values
were network specific, and if the test-retest reliability of H-values
were different in movies and rest. Based on the findings cited
above in which task-processing decreased H-values compared
with rest, we hypothesized that movie-watching (as a robust task
state) would have lower H values than rest overall, and that this
effect would be especially pronounced in networks known to be
involved in movie processing (e.g., visual network, frontoparietal
network). We further predicted that reliability of H values would
be comparable across movies and rest. These hypotheses were
tested using the open-source Human Connectome Project (HCP)
data 7T release, which had a high sampling rate (TR = 1 s) and
many time-points (∼900 volumes per condition), as well as both
Rest and Movie watching paradigms in the same subjects.

METHODS

HCP Data
Data for this study are from the Human Connectome
Project’s Young Adult cohort (HCPS1200 release https://www.
humanconnectome.org/) (Van Essen et al., 2012). The resting
state and movie-watching runs from the 7T fMRI dataset were
used for all analyses.

Participants
One thousand two hundred and six healthy young adults were
recruited via the Missouri Family Registry from 2012 to 2015.
The Washington University in St. Louis Institutional Review
Board was the approving body for all parts of the Human
Connectome Project, and all participants gave written informed

consent. Participants scanned at 7T were first recruited as part of
the original 3T HCP dataset.

7T FMRI Scanning Procedure
Subjects were scanned across four sessions and 2 days, resulting
in a total of 4 resting state (Rest1, Rest2, Rest3, and Rest4),
and 4 movie-watching (Movie1, Movie2, Movie3, Movie4) runs.
Session 1 and Session 2 were conducted on Day 1, and Session 3
and Session 4 were conducted on Day 2. One resting state run
was acquired at the beginning of all sessions. Movie-watching
data were only acquired in Sessions 1 and 4. Subjects watched
Movie1 and Movie2 on Day1, and Movie3 and Movie4 on Day4
(Figure 1). Anatomical data were acquired on a 3T machine on a
previous date.

Resting State Scans
Each resting state run was 16min long. Subjects’ eyes were open
and they were asked to fixate on a bright cross-hair projected on
a dark background.

Movie-Watching Runs
All movie-watching scans are between 15:01 and 15:21min.
Movie1 and Movie3 are a concatenation of independent short
clips from Creative Commons (CC) licensing on Vimeo.com
(Movie1 example: https://bit.ly/3t7hI7Y). Movie2 and Movie4
are different collections of Hollywood excerpts (HO) published
by Cutting et al. (2012). All movies included 20 s of rest between
each clip and at the start and end of the full movie. Each
movie compilation also included the same repeat validation
clip from a CC Vimeo movie (1min, 24 s). Subjects watched
Movie1 and Movie2 following Rest1, and Movie3 and Movie4
following Rest4.

Acquisition Details
Structural data (T1 weighted and T2 weighted scans) were
collected on a customized Siemens 3T (Connectome Skyra) with
a standard 32-channel Siemens head coil. 3T structural (along
with fMRI and diffusionMRI acquisitions not used in the current
study) were collected over four imaging sessions of∼1 h each. T1
weighted scans were acquired using a 3D MP-RAGE sequence
with the following parameters: TR = 2.4 s, TE = 2.14ms, TI =
1 s, flip angle = 8◦, FOV = 224 × 224mm, matrix size = 320
× 320mm, slice thickness = 0.7mm, voxel size = 0.7 × 0.7 ×

0.7 mm3, image acceleration = 2, scan time = 7min 40 s. T2
weighted scans were acquired using a 3D T2-SPACE sequence
with the following parameters: TR = 3.2 s, TE = 565ms, FOV
= 224× 224mm, matrix size= 320× 320mm, slice thickness=
0.7mm, voxel size = 0.7 × 0.7 × 0.7 mm3, image acceleration =

2, scan time= 8min 24 s.
Functional MRI scans were collected using a 7-Tesla Siemen’s

Magnetom scanner. 7T scanning sessions involved resting state
fMRI, movie-watching fMRI, retinotopy fMRI and diffusion
MRI acquisitions collected over four imaging sessions of∼1.25 h
each (see https://www.humanconnectome.org/storage/app/
media/documentation/s1200/HCP_S1200_Release_Reference_
Manual.pdf for full details). fMRI gradient-echo EPI runs used
the following parameters: TR = 1 s, TE = 22.2ms, flip angle
= 45◦, FOV = 208 × 208 mm2, matrix size = 130 × 130, 85
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FIGURE 1 | A schematic of the HCP scanning protocol by day and session. Blue boxes indicate resting state runs and orange boxes represent movie-watching runs.

CC, Creative commons; HO, Hollywood excerpts.

slices, slice thickness = 1.6mm, voxel size = 1.3 × 1.3 × 1.3
mm3, multiband factor = 5, image acceleration = 2, scan time
per run = ∼15min. Resting state and movie-watching runs
were acquired using the same parameters, but the difference
in movie durations resulted in a different number of volumes
per run. The resting state scans all have 900 time-points, while
Movie1, Movie2, Movie3, and Movie4 have 921, 918, 915, and
901 time-points, respectively.

Sample
Data from all 184 subjects with 7T fMRI data were downloaded.
Participants were excluded if they had a mean framewise
displacement (FD) of >0.15mm in any single run, leaving 143
subjects. Because our central question hinged on cross-condition
comparisons, we assessed mean FD across conditions, and found
a significant difference (movie < rest). We then ran a simple
motion-matching algorithm, removing those participants who
had the greatest mean FD fromRest until we had a cohort with no
significant difference in mean FD across conditions (MOVIE) (p
= 0.166, 95% CI [−0.006, 0.001]). The sample used in all analyses
going forward comprised 72 participants (41 females; mean 29.46
± 3.76 standard deviation years of age).

Preprocessing
The pre-processed ICA-FIX denoised fMRI data from HCP
was downloaded and used for this study. According to HCP,
independent component analysis (ICA) was run on high-pass
filtered scans using FSL’s MELODIC (https://web.mit.edu/fsl_v5.
0.10/fsl/doc/wiki/MELODIC.html) (Smith et al., 2004; Woolrich
et al., 2009; Jenkinson et al., 2012), and FSL’s FIX (Griffanti
et al., 2014; Salimi-Khorshidi et al., 2014) was subsequently
used to identify and remove the artifactual components. Motion
parameters were also aggressively regressed out of the data. We
applied a 5mm FWHM smoothing to the cleaned data.

BOLD Measures
Preprocessed ICA-FIX denoised data were smoothed with a
5mm FWHM kernel using the fslmaths program and run
through AFNI’s 3dRSFC program (https://afni.nimh.nih.gov/

pub/dist/doc/program_help/3dRSFC.html) (Taylor and Saad,
2013) to generate ALFF maps for each subject and condition.
ALFF was calculated after 0.01–0.08Hz bandpass filtering. The
standard deviation of the BOLD signal was also calculated for the
whole brain voxel-wise.

Fractal Analysis
There are many different methods used to calculate H depending
on the domain (i.e., frequency or time) and signal class of the
data. A power-spectrum based method (frequency domain) was
used to calculate H, as this approach has been shown to be
sensitive to both tissue type and activation in fMRI data (Rubin
et al., 2013). The power spectrum of all gray matter voxels
was calculated using Welch’s periodogram (using the python
library SciPy.Signal) with eight windows of 50% overlap on a
restricted frequency range of the data (above 0.01Hz), mirroring
the parameters used by Rubin et al. (2013). PSD plots of gray-
matter voxels were generated to confirm power-law scaling
across frequencies >0.01Hz (Supplementary Figure 1). β was
calculated as the negative slope of a straight line fitting the PSD
distribution on a log-log scale.

The Beta value of a signal determines its signal class.
Generally, a fractal process is realization of one of two classes:
fractional Gaussian noise (fGn), defined as β < 1, or fractional
Brownian noise (fBm), defined as β > 1 (Eke et al., 2000). fGn
signals are stationary processes with constant variance, whereas
fBm signals are non-stationary processes with increasing variance
over time. As detailed by Eke et al. (2000), the calculation of H

depends on signal class, where H is related to β H =
(β+1)

2 and

H =
(β−1)

2 for fGn and fBm signals, respectively (Eke et al.,
2000). This method generates standard values between 0 and 1
for both signal classes. While this interpretation of H (0<H< 1)
is commonly used in the literature, it bears confusion in the field
as it does not reflect the signal’s class. Processes with the same H
value that are of a different class will have β values differing by 2
and thus very different scaling properties. This leads to erroneous
fractal estimates and ambiguity in interpretations. Alternatively,

the concept of “extended H
′′

(H
′

), where 0 < H
′

< 2, reflects
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the signal class of the data. Here, 0 < H
′

< 1 describe fGn

processes and 1<H
′

< 2 describe fBm processes (Eke et al., 2000;
Hartmann et al., 2013). In efforts to mitigate uncertainty and

confusion, H
′

values are used in this analysis, but are henceforth
simply referred to as H. The extended Hurst exponent was

calculated as H′ =
(β+1)

2 . In-house Python scripts used for
calculating H are available on our lab’s GitHub: https://github.
com/WeberLab/FractalDimension/blob/master/welch.py.

ROI Analysis
Gray matter and 7 functional connectivity-based network masks
were made using FSL. Yeo 2011 7-network “liberal” RSN masks
were downloaded from FreeSurfer (https://surfer.nmr.mgh.
harvard.edu/fswiki/CorticalParcellation_Yeo2011), cropped and
resampled to the HCP’s volumetric functional MNI space using
FSL’s FLIRT utility (Jenkinson and Smith, 2001; Jenkinson et al.,
2002).

Gray matter ROI was created by thresholding FSL’s MNI
avg152 tissueprior gray, white and CSF probabilistic maps to
above 50%, subtracting remaining white and CSF voxels from the
gray, and resampling toHCP dimensions as above. The networks,
as identified in Yeo et al. (2011), are: visual (Vis), somatomotor
(SoM), dorsal attention (DAtt), ventral attention (VAtt), limbic
(Lim), frontoparietal (FP), and default network (DN) (Yeo et al.,
2011).

Reliability
The intraclass correlation coefficient (ICC) was used to measure
and interpret the test-retest reliability of H during movie-
watching and rest. A two-way random, absolute agreementmodel
with single measures was used [commonly known as ICC(2,1)]
(Noble et al., 2021). The ICC of H was calculated for Movie
(where all 4 movie runs are raters) and for Rest (where all 4
resting state runs are raters) to determine the stability of H within
each condition.

Investigating Fractal Origins: Motion and
Movie Features
The fractal properties of head movement and the movie stimuli
were analyzed in order to investigate if fractal patterns in the
brain are driven by intrinsic (e.g., neuronal) or extrinsic (e.g.,
motion) factors.

Motion
TheH value of every subject’s FD time-series was calculated using
the same fractal analysis method described above.

Movie Stimulus
The time-series of three movie features [brightness, zero-crossing
rate (ZCR), and root mean square (RMS)] were extracted
from each movie to analyze visual and auditory temporal
dynamics. This was done using Pliers, a Python package for
automated feature extraction of multimodal stimuli (http://
psychoinformaticslab.github.io/pliers/index.html). For all four
movies, the H value was calculated for each feature.

Statistical Analysis
All statistical analyses were conducted using RStudio (R Studio
Team, 2020). H was compared between Rest and Movie in the
gray matter using a paired Student’s T-test for all 8 regions of
interest (gray matter and 7 networks). Multiple comparisons
among the networks were corrected for using Holm’s Step-
Down Procedure (Holm, 1979). In order to compare ICC
values between conditions, Rest and Movie ICC values were
calculated with bootstrapped resampled data 1,000 times. The
95% confidence intervals (CIs) of the difference in ICC values
were then calculated using the percentile method.

RESULTS

Whole-Brain H Is Greater in Movie Than
Rest
Contrary to our original hypothesis, movie-watching resulted
in significantly higher H values in whole-brain gray matter
(Figure 2A; mean difference = 0.014; p = 5.279 × 10−7; 95% CI
[0.009, 0.019]). This means that overall there is more persistent
fractal phenomena and scale-invariant behavior in the brain
while watching a movie relative to rest. The effect size is small
(Cohen’s D = 0.32), with an increase in H observed in 54
subjects and a decrease in 18 (Figure 2B). H in both conditions is
positively correlated with amplitude of low frequency fluctuation
(ALFF) (Movie: r = 0.784; p < 0.001; Rest: r = 0.782, p < 0.001)
(Figure 2C) and standard deviation (SD) (Movie: r = 0.642; p <

0.001; Rest: r= 0.558, p< 0.001) of the BOLD signal (Figure 2D).

Cross-Condition Changes in H Are
Network-Specific
While at the whole-brain level H is greater during movie-
watching, the cross-condition comparisons differ between
networks (Figure 3). H is significantly higher in Movie than
Rest in the visual (mean difference = 0.096, adj-p = 2.11 ×

10−25, 95% CI [0.084, 0.108]), sensorimotor (mean difference =
0.022, adj-p = 1.21 × 10−4, 95% CI [0.113, 0.033]), and dorsal
attention (mean difference = 0.026, adj-p = 1.1 × 10−14, 95%
CI [0.021, 0.003]) networks. Conversely, H is significantly lower
during movie-watching in the frontoparietal (mean difference =
−0.012, adj-p = 9.74 × 10−6, 95% CI [−0.017, −0.007]) and
default (mean difference = −0.010, adj-p = 3.15 × 10−5, 95%
CI [−0.014,−0.005]) networks. There is no significant difference
across conditions in the ventral attention (adj-p = 0.054, 95%
CI [−0.010, 8.08 × 10−5]) and limbic (adj-p = 0.167, 95% CI
[−0.001, 0.007]) networks.

Reliability of H in Movie and Rest Condition
The ICC values during movie-watching were 0.698 (95% CI
[0.569, 0.770]) and 0.688 during resting state in the gray matter
(95% CI [0.533, 0.779]) (Figure 4). ICC values are interpreted
as: poor <0.4, fair 0.4–0.59, good 0.6–0.74, and excellent >

0.75 (Noble et al., 2021). Overall in the gray matter, the test-
retest reliability of H is good in both conditions. It is also
good across most of the networks, with exceptions being the
limbic network during rest (fair reliability) and the frontoparietal
network during movie-watching (excellent reliability). The 95%
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FIGURE 2 | Cross-condition comparison of whole-brain H (N = 72). (A) H values in rest (top) and movie-watching (bottom) of sample sagittal, coronal and axial slices

in a single subject. Images show distinction between cortical gray and white matter, and values that appear greater in Movie relative to Rest in a non-homogeneous

distribution. (B) Box-plot of H between Movie Watching (left, orange) and Rest (right, blue) showing group-level finding that H-values are significantly greater in Movie.

Black lines depict participants with greater H in Movie than Rest, and light-gray lines depict participants with lower H in Movie than Rest. (C,D) Scatter-plot of H vs.

ALFF and H vs. standard deviation of BOLD values, respectively, with Movie (orange) and Rest (blue), showing positive correlations for both conditions in both cases.

Gray shadows over orange and blue lines depict the 95% confidence interval for predictions from a linear model.

FIGURE 3 | H across conditions, by intrinsic connectivity network (N = 72). Top center: violin plots for Movie and Rest showing H values of seven resting state

networks (RSNs) from Yeo et al. Brains at the top left and right show topography of those networks using the same colors. H values ranged from 0.69 to 1.24,

suggesting that BOLD signal within all networks demonstrates self-similarity. Bottom: scatter plots of H by condition for each RSN separately. Horizontal lines show

the mean and standard deviation of H. Light gray boxes highlight which condition (Movie or Rest) had the higher statistically significant average value. Three networks

had higher H values during Movie (visual, somatomotor and dorsal attention networks), and two networks had higher H values during Rest (frontoparietal and

default networks).
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FIGURE 4 | ICCs of H across resting state runs and different movies. GM

shown on left, with the seven RSNs on the right (separated by vertical dashed

line). Vertical black bars represent 95% confidence intervals. Horizontal gray

band in background represents good test-retest reliability (0.60 < ICC < 0.74).

CI of the difference between gray matter Rest and Movie ICC is
[−0.137, 0.180], using 1,000 bootstraps of the original samples.
Since the interval includes 0, the difference in reliability is
not significant.

Investigation of Fractal Origins
The average H of the FD time-series are between 0.494 and 0.602
(Figure 5A). This suggests that the motion of subjects has weaker
fractal properties and is a less correlated, more random temporal
process. Across all runs, the H value of FD time-series during
movie-watching is significantly greater than rest (mean difference
= 0.077; p= 1.709× 10−10; 95%CI [0.054, 0.100]). Themean FD
for each run is between 0.107 and 0.128mm (Figure 5A). Of the
movie features, the brightness time-series has the highest meanH
across movies (1.294± 0.016), followed by RMS (0.840± 0.125),
then ZCR (0.750± 0.057) (Figure 5B).

DISCUSSION

Whole-Brain H Values
In this study, we found that fMRI BOLD data demonstrates
scale-invariant behavior during both movie and resting state
conditions. Spatially, the whole-brain voxel-wise H values
qualitatively differentiated between tissue type (i.e., higher values
in graymatter and lower values in white matter and cerebrospinal
fluid regions) and demonstrated a non-uniform pattern of
distribution that aligns with functional specialization (e.g., higher
values in visual cortex during movies and lower values in primary
sensory and motor cortex during rest, Figure 2). Additionally, to
aid in the assessment of the H values, we calculated the standard
deviation (SD) and the amplitude of low-frequency fluctuations
(ALFF) of the BOLD signal for each voxel. In the gray matter,
for both movie and rest, we found that H is positively correlated
(r ∼ 0.7) with both SD and ALFF, which is also consistent
with previous studies (Churchill et al., 2016; Gentili et al.,
2017). These positive relationships suggest that scale-invariant
phenomena relate to knownmeasures of variability, and aremore
prominent in regions with greater neurovascular variability and
lower frequencies (Akhrif et al., 2018), respectively. Overall, the

FIGURE 5 | H values of other possible sources of fractality. (A) H values of the

FD time-series of all 72 subjects by run are shown in the boxplots. Orange

boxplots are the Movie runs (M1 = Movie1, M2 = Movie2, M3 = Movie3, M4

= Movie4), blue are the Rest runs (R1 = Rest1, R2 = Rest2, R3 = Rest3, R4

= Rest4). The mean FD values are shown by the horizontal teal lines for each

run using the secondary y-axis (right). (B) H values of the time-series of three

movie features (brightness, RMS, ZCR) for each movie.

range of H values in these 7T data, their spatial distribution, and
their positive relationship to SD and ALFF are all in keeping
with previous findings of H in BOLD signal during resting state
conditions (Wink et al., 2008; He, 2011; Herman et al., 2011;
Churchill et al., 2016; Gentili et al., 2017). The novel contribution
is that we provide the first analysis of H in naturalistic movie-
watching conditions, with over 900 volumes of data per subject
per condition across 4 independent runs.

Gray Matter ROI
In the whole-brain gray matter mask, we found that H values
were higher during movie-watching than the resting state.
This means that movie-watching induces a more temporally
redundant, autocorrelated signal structure than exists during
rest. In other words, during movie-watching there is stronger
long-range dependence in the signal such that past dynamics
more heavily mediate future brain processes. During the resting
state, on the other hand, the BOLD signal is less positively
correlated and more disorder is present in the underlying
dynamics. This is in marked contrast to our original hypothesis
based on previous task-based fractal findings, which found that
H decreases from rest during a task (Barnes et al., 2009; He,
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2011; Churchill et al., 2015, 2016). The differing findings suggest
that the fractal dynamics involved in signal processing may
depend on the nature of the stimulus. Here, we compared the
processing of two different stimuli: a movie, which is continuous
and multimodal, and a cross-hair, which is stationary and not
very ecologically-valid. By quantifying the difference in fractal
dynamics during the processing of each stimulus, our findings
reveal novel information about the possible signal mechanisms
involved in naturalistic perception and the function of scale-free
dynamics in processing.

Mechanistically, the scale-invariant properties during movie-
watching may emerge to help support the continuous perception
of the movie. When processing a movie the brain must
dynamically reconfigure to keep integrating the continuously
changing sensory information. Recent investigations have found
that the brain becomes “multistable” while movie-watching
(Meer et al., 2020), meaning that the brain switches between
weakly stable states during processing. In a multistable system,
each state is defined by an independent attractor and the
jump from one attractor to the next is driven by noise
processes (Freyer et al., 2012). Using the hidden Markov
model, Meer et al. found that during movie-watching, the
brain transitions through a higher number of brain states
(ten) than in the conventional resting state (two), and that
the state shifts occur at a faster rate (Meer et al., 2020).
When interpreting these brain-state findings with our signal-
based findings, we speculate that as the brain organizes and
reorganizes to assemble the higher number of brain states
while watching a movie (Meer et al., 2020), the underlying
BOLD signal develops a more strongly correlated, self-similar
signal structure to support the transitions. Our whole-brain
findings suggest that fractal processes may be a key mediator
of continuous perception by driving neural activity through a
sequence of state transitions that help predict and update brain
states more efficiently.

Fractal dynamics may emerge to support the state transitions
during movie-watching because it is functionally advantageous
when processing a continuous stimulus. A system that has
weak multi-stability, maximal dynamic range, and no dominant
temporal scale is thought to be capable of the most efficient
responses to the widest array of events (Kardan et al., 2020b).
With greater flexibility across a hierarchy of time scales, the
brain can easily transition between attractors and quickly adapt
based on the demands of the environment. As higher H
values reflect closer proximity to this state (Kardan et al.,
2020a), our findings suggest that movie-watching evokes fractal
dynamics that better mediate optimal processing than the
conventional resting state. Recent findings support this theory,
which found that higher H in individuals predicts greater
improvements on an audio-visual dual n-back task (Kardan
et al., 2020b). The authors suggest that subjects in a higher-
H state process tasks and transfer information more efficiently
when operating near criticality, leading to greater performance
improvements. Therefore, our finding supports the idea that
movie-watching evokes a state of optimal neural functioning
that may better reflect the endogenous state of the brain than a
fixed cross-hair.

Network-Level Results
It is important to note that while the difference in H between
movie and rest conditions in the gray matter is statistically
significant, it was not observed within every subject and it
is not large (Cohen’s D = 0.32/small). This may be due to
the bidirectional changes in H observed across networks; H is
significantly higher during movie-watching in three networks
and significantly lower in two. While this may have led to a
smaller effect overall in the gray matter, it provides some new
information about the temporal structure of BOLD signal in
these networks during naturalistic viewing. In line with previous
studies reporting network-specific fractal parameters (He, 2011;
Ciuciu et al., 2014), these data suggest that individual networks
exhibit distinct temporal dynamics that depend on the demands
of the current task or acquisition state.

A main finding of this work is the network-level differences
in H between Movie and Rest. During movie-watching, the
networks with significantly higher fractal parameters compared
to rest were the visual, somatomotor, and dorsal attention
networks, and the networks with greater H in rest were
the default and frontoparietal networks. As this is the first
investigation of fractal properties under naturalistic conditions,
it is difficult to make inferences about the reason for this “three
up, two down” pattern. Of the three that increased, we will focus
our discussion on the visual network, where the movie > rest
effect for H was most pronounced. Unsurprisingly, the visual
network is known to be highly involved inmovie processing, with
intersubject correlations covering much of the occipital cortex
during most movies (Hasson et al., 2004; Golland et al., 2007).
Kauppi et al. showed that ISCs in visual regions occur at higher
frequency bands than those in frontal and temporal regions
(Kauppi et al., 2010), and as mentioned in the introduction, Betti
et al. used fMRI and MEG to show greater variability in power of
the visual network signal during movies relative to rest. Regions
known to process various aspects of movies are contained within
the visual network [e.g., V1–V3 for luminance changes, V5+,
V3A, medial posterior parietal cortex and lateral occipital cortex
for local motion processing (Bartels et al., 2008)], and recent work
by Owen et al. indicate that when analyses are geared toward
identifying higher-order dynamics, visual regions are highly
involved even during story-listening (i.e., visual regions support
narrative processing even in the absence of visual input). In line
with recent work, we also suggest that aspects of higher H values
in any region may pertain to non-cognitive neural processes,
such as the generation of noise or off-line homeostatic processes
that may be part of this active, dynamic state (Laumann and
Snyder, 2021). Here, we underscore the clear finding that signal
fractality in the visual network is markedly greater during movie-
watching relative to eyes-open rest, and suggest that this may be
due to a combination of first- and second-order processes–and
possibly also non-cognitive processes–that it either orchestrates
or participates in during movie-watching.

Conversely, H was significantly greater during resting
state than movie-watching in two higher-order networks: the
frontoparietal (FP) and default networks (DN). These cross-
condition differences were small but significant, and they held
true at the individual subject level. Task-based studies suggest
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that the frontoparietal network functions as “a flexible hub of
cognitive control” (Marek and Dosenbach, 2018). It is thought
to control behavior in a goal-driven and flexible manner by
interacting with other networks to a uniquely high degree
during difficult cognitive tasks (Cole et al., 2013; Cocuzza et al.,
2020). Previous movie-based work indicates that FC of the
frontoparietal network (via dual regression) is higher during
movies relative to rest (Vanderwal et al., 2015). More specifically,
a unique study that included resting state, a finger-tapping task,
and a movie-watching condition showed that the frontoparietal
network exhibited connectivity patterns during movies that were
in fact the opposite of those observed during rest, such that
during movie, the FP became positively correlated with the DN
(Gao and Lin, 2011). Similarly, Caldinelli and Cusack recently
showed that though the frontoparietal network demonstrated
the most reconfiguration during conventional task conditions, it
was not the most flexible hub during movie-watching (Caldinelli
and Cusack, 2021). These studies suggest that FP function is
state dependent, and observations about its function during task
or rest do not extend to movie-watching. The lower fractal
parameter observed here also suggests a unique state-dependent
signal structure within this network relative to rest, and future
work is needed to better understand FP function during movie-
watching, and to relate more interpretable measures of FP
function to H.

A similar set of observations and questions relate to the default
network finding of lower H during movie relative to rest. The DN
is classically thought of as being most active when not engaged
in a task or focused on the internal environment. It supports
a myriad of cognitive processes including mind-wandering and
self-referential processing, and conventional task and resting
state situations, is most often anti-correlated with task-positive
or frontoparietal regions (Anticevic et al., 2012; Raichle, 2015;
Buckner and DiNicola, 2019). Recent work has shown that
the DN plays an important role in naturalistic processing.
For example, when connectome-based predictive modeling was
used to classify a connectome as coming from rest or movie
conditions, the DN contributed the second highest number of
parcels (after visual network) to that differentiation (Sanchez-
Alonso et al., 2021). Multiple studies have shown that the DN
supports the processing of, and possibly the memory of, longer
narratives such as those present in movies and stories (Lerner
et al., 2011; Simony et al., 2016; Baldassano et al., 2017; Tikka
et al., 2018; Nguyen et al., 2019). A recent dynamic intersubject
functional connectivity analysis of the DN during movie-
watching identified strong correlations with the experience of
surprise, but not for other events (e.g., events with high theory of
mind, emotional intensity or perceived importance) (Brandman
et al., 2021). The authors interpreted this surprise-effect as being
an instantiation of the much broader phenomenon of predictive
error-related processing (Clark, 2013; Pine et al., 2018), and
in particular, of the interplay that underlies ongoing narrative
comprehension and updating. This internal/external updating
interplay might also be consistent with the high default network
connectivity previously observed during the Inscapes paradigm,
in which participants have to use internal and previously made
observations to interpret and process abstract shapes and imagery

(Vanderwal et al., 2015). Again, much work is still needed tomore
fully characterize default network functioning during movie-
watching, particularly as some of the observations made using
task data do not seem to apply to movie-watching.

Here we show that the self-similarity of the BOLD signal
for both the default and frontoparietal networks remains
fractal during movie-watching, but that the fractality is lower
during movie than rest. Together, this “three up, two down”
pattern suggests that networks engaged by more primary
processing of stimuli become more fractal during movies,
whereas heteromodal cortex appears to achieve greater fractality
at rest. Perhaps there is something about the cognitive dynamic
processes involved in movie-watching that shifts these higher-
order networks to a slightly less efficient or optimal–or
less “natural”—state. For example, movie-watching entails an
inherently passive observership in which one can engage in high-
level social processing with absolute certainty that one will not
have to respond or have any agency in the unfolding events
(Redcay and Schilbach, 2019; Lee et al., 2020). This passive
observership may, roughly speaking, “turn off” parts of these
networks, or diminish ways in which they interact with other
regions. In this model, these networks would become even more
fractal if we were able to measure BOLD signal in more truly
interactive and naturalistic conditions. A second possibility is
that these two higher-order networks have evolved to perform
“optimally” or to be at their most fractal or “metastable” state at
rest, seemingly as part of the brain’s ability to be continuously
responsive and reactive in the face of ongoing stimulation and
dynamic inputs. In this model, H values for these networks
would always be highest during rest, and differing states or
processing demands would modulate that fractality to varying
degrees. Currently, these are loosely held conceptual questions,
and it is not clear how the observed cross-condition shifts in H
relate to neural processes or to a state of “optimal” processing
or readiness.

Reliability
When we computed ICCs of H values across four resting state
runs and four movie watching runs, we obtained values of ∼0.7,
indicating good reliability. Interestingly, these measures contain
between-session variability (i.e., runs from different days), which
in the case of functional connectivity estimates, has been shown
to have more impact on functional reliability than between-
condition reliability (O’Connor et al., 2017). The confidence
interval of the difference between bootstrapped movie and rest
ICC values crosses zero, so we conclude that ICCs of H are
similar for both rest and movie conditions. One caveat is that
while the ICCs for rest represent a fair estimate of test-retest
reliability, the ICCs for movie are computed across runs that
used different movies, providing an estimate of cross-movie
consistency rather than actual test-retest reliability. These results
are similar to other reliability assessments that have focused on
movie-rest comparisons. For example, using the same dataset,
Tian et al. showed that functional connectivity (FC) measures
across the different movies were similar to those across resting
state runs (Tian et al., 2021). Overall, our findings indicate that
H can be computed with good reliability using both movies and
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resting state conditions, despite the use of different movies and
the acquisition of scans on different days.

H of Other “In-Scanner” Factors
We wanted to test whether in-scanner head motion might be
fractal, as prior work has shown that human movement such
as gait (Hausdorff, 2007) and finger-tapping (Coey et al., 2015)
exhibit fractal characteristics. The resulting H-values for mean
framewise displacement time-courses were near 0.5, and we
therefore conclude that head motion in this sample was not
overtly fractal at this coarse level. Other work has also shown
that movies themselves exhibit fractal properties. For example,
Cutting et al. (who contributed to the movie stimuli used in the
HCP 7T scanning) summarize how shot length, scene duration,
motion changes, and sound amplitude all exhibit high degrees
of self-similarity (Cutting et al., 2010, 2018). They attribute
this to the filmmaking process in which the film is crafted
to fit or to be congruent with endogenous human attentional
processes (Gilden, 2001, 2009; Shimamura et al., 2015). Here, we
extracted statistical time-courses of visual and auditory features
of the movie, and show that even in isolation, these time-courses
demonstrate self-similarity. The high H values of the extracted
movie features further support the idea that movies evoke
ecologically-valid dynamics since scale-invariant, hierarchical
processes havemore similar statistical properties to the real world
(Sonkusare et al., 2019;Meer et al., 2020).Within this tautological
framework, it becomes exceedingly difficult to assess whether
BOLD signal during movie-watching is itself inherently fractal
or whether it is more fractal because it is evoked by fractal
stimulation or signals. For example, is the significant effect of H
in the visual network discussed above driven in whole or in part
by fractal visual input? Future work is needed to properly test and
understand these relationships.

Limitations
The overarching finding of this study is that BOLD signal reliably
demonstrates fractal properties during both movie-watching
and resting state conditions. As Cutting et al. succinctly state,
“Perhaps we should assume that fractality (Stadnitski, 2012) is the
null hypothesis when considering naturally or socially occurring,
complex temporal or spatial structure” (Cutting et al., 2018).
In contrast, previous work has clearly shown that H values
decrease significantly during conventional scientific tasks (Barnes
et al., 2009; He, 2011; Churchill et al., 2016). Given that there
are multiple ways to calculate H and a lack of standardization
when performing fractal analysis, it is challenging to directly
compare previous findings in the field to ours. Therefore, a
major limitation in the current work is that the dataset did
not have a task condition with which to compare the movie
and rest findings. We speculate that if all three conditions were
included in the same study, H would be greatest in the movie,
then rest, then task conditions. Another limitation is that the
movie watching runs in the HCP data include multiple 20 s
epochs of resting state which we did not remove because we
did not want to violate the signal dynamics within a run for
these particular signal processing analyses. Consequently, it is
possible that the cross-condition differences in H observed here

are actually an underestimation. Third, the movies used in the
HCP study are arbitrary and highly specific stimuli. There are
particularities about the movies that could result in movie-
specific findings that might not generalize, for example, to a
horror film or a cartoon. Even both Hollywood compilations
contain movies from different eras (Movie2: 2001–2020, Movie4:
1980–2000) and therefore contain significant differences in scene
length, shot duration, andmany other technical features (Cutting
et al., 2010, 2018) that could differentially influence BOLD-
signal dynamics. Finally, we used resting state networks as a
meaningful measure of functional organization in the brain,
but these networks likely privilege resting state. Future studies
might reveal important differences in fractality across states using
movie-derived parcellations (e.g., Bottenhorn et al., 2018).

CONCLUSION

We investigated the difference between the brain’s fractal
dynamics during movie-watching and eyes-open resting state
conditions using 7T fMRI data. In the gray matter overall,
we found that H values were higher in the movie condition,
suggesting that movie-watching evokes more scale-invariant
and positively correlated dynamics in the BOLD signal. At the
network-level, H was greater during movie-watching in the
visual, somatomotor, and dorsal attention networks, and this
effect was especially robust in the visual network. Interestingly,
we found that H values in higher order networks (frontoparietal
and default) showed the opposite effect, with slightly higher
H values at rest. The test-retest reliability of H was overall
“good” in both conditions, providing evidence that H can
be measured even across different movies with comparable
reliability to that attained across resting state runs. These findings
provide new information about BOLD signal characteristics
during naturalistic movie watching conditions, and open up
new questions about the purpose and source of scale-invariant
dynamics during naturalistic conditions. In particular, we
suggest that the overall fractality observed during both movie-
watching and rest sheds new light on the lower H BOLD
signal patterns previously observed during conventional tasks.
Future work might investigate the shifts between fractal and
non-fractal patterns of signal within a region or network, and
might assess the relationship between a region’s functional
characteristics (e.g., connectivity, modularity, or multistability)
and signal self-similarity.
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