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The second-order noniterative doubles-corrected random phase
approximation (RPA) method has been extended to triplet excita-
tion energies and the doubles-corrected higher RPA method as
well as a shifted version for calculating singlet and triplet excita-
tion energies are presented here for the first time. A benchmark
set consisting of 20 molecules with a total of 117 singlet and
71 triplet excited states has been used to test the performance of
the new methods by comparison with previous results obtained
with the second-order polarization propagator approximation
(SOPPA) and the third order approximate coupled cluster singles,

doubles and triples model CC3. In general, the second-order dou-
bles corrections to RPA and HRPA significantly reduce both the
mean deviation as well as the standard deviation of the errors
compared to the CC3 results. The accuracy of the new methods
approaches the accuracy of the SOPPA method while using only
10–60% of the calculation time. © 2019 The Authors. Journal of
Computational Chemistry published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.26074

Introduction

A powerful tool for studying excited states in molecules is the
polarization propagator also known as the linear response func-
tion.[1,2] The polarization propagator describes how a system
responds to a time-dependent perturbation and is used for calcu-
lating both excitation energies and various response properties.
Excitation energies are obtained as the poles of the polarization
propagator and the transition moments are the corresponding
residues. In practice, the excitation energies can be determined as
the eigenvalues of a corresponding eigenvalue problem.[2,3]

The polarization propagator forms the basis of widely used
methods for the calculation of excitation energies of various sys-
tems and accuracies. Naturally, as the size of a system increases,
the accuracy of feasible theoretical methods decreases. This study
focuses on methods that give reliable results while still being fea-
sible for chemical interesting systems.

The by far most used method for studying excited states is the
time-dependent density functional theory (TDDFT) method,[4–6]

which can handle rather large systems within an acceptable balance
between cost and accuracy. However, TDDFT is known to have some
difficulties, for example, in describing Rydberg and charge-transfer
states,[6] handling states with significant double excitation character,
and can suffer from triplet instabilities.[7] If higher accuracy is needed,
one often turns to the linear response coupled cluster (CC)-based
methods or related equation-of-motion CC methods, which benefit
from the well-defined hierarchy with respect to accuracy that can be
defined based on the excitation rank of the operators included in
the CC expansion, leading to the coupled cluster singles (CCS),
coupled cluster singles and doubles (CCSD), coupled cluster singles,
doubles and triples (CCSDT) models, and so forth.[8–12]

An alternative strategy is to define appropriate approximations
to the polarization propagator in a consistent manner with the

aid of Møller–Plesset perturbation theory by evaluating the prop-
agator with respect to the order in the fluctuation potential to
which the propagator, excitation energies, and transition
moments are correct. This allows for the construction of a hierar-
chy with respect to accuracy, similar to that of the CC-based
methods. Two related but not equal approaches exist for this: the
algebraic–diagrammatic construction approaches[13,14] and the
nth-order polarization propagator approximations.[2]

In the zeroth-order polarization propagator approximation, excita-
tion energies are simply equal to orbital energy differences. The
first-order polarization propagator approximation is also called time-
dependent Hartree–Fock or the random phase approximation
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(RPA).[15,16] The wave function which is used to construct the RPA
equations is the Hartree–Fock self-consistent field wave function
and RPA excitation energies consist of single excitation (and de-
excitation) contributions only. The working equation of RPA is very
similar to that of TDDFT and the two methods thus suffer from the
same issues, however, to a different extent, as mentioned above.

In the second-order polarization propagator approximation
(SOPPA), the wave function employed is the second-order Møl-
ler–Plesset wave function and both single and double excitation
(and de-excitation) operators are included.[2,17] Excitation energies
dominated by single excitations are in SOPPA correct through
second order, whereas pure double excitations are correct only
through zeroth order, corresponding to orbital energy differences.
Solving the full SOPPA equations becomes demanding for large
systems due to the rapidly increasing number of double excita-
tions with increasing number of orbitals. Thus, a number of
methods have been developed which aim to capture some of
the effects from SOPPA while reducing the size of the problem.

Such approximations start from the RPA problem with the
oldest being the higher RPA method (HRPA),[18–20] a precursor
to SOPPA. In HRPA, the second-order contributions, which are
included in SOPPA, to the single excitation manifold are added
to the RPA equations. The HRPA method is thus somewhere
between a first-order and a second-order method and the per-
formance is in fact worse than RPA due to the tendency to
overestimate excitation energies considerably.[19,21,22]

A more successful approximation is the doubles-corrected RPA
method (RPA(D)), which includes the second-order contributions
from SOPPA in a noniterative fashion on top of a normal RPA cal-
culation using pseudoperturbation theory.[23] The RPA(D) method
is superior to the RPA and HRPA methods,[23–27] but a drawback is
that if the RPA solution suffers from the so-called singlet and in
particular triplet instabilities,[28] the RPA(D) result will be unreliable
which will be demonstrated in this study. We will show that this
problem can be circumvented by combining the apparent stability
of the HRPA method with the noniterative doubles correction and
we call this method the HRPA(D) method. Other examples of cir-
cumventing the issue of triplet instabilities in RPA are to employ
the well-known Tamm–Dancoff approximation (TDA),[29,30]

resulting in the configuration interaction singles (CIS) method or
to use the recent particle–particle RPA method.[30]

For testing the new methods, we use the popular benchmark
set constructed by Thiel et al.,[31–33] which consists of 28 medium-
sized molecules intended to resemble organic chromophores.
Because this benchmark set considers only valence excited states,
a separate study would be needed to investigate the performance
of the new methods for Rydberg excited states. In the original
study, singlet and triplet vertical excitation energies were calcu-
lated at the CC2, CCSD, CC3, and CASPT2 levels using the
medium-sized basis set TZVP with the conclusion that, compared
to the CASPT2 results, the CC3 method was superior to the CC2
and CCSD methods.[31] Although CC2 performed best for singlet
excitation energies,[26,31] CCSD performed slightly better for triplet
excitation energies.[31] In a recent study by Loos et al.[34] on
106 different singlet and triplet excited states, the CCSD method
was found to perform slightly better than CC2 and again the CC3

method was found to perform very well-giving results almost iden-
tical to the CCSDT and coupled cluster singles, doubles, triples and
quadruples (CCSDTQ) methods. In this study, we have chosen to
use the CC3 results as reference values.

The performances of the SOPPA-based methods, RPA(D),
SOPPA, and SOPPA(CCSD), where the MP2 amplitudes were
replaced by CCSD amplitudes, were recently investigated by
Sauer et al.[27] using the benchmark set of Thiel et al. Singlet
excitation energies were calculated with the TZVP and also the
larger aug-cc-pVTZ basis set. Comparing the SOPPA/aug-cc-
pVTZ singlet excitation energies to the CC3/aug-cc-pVTZ ener-
gies showed that the SOPPA results on average underestimated
the energies by 0.45 eV. The RPA(D) results showed quite differ-
ent behavior because they were distributed more around the
CC3 results, leading to an average underestimation of 0.16 eV.
The consistency of the RPA(D) results was, however, lower than
the SOPPA results as indicated by a larger standard deviation.

Triplet excitation energies were calculated using the SOPPA
and SOPPA(CCSD) methods and the TZVP basis set with the
conclusions very similar to those of the singlet excitation
energy results. In this study, we extend that study to include
also triplet excitation energies on the RPA(D) level.

Compared to the CC3 results, the performances of the SOPPA-
based methods are worse than the CC2 results presented in Ref.
[31]. As mentioned in Refs. 27 and 26, the standard deviations of
the CC2 and SOPPA results are similar whereas the mean deviation
of the CC2 results is smaller than SOPPA. The comparison of the
SOPPA methods with TDDFT methods is rather difficult as TDDFT
results vary significantly with the choice of exchange correlation
functional.[35] A comparison with the widely used B3LYP functional
shows that although SOPPA underestimates the results slightly
more, the consistency of the SOPPA results is significantly better.

The benchmark set of Thiel et al., or a subset hereof, has been
used by various authors to study vertical excitation energies using
semiempirical methods,[36] various ADC methods,[37–39] the PNO-CC2
method[40] as well as a recent implementation of multiconfigurational
short-range DFT.[41] The applicability of the RPA(D) as well as the new
HRPA(D) method to linear response properties has recently been
demonstrated by Schnack-Petersen et al.[42] in the specific case of
NMR indirect nuclear spin–spin coupling constants. In this study, we
explore now the reasons for the good performance of RPA(D) and
HRPA(D) for coupling constants by investigating the performance of
these methods in the calculation of electronic excitation energies.

Theory

The foundation for the methods introduced in this study is the
polarization propagator or linear response function. Considering
the spectral representation of the polarization propagator, it
can be shown that the frequencies which correspond to the
poles of the polarization propagator are the vertical excitation
energies, {ωj}, and considering the matrix form of the polariza-
tion propagator, it can be shown that ωj can be obtained by
solving the generalized eigenvalue problem[2,3]:

ERj =ωjSRj: ð1Þ
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Atomic units are used throughout this study.
The electronic Hessian and the overlap matrices are given as

the matrices:

E= 0 j h, Ĥ,~h
h ih i

j 0
D E

, ð2Þ

S= 0 j h,~h
h i

j 0
D E

, ð3Þ

where the Hamiltonian consists of the sum of the Fock operator
and the fluctuation potential:

Ĥ= F̂ + V̂: ð4Þ

Based on the partitioning of the Hamiltonian in eq. (4), the wave
function, j0i, (and the E and Smatrices) can be expanded in a pertur-
bation series in V according to Møller–Plesset perturbation theory.[43]

In practice, a truncated version of j 0i is used as reference state in
the evaluation of the matrix elements of the E and Smatrices.

The column vector, h, is a complete operator manifold where
h j 0i = j ni should generate all excited states of the system

and ~h is the transpose.[2] It has been shown that the elements
of h can be constructed of single, double, and so on, excitation
(and de-excitation) operators[2,44]:

h=

h1

h2

..

.

0BB@
1CCA, ð5Þ

where

h1 =
q†
1

q1

 !
, h2 =

q†
2

q2

 !
,…, ð6Þ

Here, q†
1 (q1) denotes a vector containing all single excitation

(single de-excitation) operators, q†ai
� �

({qai}), and q†
2 (q2) con-

tains all double excitation (double de-excitation) operators,

q†aiq
†
bj

n o
({qaiqbj}), where the indices i, j, k, l and a, b, c, d, refer

to occupied and unoccupied orbitals, respectively.
The operator manifold, h, is in principle of infinite dimension

and has to be truncated for approximations to the polarization
propagator.[2,3] These approximations are characterized by the
order in terms of the fluctuation potential, denoted below with a
superscript in brackets, through which the excitation energies of
mainly particle–hole character, the transition moments or the
polarization propagator itself are evaluated.

As a consequence of the definition of the excitation operator
in eq. (5), the eigenvectors of the generalized eigenvalue prob-
lem, eq. (1), have the following structure:

Rj =

Rph
j

Rhp
j

R2p2h
j

R2h2p
j

0BBBBB@

1CCCCCA, ð7Þ

where ph (hp) denotes the single excitation (de-excitation)
manifold and 2p2h (2h2p) denotes the double excitation (de-
excitation) manifold.

In this study, the following well-known approximations will
be employed and discussed in the sections below: the first-
order polarization propagator, better known as the RPA, the
HRPA, and the SOPPA. Furthermore, the noniterative doubles
corrections to the RPA and HRPA methods, RPA(D) and
HRPA(D), will be introduced. The HRPA(D) method for excitation
energies is formulated for the first time in this study.

Random phase approximation

In RPA, the operator manifold consists of the single (de-)excita-
tion operators, h1, and the reference state is the Hartree–Fock
state.[2] The RPA E and S matrices consist thus of the single
excitation block only,

ERPA =
A 0,1ð Þ B 1ð Þ*

B 1ð Þ A 0,1ð Þ*

 !
and SRPA =

S 0ð Þ 0

0 −S 0ð Þ*

 !
, ð8Þ

see eq. (11), (12) and (16) for expressions for the A, B, and
S matrices.

Higher RPA method

In the HRPA method, second-order contributions to the A, B,
and S matrices are included.[19,20] This is equivalent to letting
h1 again span the excitation operator manifold, employing the
second-order Møller–Plesset wave function as reference state
and keeping only terms through second order in the fluctuation
potential in the E and S matrices.

EHRPA =
A 0,1,2ð Þ B 1,2ð Þ*

B 1,2ð Þ A 0,1,2ð Þ*

 !
and SHRPA =

S 0,2ð Þ 0

0 −S 0,2ð Þ*

 !
:

ð9Þ

Second-order polarization propagator approximation

It has been shown that in order for the polarization propagator to
be correct through second order (for particle–hole dominated
excitations), the h1 and h2 operator manifolds are needed. Further-
more, the reference state must be the second-order Møller–Plesset
wave function.[2,17] The SOPPA matrices then become

ESOPPA =

A 0,1,2ð Þ B 1,2ð Þ* ~C
1ð Þ

0

B 1,2ð Þ A 0,1,2ð Þ* 0 ~C
1ð Þ*

C 1ð Þ 0 D 0ð Þ 0

0 C 1ð Þ* 0 D 0ð Þ*

0BBBBB@

1CCCCCA and

SSOPPA =

S 0,2ð Þ 0 0 0

0 −S 0,2ð Þ* 0 0

0 0 1 0

0 0 0 −1

0BBBBB@

1CCCCCA:

ð10Þ

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library J. Comput. Chem. 2020, 41, 43–55 45

http://WWW.C-CHEM.ORG


The elements of the matrices which constitute the electronic
Hessian matrix are defined as

A 0,1,2ð Þ
ai,bj = 0 j qai , Ĥ,q†bj

h ih i
j 0

D E 0,1,2ð Þ
, ð11Þ

B 1,2ð Þ
ai,bj = 0 j qai , Ĥ,qbj

� �� � j 0� � 1,2ð Þ
, ð12Þ

C 1ð Þ
aibj,ck = 0 j qaiqbj , Ĥ,q

†
ck

� �� � j 0� � 1ð Þ
, ð13Þ

~C
1ð Þ
ck,aibj = 0 j qck , Ĥ,q†aiq

†
bj

h ih i
j 0

D E 1ð Þ
, ð14Þ

D 0ð Þ
aibj,ckdl = 0 j qaiqbj , Ĥ,q

†
ckq

†
dl

� �� � j 0� � 0ð Þ
, ð15Þ

and the overlap matrix between single excited states is

S 0,2ð Þ
ai,bj = 0 j qai ,q

†
bj

h i
j 0

D E 0,2ð Þ
: ð16Þ

The explicit expressions for the above matrices depend of
course on the explicit form of the excitation operators and can
be found in the literature.[2,3,17,45,46]

Noniterative second-order doubles corrections

The noniterative second-order doubles-corrected methods are
based on a pseudoperturbation expansion of the SOPPA E and
S matrices.[23]

E= E 0f g + E 1f g + E 2f g, ð17Þ
S= S 0f g + S 1f g + S 2f g, ð18Þ

where the curly brackets indicate the order in the pseudo-
perturbation theory.

By expanding the eigenvalue in eq. (1) in the pseudoperturbation,
the first-order correction turns out to be zero and the total excitation
energy, which is correct through second order, is then given by[23]

ω 0f g
j +ω 2f g

j =R 0f g†
j E 0f g + E 2f g−ω 0f g

j S 2f g
� 	

R 0f g
j

−R 0f g†
j E 1f g−ω 0f g

j S 1f g
� 	

E 0f g−ω 0f g
j S 0f g

� 	−1
E 1f g−ω 0f g

j S 1f g
� 	

R 0f g
j ,

ð19Þ

where R 0ð Þ
j is the RPA eigenvector augmented with a double-

excitation part wherein all elements are zero:

R 0f g
j =

Rph,RPA
j

Rhp,RPA
j

0

0

0BBBB@
1CCCCA: ð20Þ

Here “ph” denotes the excitation manifold and “hp” denotes
the de-excitation manifold of the RPA eigenvector.

Equation (19) is easily implemented in an existing propagator
code which is based on the linear transformation of trial vec-
tors. The difference between RPA(D) and HRPA(D) lies in the

definition of the E{0}, E{1}, and E{2} matrices as will be discussed
in the following sections.

Doubles-corrected RPA method

In RPA(D), the partitioning of the SOPPA E and S matrices
looks like

E 0f g =

A 0,1ð Þ B 1ð Þ* 0 0
B 1ð Þ A 0,1ð Þ* 0 0
0 0 D 0ð Þ 0
0 0 0 D 0ð Þ*

0BBB@
1CCCA,

E 1f g =

0 0 eC 1ð Þ
0

0 0 0 eC 1ð Þ*

C 1ð Þ 0 0 0
0 C 1ð Þ* 0 0

0BBBB@
1CCCCA, and

E 2f g =

A 2ð Þ B 2ð Þ* 0 0
B 2ð Þ A 2ð Þ* 0 0
0 0 0 0
0 0 0 0

0BBB@
1CCCA,

ð21Þ

and

S 0f g =

S 0ð Þ 0 0 0

0 −S 0ð Þ* 0 0

0 0 1 0

0 0 0 −1

0BBBBBBB@

1CCCCCCCA, S 1f g = 0, and

S 2f g =

S 2ð Þ 0 0 0

0 −S 2ð Þ* 0 0

0 0 0 0

0 0 0 0

0BBBBBBB@

1CCCCCCCA:

ð22Þ

The RPA(D) excitation energy thus consists of three types of contri-
butions. A zeroth-order part which is just the RPA excitation energy:

ω 0f g
j =R 0f g†

j E 0f gR 0f g
j =ωRPA

j , ð23Þ

a second-order correction from the particle–hole part:

ω 2f g
j,ph =R 0f g†

j E 2f g−ω 0f g
j S 2f g

� 	
R 0f g
j , ð24Þ

and a second-order correction from the two-particle–two-hole
part:

ω 2f g
j,2p2h = −R 0f g†

j E 1f g E 0f g−ω 0f g
j S 0f g

� 	−1
E 1f gR 0f g

j : ð25Þ

Due to the structure of the E{1} matrices, only the 2p2h part

of the E{0} and S{0} matrices will contribute to ω 2f g
j,2p2h which

allows for a simplification of the expression as the D{0} and the
2p2h part of the S{0} matrices are diagonal:
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ω 2f g
j,2p2h = −

X
μ2

Yj,μ2Yj,μ2

ωμ2 −ω
0f g

j

, ð26Þ

where ωμ2 are the diagonal elements of the D{0} matrix and Yj is
the transformed RPA eigenvector:

Yj = E 1f gR 0f g
j : ð27Þ

Doubles-corrected HRPA method

In HRPA(D), the E{2} and S{2} matrices are zero and the par-
titioning of the SOPPA E and S matrices then looks like

E 0f g =

A 0,1,2ð Þ B 1,2ð Þ* 0 0

B 1,2ð Þ A 0,1,2ð Þ* 0 0

0 0 D 0ð Þ 0

0 0 0 D 0ð Þ*

0BBBBBB@

1CCCCCCA,

E 1f g =

0 0 ~C
1ð Þ

0

0 0 0 ~C
1ð Þ*

C 1ð Þ 0 0 0

0 C 1ð Þ* 0 0

0BBBBB@

1CCCCCA, and E 2f g =0,

ð28Þ

and

S 0f g =

S 0,2ð Þ 0 0 0

0 −S 0,2ð Þ* 0 0

0 0 1 0

0 0 0 −1

0BBB@
1CCCA, S 1f g =0, and S 2f g = 0: ð29Þ

Again, the zeroth-order part of the HRPA(D) excitation energy
is just the HRPA excitation energy

ω 0f g
j =R 0f g†

j E 0f gR 0f g
j =ωHRPA

j , ð30Þ

while the second-order correction to the particle–hole part van-
ishes due to the definition of the E{2} and S{2} matrices and the
second-order correction to the two-particle–two-hole part takes
the same form as in the case of RPA(D) [see eq. (25)].

Shifted HRPA(D)

It will be clear from the results of this benchmark study, that it
is advantageous to include a second-order contribution to the
particle–hole part coming from the S{2} matrix of RPA(D),
eq. (22), similar to RPA(D) in the form of

ω 2f g*
j,ph = − ω 0f g

j R 0f g†
j S 2f g

RPA Dð ÞR
0f g

j

� 	
: ð31Þ

The second-order correction to the particle–hole part is con-
sequently accounted for twice; once in the iterative solution of
the HRPA equation and once through this noniterative correc-
tion. While there is no theoretical reason why this additional

correction should improve the HRPA(D) excitation energies, the
results presented in this study show that the systematic under-
estimation of HRPA(D) energies is eliminated upon inclusion of
the correction in eq. (31). As the HRPA(D) energies are shifted
by overall ~0.5 eV, we will call this extension of HRPA(D) the
shifted HRPA(D) (s-HRPA(D)) method.

Atomic orbital integral direct implementation

The new methods, RPA(D) for excited triplet states and HRPA(D) and
s-HRPA(D) for excited singlet and triplet states, have been
implemented in the existing atomic orbital-based integral direct
SOPPA code which is part of the DALTON program.[46,47] The solu-
tion of the generalized eigenvalue problem, eq. (1), is obtained by
solving a reduced eigenvalue problem for a small set of only the
lowest eigenvalues.[45,48,49] This approach avoids the construction of
the full E and S matrices by implementing directly the result of lin-
ear transformations of trial vectors by these matrices.[45,48,49] The
same linear transformation algorithm is easily used to compute the
noniterative doubles corrections in RPA(D), HRPA(D), and s-HRPA(D).
The involved expressions are calculated directly from integrals over
the basis functions (atomic orbitals) and this formalism is thus
referred to as an integral-direct method, originally formulated by
Koch et al.[50]

Computational Details

All calculations were carried out with a local development ver-
sion of the Dalton program which includes all new methods
presented here.[47]

The benchmark set used in this study consists of the 20 mole-
cules from the larger set of 28 molecules originally presented in
Ref. [31–33], for which triplet excitation energies were reported
at the CC3/TZVP level. The error analysis in this study is made

Figure 1. Structures of the 20 molecules used in this study.
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in relation to these CC3 results. The test set is shown in
Figure 1 and it consists of aliphatic unsaturated hydrocarbons,
aromatic hydrocarbons, and heterocycles as well as a few alde-
hydes, ketones, and amides. All of the structures had previously
been optimized at the MP2/6-31G* level and can be found in
the Supporting Information of Ref. [31].

Detailed information on the studied singlet and triplet
excited states can be found in the Supporting Information -
Tables S2 and S5, respectively. The set of excited states consists
of valence excited states of σ ! π*, π ! π*, and n ! π* char-
acter. The states have been identified by comparison of the
eigenvectors with the eigenvectors of the reference calcula-
tions. In RPA and HRPA, the order of the states can deviate from
those of SOPPA, as seen, for example, in Ref. [26]. The particular
cases have been marked with a footnote in Supporting Infor-
mation Tables S2 and S5.

As the CC3 reference values are available for the TZVP basis
set, this medium-sized basis set[51,52] was also used in the
present study. The number of basis functions with the TZVP
basis set ranges from 62 (ethene) to 238 (naphthalene).
Results with the TZVP basis were obtained with frozen core
orbitals. The effect of freezing the core orbitals has been
found in this and previous studies[46] to be less than 0.01 eV
for RPA and SOPPA excitation energies and can thus be con-
sidered to be negligible.

Benchmark Results

Singlet excited states

In this section, the performance of the two new methods,
HRPA(D) and s-HRPA(D), for determining singlet excitation ener-
gies will be compared to the well-known methods RPA, RPA(D),
HRPA, and SOPPA. The RPA and HRPA results for this test set
are presented for the first time here, whereas the RPA(D) and

SOPPA results have been presented previously[27] but are
included here for clarity. The comparison in terms of computing
time will be discussed at the end of this paper.

In Figure 2, the distribution of errors (left axis) with respect to
the CC3 results are shown for the methods mentioned earlier.
Furthermore, a statistical analysis of the errors (right axis) is
shown as bars in terms of mean deviation, absolute mean devi-
ation, standard deviation, and maximum deviation. The values
of these measures are also listed in Table 1.

The most prominent feature in Figure 2 is the well-known
fact that HRPA significantly overestimates excitation energies
(on average 4.03 eV compared to CC3).[21,22] Furthermore, RPA
and HRPA exhibit much larger maximum deviations than all other
methods and consequently the standard deviations of RPA and
HRPA are larger than for the other methods. Also RPA overesti-
mates on average the CC3 singlet excitation energies by 0.84 eV.
Adding the noniterative doubles corrections (D) to both the RPA
and HRPA singlet excitation energies completely changes the pic-
ture; all of the statistical measures are significantly reduced.

The pattern of the statistical data for the new HRPA(D)
method resembles those of SOPPA. Both underestimate on
average the CC3 results, SOPPA by 0.42 eV and HRPA(D) by
0.46 eV, though SOPPA has a significantly smaller standard
deviation, 0.29 eV, which is the smallest for all the methods
studied here, compared to 0.61 eV for HRPA(D). Also the maxi-
mum deviation is in HRPA(D) clearly larger than that in SOPPA.
Nevertheless HRPA(D) appears to give reasonable approxima-
tions to SOPPA excitation energies. The addition of the extra
term in s-HRPA(D) shifts the errors slightly upward thereby
reducing the mean deviation from CC3 results. This is as
expected because the elements of S{2} are primarily negative
making the correction in eq. (31) positive.

The pattern of the statistical data in Figure 2 turns out to be
similar in RPA(D) and s-HRPA(D) and different from that for

Figure 2. Distributions of errors (circles, left
axis) relative to CC3 results (calculated as
method—CC3) and statistical measures
(bars, right axis) of 117 singlet excited
states. RPA(D) and SOPPA results are taken
from Ref. [27]. Numerical values for
statistical measures can be found in Table 1.
TZVP basis set, frozen core. [Color figure can
be viewed at wileyonlinelibrary.com]

Table 1. Statistical measures (eV) as used in Figure 2 of 117 singlet excited states.

RPA RPA(D) HRPA HRPA(D) s-HRPA(D) SOPPA
Count 117 117 117 117 117 117
Mean 0.84 −0.1 4.03 −0.47 0.22 −0.42
Absolute mean 1.02 0.43 4.03 0.68 0.43 0.48
Standard deviation 0.99 0.54 0.95 0.61 0.62 0.29
Maximum deviation 5.03 1.62 8.12 1.47 2.09 0.58
Minimum deviation −1.06 −1.16 1.42 −1.91 −1.18 −0.89
Absolute maximum 5.03 1.62 8.12 1.91 2.09 0.89
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HRPA(D) and SOPPA. The RPA(D) and s-HRPA(D) methods are
more spread around the CC3 results with the mean deviations
being −0.1 and 0.22 eV, which is a large improvement over
SOPPA. However, the standard deviations of the two models
are around twice the one of SOPPA, that is, 0.54 and 0.62 eV,
and the maximum deviations are also approximately twice as
large.

The error distributions (white circles) in the case of RPA(D),
HRPA(D), s-HRPA(D), and SOPPA, shown in Figure 2, indicate
that the errors fall into two groups: one large group with
smaller errors and one small group with slightly larger errors.
This splitting is related to the amount of double excitation char-
acter in a given excited state which explains why it is not
observed in the case of RPA and HRPA where no double excita-
tions are included. In the following, we will represent the
amount of double excitation character with the single excita-
tion weight in percent because when the double excitation
character increases, the single excitation weight decreases. The
single excitation weight is calculated as

RphS 0,2ð ÞRph−RhpS 0,2ð Þ*Rhp: ð32Þ

The correlation between the errors and the single excitation
weights is illustrated in Figure 3, where the errors, again with

respect to the CC3 results, are plotted against the single excita-
tion weights (in percent) in the SOPPA calculations. We choose
to compare to the SOPPA single excitation weights as these are
obtained with the highest level of theory within this study.

The dominant observation from these figures is that there is
a linear correlation between the deviation from the CC3 results
and the single excitation weight. For smaller weights, all
methods exhibit larger positive deviations. As the single excita-
tion weight becomes larger the errors become firstly smaller
and then negative with the exception of HRPA, where they
always stay positive.

In more detail, Figure 3a shows the correlation of the RPA
and RPA(D) errors. A clear trend is observed: the lower the sin-
gle excitation weight, the higher the errors and the larger the
difference between the RPA and RPA(D) errors. Including the
double corrections in RPA(D) affects the excited states with
lower single excitation weights the most, that is, the RPA and
RPA(D) errors approach each other at higher single excitation
weights, reflected in the two trend lines not being parallel.

The state with the largest RPA error (5.03 eV) is the 3B1g state
of s-tetrazine. It has a low SOPPA single excitation weight
(85.51%) but not among the lowest weights. In addition, a
group of five states have RPA errors around 3 eV (21B2g and
21B1g of s-tetrazine, 21A0 of formamide, 41B2 of pyridine, and

(a) (b)

(c)

Figure 3. Correlation between the error relative to CC3 results with the different methods and the single excitation weight as calculated with SOPPA. The
lines correspond to the best linear fit and are shown to guide the eye. [Color figure can be viewed at wileyonlinelibrary.com]
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11B1g of pyrazine) but again the SOPPA single excitation
weights (ranging from 84.17 to 89.21%) for these states are not
the lowest of the set. The character of these six outliers from
the general trend were investigated but no common features
were found.

From Figure 2, it is clear that a group of states exhibits
RPA(D) errors above 0.5 eV, significantly larger than the RPA(D)
mean deviation of −0.10 eV. The SOPPA single excitation
weights of these states range from 82.36 to 89.41% covering
the lowest single excitation weights of the set.

Figure 3b shows the dependence of the HRPA errors on the
SOPPA single excitation weights which is similar to that of
RPA indicated by the similar slopes of the two trend lines (red
in Fig. 3a and green in Fig. 3b). The HRPA errors are, however,
shifted upwards with around 4 eV as seen also in Figure 2.
The RPA outlier also shows up in HRPA with an error of
8.12 eV. For clarity, the plots have been zoomed in and this
point is not visible in Figure 3. The (D) correction corrects
both the large overestimation but also decreases the depen-
dence on the SOPPA single excitation weight in a similar fash-
ion as for the (D) correction to RPA (again seen by the similar
slopes of the two trend lines; blue in Fig. 3a and purple in
Fig. 3b). The effect of the different contributions of the
(D) correction on the RPA and HRPA errors will be studied in
more detail in a later section.

Adding the extra term to the HRPA(D) energies (s-HRPA(D))
shifts the energies up but does not really change the depen-
dency of the error on the single excitation weights (the two
trend lines are almost parallel).

In Figure 3c, the three methods RPA(D), s-HRPA(D), and
SOPPA are compared, showing, as expected, that the two
double-corrected methods are more sensitive to the single exci-
tation weight although already significantly less dependent
than RPA and HRPA. At high single excitation weights, the
RPA(D) and s-HRPA(D) trend lines intersect the SOPPA trend
line indicating that the performance of these three methods is
similar as long as the single excitation weights are high. As pre-
viously noted, the dependency of the RPA(D) and s-HRPA
(D) errors on the single excitation weight is very similar (almost
parallel trend lines) but the s-HRPA(D) energies are in general
slightly larger (on average 0.32 eV).

For this data set and all methods, it seems likely that the
most reliable results are obtained, if the double excitation
weight does not exceed 10%.

Triplet excited states

Turning now to the excited triplet states, we present RPA(D)
results for the first time here along with the two new methods
HRPA(D) and s-HRPA(D). As in the case of the excited singlet
states, we have employed also the well-known RPA and HRPA
methods and included the SOPPA results from Ref. [27] for
comparison.

In Figure 4, the distribution of errors with respect to CC3
values and corresponding statistical measures for the 71 triplet
excited states are shown. Compared to the case of excited sin-
glet states, Figure 2, the RPA and RPA(D) errors differ signifi-
cantly. Whereas the RPA errors seem more spread out with a
significant fraction being very negative, the RPA(D) method suf-
fers from a small group of states with very large positive errors.
For clarity Figure 4 has been zoomed in leaving out three
RPA(D) states with errors of 8.8, 13.58, and 13.76 eV.

The large negative RPA errors are partly due to 16 states
which have imaginary RPA excitation energies, that is, the real
part is 0.0 eV and the error is thus equal to the negative of the
value of the CC3 result. The same behavior was observed in the
TDDFT study from Peach et al.[7] upon inclusion of a large
amount of exact (Hartree–Fock) exchange in DFT hybrid func-
tionals for the 13Bu state of butadiene, the 13B1u state of benzo-
quinone as well as the 13B2u state of naphthalene. In a recent
study by Yang et al.,[30] another seven imaginary triplet RPA
excitation energies were reported. In addition to the 10 previ-
ously reported unstable RPA states, we observed another six
imaginary excitation energies. The 16 states with imaginary
excitation energies have several things in common: they are all
of π ! π* character; they are the first excited triplet states in a
given symmetry; and they have relatively low CC3 excitation
energies in the range 2.30–4.48 eV and relatively high SOPPA
single excitation weights in the range 93.94–97.97% (the major-
ity around 96%). They have been marked with gray in
Supporting Information Table S5, and in Table 2, the statistical
analysis is shown with (71 states) and without (55 states) these
states for the RPA and RPA(D) methods.

Because the RPA(D) method adds a noniterative correction to
the RPA excitation energy, the RPA(D) results for these states
should be meaningless which in some cases results in the large
overestimation seen in Figure 4. This behavior is due to the
noniterative correction making use of the RPA eigenvectors
which in the case of imaginary RPA excitation energies are

Figure 4. Distributions of errors (circles, left
axis) relative to CC3 results (calculated as
method—CC3) and statistical measures
(bars, right axis) of 71 triplet excited states.
Numerical values for statistical measures can
be found in Supporting Information Table 2.
TZVP basis set, frozen core. [Color figure can
be viewed at wileyonlinelibrary.com]
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meaningless. In addition, the five RPA(D) results with large posi-
tive errors (above and well above 2 eV) in Figure 4 indicate
another group of unstable RPA results within the remaining
55 states which has been marked with a dark gray color in
Supporting Information Table S5. This group have large nega-
tive RPA errors between −3.01 and − 4.92 eV and share the
same characteristics as the states with imaginary RPA energies,
see previous paragraph. In Refs. 7 and 30 such behavior was
observed as well, that is, large underestimation of triplet excita-
tion energies upon inclusion of large amount of exact exchange
or by using the RPA method, respectively. In Table 2 also these
five states have been excluded from the RPA and RPA(D) results
leaving 50 states which seem to behave normally and which
results in statistical measures comparable to those of the singlet
excited states. The remaining discussion is based on the set of
50 states in the case of the RPA and RPA(D) methods and the
full set of 71 states for the remaining methods as the effect of
considering only the 50 states on the statistical measures of the
remaining methods is negligible as shown in Supporting Infor-
mation Table S1. The exclusion of unstable states without imag-
inary RPA excitation energies is rather qualitative and only
possible due to the existence of reference values and a more
rigorous stability criterion would be preferable as discussed in
Ref. [7].

This behavior indicates an unstable eigenvalue problem
related to the well-known problem of triplet instabilities[28] as
was also discussed in Ref. [7]. A triplet instability is associated
with the existence of a spin-unrestricted Hartree–Fock solution
with lower energy compared to the employed restricted
Hartree–Fock solution. In Ref. [7], it was shown that the prob-
lem of triplet instabilities could be greatly reduced when
employing the TDA and analogously the CIS results of Ref. [30]

show no problems with triplet instabilities. The problem of trip-
let instabilities can of course be drastically reduced by using a
method which includes more correlation as indicated by the
SOPPA results presented in Ref. [27].

In Figure 5, the distributions and statistical measures are
shown for the 50 states. Both the RPA and RPA(D) results seem
to be distributed around the CC3 results. This behavior is differ-
ent from the singlet case where the RPA method overestimated
the energies with around 1 eV on average. Two states are con-
siderably overestimated with the RPA method with errors
around 3 eV. As in the case of the excited singlet states, these
two states have some of the lowest single excitation weights of
the set, see later discussion.

The HRPA method overestimates the triplet excitation ener-
gies slightly less than the singlet excitation energies with the
mean deviations being 2.95 and 4.03 eV while the standard
deviations in both cases are very similar. An advantageous fea-
ture of the HRPA method is that it is seemingly unaffected by
(triplet) instabilities, as also suggested in Ref. [53], indicated by
similar statistical measures when excluding the unstable states
as shown in Supporting Information Table S1. The HRPA(D)
method again provides a significant improvement of the HRPA
results and the s-HRPA(D) centers the energies around the CC3
results. Consequently, if one studies a system where RPA is
(or might be) unstable and wants to avoid the rather qualitative
exclusion of unstable states with the RPA and RPA(D) methods,
the HRPA(D) and in particular the s-HRPA(D) methods are supe-
rior to the RPA(D) method for excited triplet states.

Again, the statistical measures of the HRPA(D) errors resem-
ble those of the SOPPA errors whereas the s-HRPA(D) results
are closer to the CC3 results. The RPA(D) and s-HRPA
(D) methods result in the smallest mean deviations of −0.07

Table 2. Statistical measures (eV) of 71 triplet excited states.

RPA RPA(D) HRPA HRPA(D) s-HRPA(D) SOPPA
Count 71 55 50 71 55 50 71 71 71 71
Mean −1.14 −0.41 −0.10 0.96 0.43 −0.07 2.95 −0.48 0.07 −0.45
Absolute mean 1.60 1.00 0.75 1.23 0.74 0.27 2.95 0.48 0.22 0.45
Standard deviation 1.87 1.43 1.07 2.84 2.04 0.34 1.05 0.24 0.26 0.16
Maximum deviation 2.98 2.98 2.98 13.76 13.76 0.90 6.11 −0.08 0.58 0.01
Minimum deviation −4.92 −4.92 −2.34 −0.70 −0.70 −0.70 0.99 −1.60 −0.86 −0.78
Absolute maximum 4.92 4.92 2.98 13.76 13.76 0.90 6.11 1.60 0.86 0.78

Figure 5. Distributions of errors (circles,
left axis) relative to CC3 results
(calculated as method—CC3) and
statistical measures (bars, right axis) of
50 triplet excited states. Numerical values
for statistical measures can be found in
Supporting Information Table 2. TZVP
basis set, frozen core. [Color figure can be
viewed at wileyonlinelibrary.com]
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and 0.07 eV compared to −0.52 for HRPA(D) and –0.44 for
SOPPA. The smallest standard deviation of the errors is again
obtained with the SOPPA method (0.18 eV) with the HRPA(D)
and s-HRPA(D) standard deviations being around 1.5 times as
large (0.25 and 0.28 eV) and the RPA(D) almost double as large
(0.34 eV).

A comparison of the excited singlet and triplet states, Fig-
ures 2 and 5, leads to the impression that all methods perform
better for triplet excitation energies. For example, the standard
deviations of the HRPA(D) and s-HRPA(D) errors for singlet exci-
tation energies are more than twice the standard deviations of
the triplet excitation energies. However, one has to be careful
when comparing the sets of excited singlet and triplet states as
the single excitation weights are in general higher for the triplet
excitation energies than for the singlet excitation energies. In
the discussion of the excited singlet states, it was found that
higher single excitation weights resulted in lower errors. The
single excitation weights for the excited triplet states are in the
range 87–98%, whereas the excited singlet states have single
excitation weights of 82–97%.

The dependence of the errors of the excited triplet states on
the amount of single excitation weight in the SOPPA calcula-
tions is illustrated in Figure 6. Again, there is a clear linear
dependence of the errors on the single excitation weight.

As expected, the RPA and HRPA errors in Figures 6a and 6b
show the strongest dependence on the single excitation weights.
This dependency is greatly reduced by the inclusion of double
corrections. Whereas the RPA(D) and HRPA(D) methods resulted
in errors larger than the mean deviation at lower single excitation
weights for excited singlet states, the two methods show the
opposite trend for excited triplet states, that is, errors lower than
the mean deviation at low single excitation weights. In other
words, the slopes of the (H)RPA and (H)RPA(D) trend lines have
different sign in the triplet case but same sign in the singlet case.
In the case of the excited singlet states the HRPA(D) and s-HRPA
(D) trend lines were close to parallel which is not the case for the
excited triplet states, Figure 6b. Except for one outlier at low sin-
gle excitation weight, the s-HRPA(D) method shows no depen-
dence on the amount of single excitation weight.

Analogous to the singlet case, the largest positive RPA errors
(>0.5 eV) correspond to the lowest SOPPA single excitation
weights (around 90% or lower except for one which is 92.4%).
The two largest positive RPA errors have SOPPA single excita-
tion weights of 87.4 and 88.1% and correspond to the 9th and
10th excited triplet state of the s-tetrazine molecule of n ! π*
character. The same two states also cause the largest HRPA
errors and the latter results in the largest negative RPA(D),
HRPA(D), and s-HRPA(D) errors of −0.7, −1.6 and –0.86 eV.

(a) (b)

(c)

Figure 6. Correlation between the error relative to CC3 results with the different methods and the single excitation weight as calculated with SOPPA. [Color
figure can be viewed at wileyonlinelibrary.com]
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Finally, in Figure 6c, the three best methods RPA(D), s-HRPA
(D), and SOPPA are compared. The majority of the RPA(D) errors
lies somewhere between the SOPPA and s-HRPA(D) errors. Both
the s-HRPA(D) and SOPPA errors show no significant depen-
dence on the single excitation weights. This is different from
the singlet case where a larger dependence on the single exci-
tation weights was observed, but one should again remember
that the single excitation weights are generally higher for the
set of triplet states.

Second-order double correction contributions

Finally, we will investigate the effect of the individual non-
iterative contributions in the RPA(D) and s-HRPA(D) methods. In
Figure 7, the errors of the individual contributions of the non-
iterative second-order doubles corrections are shown for the
singlet and triplet results.

In the case of RPA(D), there are two types of contributions
in addition to the RPA excitation energy: the second-order

contribution to the particle–hole part, ω 2f g
j,ph, eq. (24), and the

second-order contribution to the two-particle–two-hole part,

ω 2f g
j,2p2h, eq. (25). These are shown for excited singlet and triplet

states in the left part of Figure 7. The first contribution, ω 2f g
j,ph,

shifts the errors up by a few eV. In the singlet case, the distri-
bution of the errors remains seemingly unchanged whereas
in the triplet case the spread of the errors is decreased. This
makes in particular the singlet results resemble those of the

HRPA method as expected as the ω 2f g
j,ph correction is just the

noniterative form of the HRPA formalism. In both the singlet
and triplet cases, the noniterative second-order doubles correc-

tion ω 2f g
j,2p2h reduces both the mean and standard deviations

considerably.

In the case of s-HRPA(D), the ω 2f g*
j,ph correction, eq. 31, is differ-

ent from the RPA(D) case because the second-order correction
to the particle–hole part is already included in the HRPA

method. The effect of the ω 2f g*
j,ph correction to the HRPA singlet

and triplet excitation energies, right side of Figure 7, is thus sig-

nificantly smaller than the ω 2f g
j,ph correction to RPA. The ω 2f g*

j,ph cor-

rection shifts the errors to slightly larger values leaving the
standard deviation unchanged, which is now clear for both the

singlet and triplet excitation energies, and the ω 2f g
j,2p2h correction

has the same effect as in the case of RPA(D).

(a) (b)

(c) (d)

Figure 7. Distribution of errors (dots) and statistical measures (bars) of the different types of doubles corrections in the RPA(D) (left) and s-HRPA(D) (right)
methods for singlet (top) and triplet (bottom) excitation energies. [Color figure can be viewed at wileyonlinelibrary.com]
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Timings

Before concluding, we need to briefly discuss the timings of the
new methods. In Table 3 the total wall time of the RPA(D) and
HRPA(D) calculations in percent of the wall time of the SOPPA
calculation is illustrated for two test systems, benzene and
naphthalene, and for both singlet and triplet excitation ener-
gies. The s-HRPA(D) method is not included here as the time
consumption is very similar to the HRPA(D) method. The
corresponding absolute wall times are shown in Supporting
Information Table S8.

As expected, the saving in computation time is greater with
the RPA(D) method than with the HRPA(D) method. The most
expensive part of a SOPPA calculation is the linear transforma-
tion of a trial vector with the B(2) matrix which scales as N4O
with N being the number of basis functions and O the number
of occupied orbitals. In SOPPA and HRPA(D), this term is evalu-
ated in each iteration, whereas the terms ignored in HRPA
(D) scales at most as N3O2. Thus, the moderate saving in com-
putation time of HRPA(D) comes as much from the faster con-
vergence of HRPA(D) calculations as it comes from a lower cost
per iteration, when compared to SOPPA calculations. The faster
convergence of HRPA(D) compared to SOPPA is due to the
large double excitation manifold which is included in SOPPA
and which makes convergence slower. In RPA(D), the transfor-
mation of the converged RPA eigenvector with the B(2) matrix
is evaluated only once after convergence of the RPA equations,
which scale as N4, making the savings considerably larger.

Whereas the wall time of the RPA(D) calculations is around
12–14% of the SOPPA wall time, the wall time of the HRPA(D)
calculation varies from being ~57% for singlet excitation ener-
gies to ~45% for triplet excitation energies compared to the
SOPPA wall time. This difference probably originates from the
fact that the triplet double excitation operator, in the spin-
adapted basis used here, consists of roughly 50% more inde-
pendent parameters which increases the workload on the cal-
culations of the C and D matrices compared to the singlet case.
Consequently, the noniterative treatment of these matrices in
the HRPA(D) method results in a slightly larger saving in the
case of triplet excitation energies compared to singlet excita-
tion energies.

Conclusions

Two new methods, HRPA(D) and s-HRPA(D), have been pres-
ented for calculating singlet and triplet excitation energies. Fur-
thermore, the RPA(D) method has been extended to triplet
excited states in addition to the existing singlet implementa-
tion.[23] The performance of the second-order doubles-

corrected methods has been compared to the SOPPA and CC3
methods by using a large benchmark set consisting of 117 sin-
glet and 71 triplet excitation energies.

The double corrections to RPA and HRPA both reduce the
mean as well as the standard deviation of the errors signifi-
cantly. The effect of the doubles correction is largest for states
with the highest double excitation weight. Of the methods
tested here, the standard deviation of the errors compared to
the CC3 results is smallest with SOPPA. The standard deviations
of the doubles-corrected methods are around twice that of
SOPPA. Whereas SOPPA and HRPA(D) underestimate excitation
energies with ~0.5 eV, the RPA(D) shows the smallest mean
deviation for singlet excitation energies, −0.1 eV, and s-HRPA
(D) shows the smallest for triplet excitation energies, 0.07 eV.
The shift term included in the s-HRPA(D) method thus results in
a slight increase of excitation energies, which decreases the
deviation from CC3 results compared to HRPA(D) and SOPPA.

An advantage of the HRPA(D) method compared to the
RPA(D) method is that it is seemingly unaffected by triplet
instabilities. Triplet instabilities are well known to occur when
using the RPA method. In the worst case, an RPA excitation
energy can become imaginary and the eigenvector has no
physical meaning. The RPA(D) energy will then also be mean-
ingless, as the RPA(D) method uses both the RPA energies and
eigenvectors to construct the noniterative correction.

To summarize, while the errors of the RPA(D), HRPA(D), and
s-HRPA(D) methods are similar, the HRPA(D) and s-HRPA
(D) methods do not suffer from triplet instabilities. On the other
hand the savings in computation time are much larger and
more consistent with the RPA(D) method, as also observed in
Ref. [42]. The implementation of triplet excitation energies with
the doubles corrected methods enabled the further implemen-
tation of nuclear spin–spin coupling constants which is also
presented in Ref. [42].
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