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Motivation: With Next Generation Sequencing becoming more affordable every year, NGS technologies
asserted themselves as the fastest and most reliable way to detect Single Nucleotide Variants (SNV)
and Copy Number Variations (CNV) in cancer patients. These technologies can be used to sequence
DNA at very high depths thus allowing to detect abnormalities in tumor cells with very low frequencies.
Multiple variant callers are publicly available and are usually efficient at calling out variants. However,
when frequencies begin to drop under 1%, the specificity of these tools suffers greatly as true variants
at very low frequencies can be easily confused with sequencing or PCR artifacts. The recent use of
Unique Molecular Identifiers (UMI) in NGS experiments has offered a way to accurately separate true
variants from artifacts. UMI-based variant callers are slowly replacing raw-read based variant callers
as the standard method for an accurate detection of variants at very low frequencies. However, bench-
marking done in the tools publication are usually realized on real biological data in which real variants
are not known, making it difficult to assess their accuracy.
Results: We present UMI-Gen, a UMI-based read simulator for targeted sequencing paired-end data. UMI-
Gen generates reference reads covering the targeted regions at a user customizable depth. After that,
using a number of control files, it estimates the background error rate at each position and then modifies
the generated reads to mimic real biological data. Finally, it will insert real variants in the reads from a list
provided by the user.
Availability: The entire pipeline is available at https://gitlab.com/vincent-sater/umigen under MIT
license.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, next generation sequencers such as Thermo Fisher
or Illumina have become the standard go-to method for DNA
sequencing. Prior to sequencing, DNA must be extracted and
amplified by PCR in order to generate enough fragments to cover
the wanted amplicons. After amplification, the sequencer handles
the obtained fragments and generates their sequences in the form
of reads. In most applications, especially ones that handle variant
detection, the obtained reads must then be aligned to a reference
genome in order to be used effectively. Today, cancer diagnosis is
a very active area of research and one of its most important appli-
cations is the detection of Single Nucleotide Variants (SNV) in
tumor cells. In fact, each cancer type has a specific profile of genetic
mutations in specific genes. Therefore, establishing a precise pro-
file of variants in a cancer patient allows to better understand
the cancer evolution and customize the treatment according to
the established profile.

Detecting and calling out variants in the aligned reads is done
through a variant calling analysis. Generally, variant calling tools
can detect mutational events such as substitutions, insertions
and deletions very efficiently. However, at very low variant allele
frequencies (VAFs) (under 1%), it becomes very challenging for
raw-read-based variant callers to accurately call variants. In fact,
PCR amplification and the sequencing step can introduce errors
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in the final reads. These errors are called artifacts and occur at very
low VAFs which can lead to the confusion between them and true
low-frequency variants. Multiple studies [1–5] have shown the
effectiveness of using Unique Molecular Identifiers as a way to fil-
ter out PCR and sequencing artifacts. UMIs are short arbitrary
oligonucleotide sequences that are attached to DNA fragments by
ligation before the PCR amplification. By definition, the UMI tags
must be random sequences so each fragment can have a unique
short oligonucleotide sequence attached to it, giving each fragment
a unique sequence tag. During the amplification, the UMI tags are
amplified with their respective fragments. After sequencing, each
UMI tag can be figured out from the reads. The idea behind using
UMI tags in NGS experiments to filter out artifacts is explained in
Fig. 1. In fact, if a variant is a true mutation, it means that it must
have been present on the initial DNA fragment so when we tag the
DNA fragment with a UMI, we are also tagging the mutation. The
fragments that result from the amplification of that mutated
DNA fragment must all be tagged by the same UMI tag and carry
the same mutation (Fig. 1A). On the other hand, if the variant is
a sequencing error, it means that the initial DNA fragment did
not have the mutation in the first place and that it appeared later
in the sequencing step. Therefore, during the amplification step, all
the fragments resulting from the amplification of that DNA frag-
ment should theoretically be tagged with the same UMI and should
not present the mutation. The mutation will be produced later on,
in the sequencing step, affecting only some reads but not all of
them, thus creating discrepancies in the same UMI group (Fig. 1B).

With the growing number of variant calling tools, it has become
hard to choose the right tool adapted to a certain experiment. Data
simulation can play an important role for testing different tools on
a dataset that we have control on, a control that we do not have on
real biological data. At the moment, many short read simulators
exist such as IntSIM [6] that can simulate somatic variants using
HMM models trained on real sequencing genomes and SVSR [7]
that is specifically designed to simulate datasets with structural
variations and is compatible with multiple sequencing platforms.
These tools are publicly available for researchers and allow them
to test their algorithms on a simulated dataset in which variants
are inserted at different frequencies and at different positions.
The usage of the read simulators enable having a very accurate
benchmarking of each variant calling tool ability. Surprisingly, no
simulation software exists at the moment that let users generate
reads with UMI tags. In this article, we present UMI-Gen, a UMI-
based read simulator that can be used not only to test raw-read
based variant callers but most importantly, UMI-based ones.
UMI-Gen uses multiple real biological samples to estimate back-
ground error rate and base quality scores at each position. Then,
it will introduce real variants in the final reads. To test our tool,
we used 6 control samples and show exactly how our algorithm
estimates the background error rate at each position. Then we give
it a list of 15 variants at different positions and at different fre-
quencies to introduce them in the final reads. Finally, we used 2
raw-read-based variant callers: SiNVICT[8] and OutLyzer [9] and
two UMI-based variant callers: DeepSNVMiner [10] and UMI-
VarCal [11] in order to compare the 4 tools performance and
demonstrate that UMI-Gen correctly inserts the given variants at
their respective positions and at the correct frequencies in a data-
set that mimics perfectly what is seen in biological samples.
2. Materials and methods

2.1. Software input

UMI-Gen requires a minimum of three parameters at execution:
a list of control BAM/SAM samples, the BED file with the coordi-
nates of the targeted genomic regions and a reference genome
FASTA file with BWA index files. In fact UMI-Gen is designed to
work on targeted sequencing data only thus a BED file is always
required. UMI-Gen can also accept a fourth optional file under
the PILEUP format. In fact, when running UMI-Gen on control sam-
ples, a PILEUP file is automatically produced. This file contains the
A, C, G and T average counts at each position for all the control
samples. This file can be given to UMI-Gen at execution time and
will allow the software to reload the pileup generated during the
last analysis instead of regenerating it. This will allow the user to
gain some significant time since the pileup generation is the most
time-consuming step.

2.1.1. Control samples
Control samples are BAM/SAM files that are obtained by

sequencing healthy individuals and normally should not contain
any somatic variant. UMI-Gen can accept input files in BAM and
SAM formats. A pileup is performed on each sample and a final
average pileup is generated from the counts of all control samples.

2.1.2. Variant file
This file contains a list of the variants the user wishes to insert

in the simulated reads. These are the only variants that should be
reported in the variant callers VCF file during variant calling bench-
marks. The variant file is a Comma Separated Values (CSV) file that
contains 2 columns: the first column contains the variant ID with
the HGVS nomenclature and the second column being the variant’s
desired frequency. UMI-Gen will then go to each position and
insert these variants in order to produce final reads.

2.2. Generating the final pileup

2.2.1. Pileup
The first step of the workflow (Fig. 2) consists of generating the

final pileup. For each control sample, our pileup algorithm will
count the occurrences of each A, C, G and T. The counts will be
stored for each position of the BED file as well as the average qual-
ity of the position and its depth. This is basically the same algo-
rithm that is used by UMI-based variant caller UMI-VarCal that
has been reintegrated in this tool for its high efficiency in treating
reads with UMI tags. When all the pileups for all the control sam-
ples are ready, they will be merged in a final pileup that contains
the average statistics (counts, depth and quality score) at each
position based on the observations on all control samples
(Fig. 2A). When the average pileup is complete and ready, it will
be automatically dumped as a PILEUP file that contains all the cal-
culated information on the set of control samples. If the user
wishes to generate simulated data based on the same BED file
and the same set of control samples, the dumped pileup can be
used directly which allows the program to skip the pileup genera-
tion step and go directly to the variant calling step, saving the user
much significant time.

2.2.2. Variant calling
Even though the control samples are theoretically variant-free,

SNP and undetected mutations could still be present in the files.
These potential variants must be removed so they would not be
present in the final reads. To do so, we used the same variant call-
ing method implemented in UMI-VarCal to call out potential vari-
ants and remove them from the pileup. This step will produce what
we call a filtered pileup (Fig. 2B).

2.2.3. Background noise estimation
The background noise estimation step consists of calculating

the frequency of observing an A/C/G/T at each position. Without
the background errors, at each position the reference base should



Fig. 1. The difference between a true variant and an artifact from a UMI perspective. (A) A true variant is present on the DNA fragment so when the UMI tag 1 is added, it tags
the fragment and the mutation as well. After amplification, all the fragments tagged with the UMI tag 1 carry the same mutation. (B) An artifact is not present on the DNA
fragment but rather appears at the steps that follow the UMI introduction. That is why not all fragments with the same UMI tag 2 carry the same artifact.

Fig. 2. Background error estimation workflow. (A) The first step runs over every position in all control samples and counts the total occurrences of every A, C, G and T. It also
stores the average base quality score for each position. (B) The second step’s goal is to remove any suspected variant from the pileup as our objective is to estimate
background error noise only. (C) In this step, the counts are converted to probabilities by dividing them by the depth for each position. (D) The final step consists of converting
the base quality score of each position to the corresponding ASCII + 33 character.
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have a frequency of 1 while the remaining three bases should be at
0. The total of the four frequencies must be equal to 1. However, we
know that artifacts exist in our control samples and these artifacts
represent the background noise that we normally encounter in a
normal NGS experiment. Since our aim is to simulate reads that
are highly similar to those produced with real sequencing experi-
ments, UMI-Gen calculates the real base frequencies from the con-
trol samples at each position. The frequencies will then be used as
a probability matrix when producing the final reads. When this
step is complete, a probability pileup is generated (Fig. 2C). Inser-
tions and deletions are not considered during the background
noise estimation and thus, are not present in the final pileup as
their occurrence has a much lower rate (~1000 times lower) than
that of substitutions) especially in second and third generation
sequencers [12]. Therefore, we judge that their inclusion is not
worth complicating the algorithm for.



V. Sater et al. / Computational and Structural Biotechnology Journal 18 (2020) 2270–2280 2273
2.2.4. Quality scores estimation
Our tool was developed on sequencing files produced by an Illu-

mina sequencer. In the FASTQ files produced by Illumina sequen-
cers, quality scores are encoded into a compact form, which uses
only 1 byte per quality value [13,14]. The full table of encoding is
available in Table S1. UMI-Gen is therefore only compatible with
sequencers that use the same encoding. UMI-Gen calculates the
average quality score for each position based on the qualities in
all control samples and then converts the quality score to the cor-
responding ASCII character to be inserted in the final FASTQ file.
This is the final step of the pileup generation workflow and will
produce the final pileup (Fig. 2D). Moreover, UMI-Gen also models
the base quality scores per position in read on the control samples
and introduces the estimation in the final reads. Based on all the
reads in the control samples, our tool will calculate a median base
quality score for each position in the reads to produce a quality per
position matrix. This matrix is then used at the end to recalibrate
the quality scores according to each base’s position in the read.
For example, this allows UMI-Gen to mimic the loss of quality at
the end of the reads when present.
2.3. Producing the reads

The main objective of UMI-Gen is to generate paired-end reads
that mimic reads obtained from real life experiments. To do so, it
starts exactly the way a real-life sequencing experiment starts:
getting the DNA fragments. At the beginning, our tool will generate
a number of initial sequences that only present the reference base
at each position.

The user can explicitly specify the desired length for all the
reads at execution. It should be noted that the algorithm will only
create reads that will exactly align on the specified positions from
the BED file so off-target amplification is not considered. Then, a
UMI tag is attached to each initial sequence. Depending on the
amplification factor and the desired depth chosen by the user,
the algorithm will keep amplifying the initial sequences until the
Fig. 3. The difference between adding a true variant and adding an artifact in generated r
base at the wanted position without touching the read’s UMI tag. (B) On the other hand
position on a set of reads. Then it will create a new UMI tag (UMI tag 3) and change th
desired depth is reached at all positions. In fact, at this step, default
values for the amplification factor and initial DNA fragments are
automatically calculated in order to ensure optimal performance
of the tool. We do so by analyzing the depth chosen by the user
and the VAFs of the variants that he wishes to introduce. Using
these numbers, we calculate the minimum number of initial DNA
fragments needed for the true variant insertion. Even though this
will ensure optimal performance, the user is free to change these
parameters as long as they are mathematically allowed. Once we
have the reference reads, the second step consists of adding the
background noise (refer to Section 2.2.3) to these reads (Fig. 3A).
Using the probability matrix calculated before, UMI-Gen modifies
the reads at each position for them to match the calculated proba-
bilities. These modifications are done without changing the reads’
UMI so they mimic PCR and sequencing artifacts: they are false
positives and should not be called by variant callers. Finally,
UMI-Gen parses the variant file provided by the user in order to
insert true mutations in the final reads. The algorithm will go to
each position, change the probability of the variant to the corre-
sponding frequency from the variant file. In this step, since UMI-
Gen is adding a true variant, the UMI tags of the modified reads
are also modified in order to produce concordant UMI tags
(Fig. 3B). A concordant UMI tag is a UMI whose all reads carry
the exact same mutation. Also, since UMI-Gen generates paired-
end data, when adding a mutation on one read, the variant is auto-
matically added to its mate (since we only generate paired reads
that always overlap).
2.4. Software output

Once all variants are inserted, UMI-Gen will generate the two
FASTQ files (R1 and R2). It will then call BWA [15] to do the align-
ment, a step that will produce a BAM file. SAMtools [16] is finally
called to create the BAM’s index file and convert the BAM into
SAM. All five files are generated in the desired output directory.
In addition, UMI-Gen generates a binary PILEUP file that
eads. (A) Adding an artifact is relatively easy as all the tool has to do is to modify the
, in order to add a true variant, the software must change the base at the wanted

e UMI tag of all the affected reads to UMI tag 3.
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corresponds to the dumped average pileup. This file can be used to
skip the pileup regeneration and load the pileup directly if the
analysis was already done on the same control samples.
2.5. Implementation

Launching UMI-Gen’s workflow (Fig. 4) is handled by a main
Python script that controls many Python3 modules. In order to
achieve better overall performance, Cython was used to compile
all Python modules. UMI-Gen requires for the tools BWA and SAM-
tools to be installed on the PC/server: BWA is called for the align-
ment step and SAMtools for converting, sorting and indexing the
generated BAM files. Our tool can be executed through a UNIX/
Linux command line interface. In total, UMI-Gen can accept 20
parameters at execution. Managing these parameters allows the
user to have full control over his simulated data. A list of all the
parameters and thresholds is available in Table S2.
3. Results

3.1. Control samples

A targeted sequencing panel was designed at the Centre Henri
Becquerel in Rouen (France) to search for specific mutations in
Fig. 4. UMI-Gen’s workflow: Control samples are used to create a background noise frequ
the FASTA and the BED files, UMI-Gen creates a first set of UMI-tagged reference reads. Ar
uses the list provided by the user to insert variants at their exact locations.

Table 1
The A, C, G and T breakdown at position 2,493,165 of chromosome 1 for the six control s

Sample A C

Control 1 0 1
Control 2 0 1
Control 3 0 2
Control 4 0 6
Control 5 1 2
Control 6 3 2
the DNA of patients suffering from Diffuse Large B cell Lymphoma
(DLBCL). This panel of 76,630 bases is designed to identify genomic
abnormalities within a list of 36 genes that are most commonly
impacted in this type of lymphoma. The panel was specifically
designed for QIAseq chemistry allowing UMI introduction in the
DNA fragments during the construction of the library. A list of
the genes used in the panel and their corresponding number of tar-
geted regions is provided in the supplementary Table S3. In order
to test our tool’s ability to mimic and reproduce average sequencer
background noise in the produced sample, we randomly selected 6
samples from a very large number of patients whose DNA were
sequenced at the Centre Henri Becquerel. All six samples are liquid
biopsies with circulating cell-free DNA that was checked to be ade-
quate for sequencing. We preferred the use of liquid biopsies as
these samples usually contain a high number of very low fre-
quency variants and artifacts. Using such samples as control sam-
ples will produce simulated data with a relatively high number of
artifacts. This will allow us to have an accurate estimate of the
specificity of each tested variant caller.

Table 1 shows the exact counts of A, C, G, T for position
2,493,165 on chromosome 1 for each control sample. The fist con-
trol sample counts (0,11,10,874), the second sample has
(0,1,7,843), the third one has (0,2,2,860), the fourth sample shows
(1,6,9,965), the fifth one has (1,2,4,867) and the final one counts
(3,2,2,880). As explained in Section 2.2.3, UMI-Gen will calculate
ency matrix and the user provides a CSV file with a list of the wanted variants. Using
tifacts are then inserted to mimic the sequencer’s background noise. Finally, the tool

amples.

G T

1 10 874
7 843
2 860
9 965
4 867
2 880
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an average count for each base and then estimate its probability. In
our case and for this position, the obtained average count has 4 A,
24 C, 34 G and 5289 T with a total count of 5351 bases. To obtain
the probabilities for this position on this chromosome, we simply
divide each base count by the total count of the 4 bases, obtaining
the final probability vector (0.0007, 0.0045, 0.0064, 0.9884). If, for
example, we wanted to produce a BAM file with a depth of 3000x,
this position would have 2 A, 14 C, 19 G and 2965 T. The probability
matrix mentioned in Section 2.2.3 is basically the probability vec-
tors of each position of the panel, merged together. In our test and
in order to demonstrate our results, we simulated two artificial
samples in which we added the calculated background error noise.
The first sample or Sample 1 has an average depth of 1000� (+/�
15% at each position) and Sample 2 has an average depth of
10,000�. To make sure that the artifacts were correctly added to
the reads, we used IGV (version 2.4.16) [17] to visualize the reads.
Fig. 5 shows how the background error noise is properly and very
accurately added at position 2,493,165 of chromosome 1 with the
probabilities calculated from the 6 control samples above.
3.2. Simulated data validation

In order to validate our simulated dataset, we compared it to
the control samples used to generate it. First, we compared the
base quality scores distribution in the reads. Fig. 6A shows the vari-
ation of the median base quality scores with the position of base in
the read for the control samples. We can clearly see that the med-
ian score is very high and very stable at the start and all along the
read’s length (�34). However, a first drop in quality is noted at
position 138 and a second more considerable one at position
145. In our simulated data, we chose an average length for the
reads of about 110 bp so the longest read had a length of 127.
We can see, in Fig. 6B, how the algorithm perfectly recreates the
stability of the scores all along the simulated reads. However, since
the simulated reads did not have lengths >135 bp, we do not see
that little drop at the end of the simulated reads. In fact, to be sure
that our quality score estimation works correctly, we simulated a
drop in quality at the position 85 and wanted to see if it will be
inserted in the simulated reads. Fig. 7 shows how the simulated
drop in quality (38 ? 34) at position 85 was perfectly reproduced
in the simulated data (36 ? 33). Another parameter we wanted to
verify is the %GC variation between the control and the simulated
data. Fig. 8 clearly shows how the median %GC of reads in the con-
trol data (Fig. 8A – 56% GC) is nearly identical to that of the simu-
lated reads (Fig. 8B – 57% GC).
Fig. 5. The A, C, G and T breakdown at the position 2,493,165 of the chromosome 1 in the
of 10,000� (B).
3.3. Inserted variants

Two different lists of mutations were created to go along with
each simulated sample. The first list contains 11 substitution vari-
ants with frequencies that go from 0.9 (90%) to 0.01 (1%), one dele-
tion at 1% and one insertion at 1%. This list is used to produce the
simulated Sample 1 with a depth of 1000x. The second list contains
13 substitution variants with frequencies that go from 0.9 (90%) to
0.001 (0.1%), one deletion at 1% and one insertion at 1%. This list is
used to produce the simulated Sample 2 with a depth of 10,000x.
Two very low frequency variants (frequency <1%) were added to
the second list to test the variant insertion accuracy of UMI-Gen.
In fact, very low frequency variants are the hardest to detect and
should be systematically used to rigorously test any variant caller.
In order to verify that the wanted variants were added at the exact
locations with the correct frequencies, we used IGV to visualize the
reads. Fig. 9 shows the variants added in both samples and Table 2
details the exact variants that we inserted at the specific locations.
Next generation sequencers have difficulties with accurately
detecting variants in long homopolymer regions. Some variant call-
ers automatically filter out variants that occur in such regions and
others do not. In order to avoid any bias, we chose each variant’s
location carefully to make sure that it is not inserted in a
homopolymer region. Fig. 10 demonstrates that our tool is capable
of accurately adding variants in the final reads at the specified loca-
tions for both samples.
3.4. Variant detection

We tested the ability of four different variant callers to correctly
detect the true variants added in Section 3.3 and filter out sequenc-
ing errors/artifacts added in 3.1. We used SiNVICT and OutLyzer,
two raw-read-based variant callers specifically developed to detect
low frequency variants and two UMI-based variant callers
(DeepSNVMiner and UMI-VarCal) with a very low frequency detec-
tion threshold and that analyze UMI tags in order to produce more
accurate results. The four variant callers were tested on the two
artificial samples: Sample 1 that contains 13 known variants and
a depth of 1000� and Sample 2 that contains 15 known variants
and a depth of 10,000�.

Both samples have a total of 76,630 sequenced positions which
corresponds to the size of the sequencing panel. Tables 3 and 4
detail the results of each tool for Sample 1 and 2 respectively.
The total number of positives corresponds to the number of vari-
ants found in the result VCF file. The total number of negatives is
then calculated by subtracting total positives from the total
produced samples: Sample 1 with a depth of 1000� (A) and Sample 2 with the depth



Fig. 6. The variation of the median base quality score with position in read in real samples (A) and in the simulated data (B).
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number of positions (76,630). The four variant callers had compa-
rable results between the two samples. Starting with SiNVICT, it
detected 241 variants in Sample 1 and 463 in Sample 2 but with
the same number of true positives. This corresponds to a sensitiv-
ity of 61.5%/53.4% which is relatively acceptable and a specificity of
99.7%/99.4% on Sample 1/2. Moving on to OutLyzer, the tool
detected 109 variants in Sample 1 and three times more variants
in Sample 2 (342). Unfortunately, this corresponded to one more
true positive, the rest being only false positives. Outlyzer scored
good sensitivities (>80%) and excellent specificities (99.9%/99.6%)
on both samples.

Concerning DeepSNVMiner, the tool managed to detect all the
inserted variants except the deletion in both samples. The tool
scored very high scores on sensitivity (92.3%/93.4%) as well as
specificity (99.95%/99.99%) for both datasets. Finally, UMI-VarCal
was able to achieve a perfect score (100%] in terms of sensitivity
and specificity on both samples detecting all the 13/15 variants
in Sample 1/2 with no false positives for both configurations.
3.5. Performance

In order to evaluate UMI-Gen’s performance, we simulated four
samples with increasing depths: 500, 1000, 5000 and 10,000. For
each simulated sample, execution time and memory consumption
were reported. The four samples were simulated using the same
six control samples. The first time we run UMI-Gen, the pileup gen-
eration step is mandatory. The pileup generation step only depends
on the control samples and takes about 1.5 min per sample. The
quality estimation step following the pileup is also essential and
takes on average 0.5 min per sample. However, these 2 steps gen-
erate files that can be given directly to the program at the execu-
tion. This means that for the other times the user wants to
simulate data using the same control samples, the pileup file and
the quality matrix file can be used directly allowing to save consid-
erable time. Table 5 details the execution time numbers and the
memory needed to generate each sample. Generating the FASTQ
files takes only 1.57 min for the 500� sample and uses only 1 GB
of RAM. On the other side, 16.58 min are needed for a sample of
10,000� and memory consumption goes up to 5.1 GB. All these
tests were performed on a computer running Linux (Ubuntu
16.04) using only one core CPU running at 2.20 GHz and equipped
with 16 GB of RAM. All measurements were done three times and
the average was used for the comparison. After the FASTQ genera-
tion, BWA and SAMtools are called fromwithin the tool to generate
the corresponding BAM and SAM files.
4. Discussion

Tagging DNA fragments with UMI tags have proved itself as a
very reliable method to significantly reduce – if not completely
remove – the number of false positives upon variant calling. A huge
number of variant callers are publicly available at the moment but
unfortunately, only 4 of them are specifically developed to treat
UMI tags in reads. For raw-read-based variant callers, a lot of



Fig. 7. The variation of the median base quality score with position in read in real samples (A) and in the simulated data (B). A simulated drop in quality was simulated in
scenario A and its reproduction in the simulated dataset (B).

Fig 8. The repartition of the %GC in reads in the real data (A) and in the simulated data (B).
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Figure 9. Along with the reference genome FASTA file and the BED file, two different lists were used, one with 13 variants and the other with 15 variants to respectively
produce the artificial samples Sample 1 and Sample 2.

Table 2
Detailed list of the inserted mutations. In this test, all mutations are inserted on chromosome 1.

Position Reference allele Variant allele Frequency Sample

2,488,101 G A 0.9 S1 & S2
2,489,200 C A 0.8 S1 & S2
2,491,260 A G 0.7 S1 & S2
2,493,201 T A 0.6 S1 & S2
2,494,300 G A 0.5 S1 & S2
23,885,600 C A 0.4 S1 & S2
23,885,800 A T 0.3 S1 & S2
27,022,900 C A 0.2 S1 & S2
27,023,200 C A 0.1 S1 & S2
27,093,001 G A 0.05 S1 & S2
27,100,350 C A 0.01 S1 & S2
27,106,500 G A 0.005 S2 only
117,057,400 T A 0.001 S2 only
120,458,000 C CTA 0.1 S1 & S2
120,466,600 TGTC T 0.1 S1 & S2

Figure 10. The inserted mutations were correctly added to the reads with their exact locations at their corresponding frequencies. Here, we see four mutations:
chr1:2491260A > G at 70%, chr1:27022900C > A at 20%, chr1:120458000C > CTA at 10% and chr1:27093001G > A at 5%.
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Table 3
Variant calling results on Sample 1. Four variant callers were tested: SiNVICT, OutLyzer, DeepSNVMiner and UMI-VarCal and for each tool, True Positives (TP), False Positives (FP),
False Negatives (FN), sensitivity and specificity are reported.

Variant Caller TP FP FN Sensitivity (%) Specificity (%)

SiNVICT 8 233 5 61.5 99.7
OutLyzer 11 98 2 84.6 99.9
DeepSNVMiner 12 37 1 92.3 99.95
UMI-VarCal 13 0 0 100 100

Table 4
Variant calling results on Sample 2. Four variant callers were tested: SiNVICT, OutLyzer, DeepSNVMiner and UMI-VarCal and for each tool, True Positives (TP), False Positives (FP),
False Negatives (FN), sensitivity and specificity are reported.

Variant Caller TP FP FN Sensitivity (%) Specificity (%)

SiNVICT 8 455 7 53.4 99.4
OutLyzer 12 330 3 80 99.6
DeepSNVMiner 14 2 1 93.4 99.99
UMI-VarCal 15 0 0 100 100

Table 5
Performance analysis of UMI-Gen: the variation of execution time and memory
consumption with the simulated data’s depth.

Sample Data Simulation (min) FASTQ to BAM (s) RAM Usage (GB)

500� 1.57 8 1.0
1000� 1.87 14 1.1
5000� 6.97 52 2.6
10,000� 16.58 99 5.1
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artificial read simulators exist and can satisfy everyone’s needs.
However, to our knowledge, no tool is publicly available to simu-
late artificial reads with UMI tags. Such a tool is very important
as it allows developers to accurately test the specificity and the
sensitivity of their variant callers on artificial reads in which real
variants are known instead of testing them on biological samples
whose mutational profile is completely or partially unknown.

Our main objective was to develop a UMI-based read simulator
that is fast, accurate and reliable. UMI-Gen is able to estimate the
background error noise of a given control dataset and then repro-
duce it accurately in the produced reads. Doing so, it allows to
mimic the sequencer’s background noise of a real sequencing
experiment. We also showed that our simulator is able to accu-
rately insert variants if provided with a list of variants with exact
locations and their corresponding frequencies and produce reads
that mimic ones produced in real life experiments. In our tests,
we were able to insert mutations as low as 0.1% but theoretically,
we can go as low as we want provided that the depth of the pro-
duced sample is accordingly increased.

Moreover, in our variant caller comparison, SiNVICT did a
decent job detecting the 8 of the added variants and went as low
as 5%. Impressively, we judge the performance of OutLyzer as
excellent as it detected 12 of the 15 variants (Sample 2) and
showed a detection threshold of 0.5% which is very respectable.
However, SiNVICT and OutLyzer being raw-read-based variant call-
ers, UMI tags were not treated in the reads and therefore, both
tools produced a high percentage of false positives. On the other
hand, DeepSNVMiner results were near perfect as expected from
a decent UMI-based variant caller detecting all variants except
one in both scenarios with only a couple of false positives. Finally,
UMI-VarCal was successfully able to treat UMI tags allowing it to
filter out all false positives and only call out the 13 added variants
in Sample 1 and all of the 15 in Sample 2. These results demon-
strate how the UMI-based variant calling approach is much more
efficient and accurate than raw-read-based ones allowing to detect
variants with VAFs as low as 0.1% without sacrificing specificity. It
also highlights the need to the development and usage of UMI-
based read simulators in order to test these new algorithms.

5. Conclusion

Here, we present UMI-Gen: a standalone UMI-based read simu-
lator for variant calling evaluation in paired-end sequencing NGS
libraries. UMI-Gen produces sequencing files (FASTQ, BAM and
SAM) for an artificial sample to be used for UMI-based variant call-
ing testing purposes. By using a set of control DNA samples, our
tool is capable of accurately mimicking the background error noise
of the sequencer and adding it into the reads. After that, it can
insert specific mutations at specific locations and at very precise
frequencies that can go as low as 0.1% (and even lower). In our
tests, all added artifacts were correctly inserted in the reads, caus-
ing a high number of false positives in the raw-read-based variant
callers results. Also, all inserted true variants were visualized with
a genome visualization tool (IGV) and were detected by at least one
of the four variant calling tools we tested. Finally, we note that
UMI-Gen’s filters and parameters (such as read length and UMI
tag length) are customizable which gives the user total control over
his produced samples. This level of customization allows the tool
to be adequate for a high number of research applications.
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