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Abstract
We developed and evaluated a method for making early predictions of best overall 
response (BOR) and overall survival at 6 months (OS6) in patients with cancer treated 
with immunotherapy. This method combines machine learning with modeling of lon-
gitudinal tumor size data. We applied our method to data from durvalumab-exposed 
patients with recurrent/metastatic head and neck cancer. A fivefold cross-validation 
was used for model selection. Independent trial data, with various degrees of data 
truncation, were used for model validation. Mean classification error rates (90% con-
fidence intervals [CIs]) from cross-validation were 5.99% (90% CI 2.98%–7.50%) for 
BOR and 19.8% (90% CI 15.8%–39.3%) for OS6. During model validation, the area 
under the receiver operating characteristic curves was preserved for BOR (0.97, 0.97, 
and 0.94) and OS6 (0.85, 0.84, and 0.82) at 24, 18, and 12 weeks, respectively. These 
results suggest our method predicts trial outcomes accurately from early data and 
could be used to aid drug development.

INTRODUCTION

Over the past decade, the increased survival and improve-
ment on quality of life observed in some patients receiv-
ing immuno-oncology (IO) therapy have transformed 

the landscape of oncology care and drug development.1 
However, not all patients respond or benefit from treatment 
with IO therapy.2,3 In addition, some patients who receive 
IO therapy experience what is termed pseudoprogres-
sion: their tumor sizes initially appear to increase, but later 
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decrease.4–7 The opportunity for long-term benefit could be 
missed if a patient experiencing pseudoprogression is re-
moved from IO therapy. Further, some patients appear to 
experience hyperprogression: their tumors grow faster than 
expected, without any subsequent reduction throughout the 
remaining treatment course.7–9 These patients may benefit 
from early discontinuation of IO therapy and a switch to an 
alternative treatment. For these and other reasons, accurate 
prediction of patient response to IO therapy is both impor-
tant and challenging.

Various tumor dynamic models have been used to charac-
terize drug effects on tumor size and to identify prognostic and 
predictive factors for overall survival for chemotherapy, targeted 
agents and recently IO therapy.10–13 The relationship between 
early tumor dynamics and survival has been explored11,14,15 
with 8-week tumor shrinkage associated with longer survival 
for chemotherapy or targeted therapies. For IO therapy, tumor 
size change at 12  weeks demonstrated predictive value of 
survival.15 However, in both cases, these tumor size-derived 
metrics do not provide additional benefit over the traditional 
Response Evaluation Criteria in Solid Tumors (RECIST)-based 
criteria for immunotherapies.16 Other research evaluated the en-
tire longitudinal time course of tumor size data and the use of 
joint modeling to determine the best predictors of survival.17 
Whereas providing good accuracy in predicting an independent 
external clinical trial, the complexity of the method and the use 
of long-term data present significant hurdles for its scalability 
and implementation in clinical practice or to guide decision 
making in drug development.

In this work, we propose a simple mathematical frame-
work for early prediction of patients’ best overall response 
(BOR) and overall survival at 6 months (OS6). Our method 
uses nonlinear mixed-effects (NLMEs) modeling of longi-
tudinal tumor size data from patients on IO therapy, cou-
pled with a machine learning classification algorithm. This 
method provides an early prediction of outcomes, both at 
individual and at study levels. Machine learning approaches 
have already demonstrated value in the field of pharmacom-
etrics18,19 but our method specifically addresses a problem of 
early response prediction based on clinical data.

In this proof-of-concept work, we assessed the perfor-
mance of our method with data from patients with recurrent 
and metastatic (r/m) head and neck squamous cell carcinoma 
(HNSCC) treated with durvalumab (Imfinzi), an anti-PD-L1 
monoclonal antibody, alone or in combination with tremeli-
mumab, an anti-CTLA4 monoclonal antibody. Durvalumab 
monotherapy is currently approved for multiple indications, 
including urothelial carcinoma, non-small cell lung carci-
noma, and extensive-stage small-cell lung carcinoma. We 
performed cross-validation using data from four clinical tri-
als to select the model. We then used data from a separate 
randomized, blinded, and controlled phase III clinical trial 
to independently assess the method’s predictive performance.

METHODS

Study design, data, and patient population

Study design

This analysis is based on data from five clinical studies 
investigating durvalumab (Imfinzi) alone or in combina-
tion with tremelimumab (see Table  1) in patients with a 
diagnosis of r/m HNSCC. The training dataset was com-
prised of 401 patients enrolled in one of the following 4 
phase I or phase II studies: study 1108 (NCT01693562), 
study 11 (NCT02262741), HAWK (NCT02207530), and 
CONDOR (NCT02319044). All studies were conducted 
in compliance with the Declaration of Helsinki and the 
US Food and Drug Administration Guidelines for Good 
Clinical Practice.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON 
THE TOPIC?
Previous tumor dynamics models have demonstrated 
that early tumor size metrics can be correlated with 
clinical outcomes in patients treated with chemother-
apy. Predicting response to immune-oncology (IO) 
therapy has been challenging due to complexities, 
such as pseudoprogression and hyperprogression.
WHAT QUESTION DID THE STUDY 
ADDRESS?
Is it possible to predict the response of patients re-
ceiving IO therapies using only early data?
WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
A novel approach combining mixed effects mod-
eling of tumor longitudinal data and supervised ma-
chine learning are able to predict clinical outcomes, 
such as best overall response and survival of an in-
dependent trial with good accuracy based on only 
12 weeks of tumor size assessments. The accuracy 
of the method in this challenging setting is promis-
ing for its predictive potential for other cancer types 
and therapies.
HOW MIGHT THIS CHANGE DRUG 
DISCOVERY, DEVELOPMENT, AND/OR 
THERAPEUTICS?
Early prediction of responses of patients with cancer 
to various therapies could guide clinical develop-
ment decision and help optimize therapy for indi-
vidual patients.
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The test dataset was comprised of data from 482 pa-
tients in a phase III study (EAGLE trial, NCT02369874) 
and was used to validate the proposed method. The sim-
ilarity in observed clinical outcomes and distributions of 
patients’ characteristics across trials and within trial arms 
allowed us to pool the data from all durvalumab-exposed 
patients to simplify the analysis. Consequently, patients 
treated with durvalumab monotherapy or with durvalumab 
in combination with tremelimumab were included in the 
analysis. Similar dose levels of durvalumab were used 
in the 5 studies: doses of 10  mg/kg q2w i.v. or 20  mg/

kg q4w i.v. When used in combination with durvalumab, 
tremelimumab was dosed at 1  mg/kg q4w for 4 cycles. 
Two sensitivity analyses were conducted to test the impact 
of the assumptions made in the pooling strategy (see the 
Supplementary Materials).

The model predictive performance was evaluated using 
the area under the curve (AUC) of the receiver-operator 
curve (ROC) as well as the AUC of the precision and recall 
curve (PRC) to assess the potential impact of imbalance be-
tween the two classes, responders and nonresponders, on the 
classification.20

T A B L E  1   Covariate distribution at baseline, split by study, and data set (training and validation)

Variable, mean (SD)

Training
Validation 
EAGLEHAWK CONDOR Study_11 Study_1108

n 111 195 41 54 482

Age, years 57.5 (12.2) 60.3 (9.53) 60.7 (11.5) 58.9 (11.2) 59.5 (9.59)

Albumin, [g/L 38.1 (4.97) 38.6 (4.91) 39.2 (6.24) 37.6 (4.67) 39.1 (4.95)

ALP, U/L 96.0 (52.3) 99.9 (101) 102 (78.8) 105 (62.2) 123 (100)

ALT, U/L 19.5 (10.8) 18.9 (11.3) 19.1 (9.11) 22.5 (12.0) 19.1 (15.5)

GGT, U/L 49.8 (55.7) 60.4 (114) 54.9 (64.6) 61.5 (92.1) 65 (108)

HB, g/L 117 (14.0) 117 (17.5) 121 (18.6) 117 (18.4) 119 (16.6)

IC, % 15.2 (18.2) 15.8 (19.3) 25.6 (21.3) 21.1 (20.3) 17.4 (21.6)

NEUT, 109/L 6.28 (4.05) 6.08 (3.36) 6.43 (3.9) 5.56 (3.81) 6.24 (3.88)

NLR 8.33 (7.97) 7.32 (5.52) 9.28 (6.79) 8.33 (7.35) 7.38 (8.49)

TC, % 62.6 (26.6) 3.98 (6.24) 34.2 (34.4) 22.5 (29.9) 19.6 (28.2)

SLD, mm 68.8 (38.9) 73.3 (40.2) 75.2 (51.7) 76.3 (45.0) 64.8 (42.2)

Variable, N (%)

Training
Validation 
EAGLELabel HAWK CONDOR Study 11 Study 1108

HPV status Negative 64 (58%) 126 (65%) 6 (15%) 21 (39%) 255 (53%)

Positive 34 (31%) 58 (30%) 16 (39%) 24 (44%) 78 (16%)

Unknown 13 (12%) 11 (6%) 19 (46%) 9 (17%) 149 (31%)

Disease stage Locally advanced 39 (35%) 69 (35%) 39 (95%) 37 (69%) 190 (39%)

Metastatic 72 (65%) 126 (65%) 1 (2%) 11 (20%) 279 (58%)

Unknown 0 (0%) 0 (0%) 4 (2%) 6 (11%) 13 (3%)

Prior platinum-based therapy No 0 (0%) 0 (0%) 39 (95%) 9 (17%) 26 (5%)

Yes 111 (100%) 195 (100%) 2 (5%) 45 (83%) 456 (95%)

ECOG 0 33 (30%) 60 (31%) 13 (32%) 17 (31%) 125 (26%)

1 77 (69%) 135 (69%) 28 (68%) 36 (67%) 357 (74%)

Unknown 1 (1%) 0 (0%) 0 (0%) 1 (2%) 0 (0%)

Sex Male 32 (29%) 32 (16%) 9 (22%) 7 (13%) 75 (16%)

Female 79 (71%) 163 (84%) 32 (78%) 47 (87%) 407 (84%)

Smoking status Current 9 (8%) 29 (15%) 1 (2%) 5 (9%) 86 (18%)

Former 59 (53%) 138 (71%) 22 (54%) 31 (57%) 295 (61%)

Never 43 (39%) 28 (14%) 18 (44%) 18 (33%) 101 (21%)

Abbreviations: ALP, alkaline phosphatase; ALT, alanine transferase; ECOG, Eastern Cooperative Oncology Group; GGT, gamma glutamyl transferase; HB, 
hemoglobin; HPV, human papillomavirus; IC, immune cell PD-L1 expression, expressed in percentage staining; NEUT, neutrophil count; NLR, neutrophil to 
lymphocyte ratio; SLD, sum of longest diameters of the tumor size at baseline; TC, tumor cell PD-L1 expression, expressed in percentage staining.
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Tumor size data

Tumor assessments were performed using computed to-
mography or magnetic resonance imaging with lesion 
size determined according to RECIST criteria.16 The sum 
of longest diameters (SLDs) of up to five target lesions 
was computed from each scan. All patients with at least 
one baseline scan with measurable disease were included; 
78% of these patients also had at least one postbaseline as-
sessment with measurable disease. The median number of 
measurements postbaseline was 3 (range 1–15) in the train-
ing dataset. The intended duration of treatment as defined 
by protocol was typically 1  year with the possibility for 
re-treatment for some patients. The longest follow-up was 
almost 30 months on treatment.

Covariate data and missingness

Available covariates in the datasets included; baseline demo-
graphics (age, sex, and performance status), kidney function 
(albumin level [ALB], creatinine clearance, and serum creati-
nine), metabolic marker (lactate dehydrogenase), cell counts 
(neutrophils [NEUTs], neutrophil-lymphocyte ratio [NLR]), 
as well as postbaseline presence of antibody-drug antibodies. 
The pharmacokinetics of durvalumab were not considered 
in the covariate analysis because most patients were dosed 
to achieve close to complete target suppression of PD-L1 in 
the periphery. Additionally, association of durvalumab ex-
posure levels with longitudinal data of ALB and tumor size 
can result in confounding bias, as demonstrated by Baverel 
et al.10 Potential covariates with missingness not exceeding 
10% were considered, and missing values were imputed by 
the median and the most prevalent values for the continuous 
and categorical features, respectively.

Clinical outcomes and responders’ definition

BOR was defined as the best response a patient had during 
treatment, but prior to starting any subsequent cancer ther-
apy and up to and including RECIST progression or the last 
evaluable assessment in the absence of RECIST progression. 

BOR responders were defined as patients with a BOR of 
complete response or partial response, whereas BOR nonre-
sponders were defined as those with stable disease, progres-
sive disease, or not evaluable.

For OS6, a responder was any patient who was alive at or 
beyond 6 months, a nonresponder was any patient who died 
or was censored prior to 6 months. The 6-month landmark 
time ensured that a sufficient number of responders and non-
responders were in each category to test the predictive per-
formance of the classification algorithm. Hence, dropout was 
factored into the OS6 responder metric to minimize infor-
mative missingness bias and avoid the need for model-based 
imputation methods.21,22

Method development and validation

A simple description of the method in four steps is provided 
below and a visual workflow is shown in Figure 1 with more 
details in the Supplementary Materials. We started with all 
available individual patient tumor size data in the training 
dataset. In step 1, we fit the following mathematical model to 
these SLD values over time:

where Y is the model value for SLD, and Y0, Y1, k_d (decrease), 
and k_g (growth) are fixed effects.23

This base model was fit using NLME modeling 
(NONMEM version 7.3; ICON, Ellicott City, MD), with 
an additive residual error model, and with random effects 
on the fixed effects parameters k_d and k_g. The result-
ing estimated individual rate constants k_d and k_g were 
used as inputs for the next step. This flexible mathemat-
ical model is able to capture tumor size dynamics spe-
cific to patients receiving IO therapy. In particular, this 
model can capture pseudoprogression as well as tumor 
sizes that approach a steady-state value that is finite and 
non-zero. Many previously published tumor dynamic 
models of responses to chemotherapy cannot exhibit these 
behaviors.11,13,23–25

In step 2a, we applied logistic regression (R version 3.5.1 
or higher; R Software Foundation) to the step 1 values of 

(1)Y = Y0 ∙ e− k_d ∙ t
+ Y1 ∙ (1 − e− k_g ∙ t )

F I G U R E  1   Schematic of the 
classification method
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k_d and k_g to obtain individual probabilities of response. 
We note that in exploratory analyses of other data sets (not 
shown), applying logistic regression to the natural logarithms 
(ln) of k_d and k_g worked well. Covariates that showed a 
statistically significant improvement to the model and were 
then tested during the multivariable analysis were NLR, 
ALB, Eastern Cooperative Oncology Group (ECOG), and 
NEUT count.

In step 2b, we chose the probability threshold that sep-
arated predicted responders from predicted nonresponders 
with the smallest total error when comparing these pre-
dictions to the known patient responses. In step 3, clinical 
markers were tested as covariates in the logistic regression 
model by applying fivefold cross-validation to the full 
time-course data. Covariate selection was performed to 
identify the algorithm resulting in the highest accuracy in 
response classification with the most parsimonious number 
of parameters.

In step 4, we used the test dataset to externally validate 
the model’s ability to predict patient response from early 
data. Specifically, we tested the predictive performance of 
the model on the test data set at 24, 18, and 12 weeks post-
treatment initiation as well as on the full treatment duration. 
NLME modeling was used with fixed-effect (“population”) 
values frozen to those found in steps 1 and 3, and individual 
values estimated on the truncated data. Predictions based on 
those k_d and k_g values were compared with known patient 
outcomes to calculate the error rates.

RESULTS

Training and test datasets

The longitudinal tumor size data of the training data set 
used in the primary analysis are graphically illustrated in 
Figure 2a for all 4 trials with color-coded BOR. The corre-
sponding Kaplan-Meier curves of overall survival are simi-
lar across the four studies (Figure 2c). Corresponding plots 
for the test dataset (EAGLE) are provided in Figure 2b and 
d. The percentages of responders in the training and test 
datasets were, respectively, 10% and 18% for BOR and 23% 
and 29% for OS6. Covariate summary statistics at baseline 
for each trial are shown in Table 1. No significant differ-
ences in the demographics and relevant covariates data were 
noted between the training and test data sets. The popula-
tion those enrolled was typical of a r/m HNSCC second-line 
patient pool except for study 11, which had 95% of patients 
with no prior platinum-based therapy and a locally advanced 
stage of disease. Most patients were men, former or current 
smokers, and the patient population had a mean age approx-
imating 60 years. Baseline ALB levels ranged from 37.6 to 
39.2 g/L across trials with NEUT and NLR at baseline ~ 6 

billion cells/L and 7–9, respectively. Approximately two-
thirds of the patients had a baseline ECOG performance sta-
tus score of 1. Around 30%–40% of patients in the training 
dataset had a known positive human papillomavirus (HPV) 
status in the training data set trials compared with 16% in 
the EAGLE dataset, but a generally higher proportion had 
unknown HPV status in the latter trial. Training and test 
data sets used in the sensitivity analyses of the methodol-
ogy did not lead to significant imbalance in structure or data 
content.

Population tumor modeling of training data set

The tumor dynamics model adequately described the train-
ing and test data sets, and the model parameters were es-
timated with reasonable precision (Table S2). Typical 
values (relative standard error) of k_d, k_g, and Y1 were 
0.0226  week−1 (46.6%), 0.00551  week−1 (32.1%), and 
37.9 mm (27.0%), respectively, with a 17.4% residual error 
estimate. The final model consisted of random effects on 
all parameters with no covariance structure. Variability 
estimates were large (54.1% to 183%), reflective of the 
heterogeneity of tumor size patterns observed following 
immunotherapy. No formal goodness of fit and model 
qualification was undertaken besides visual assessment of 
the individual prediction versus observed data because re-
sidual- and population-based diagnostics were expected to 
be skewed by informative censoring or dropout.21,26 Eight 
representative patient tumor profiles and their associated 
model fits (including k_g and k_d) are shown in Figure 3a. 
These show a well-fitting model to patterns of initial 
growth followed by decrease (ID = 183 and 405), tumor 
size growth (ID  =  185), tumor size decrease (ID  =  401, 
431, and 440), and tumor size decrease followed by re-
growth (ID = 414 and 428).

Machine learning classification

Individual parameter values obtained by fitting the tumor 
dynamics model to the training data sets were used as 
inputs of the machine learning algorithm for response 
classification. No clinical markers were identified as sta-
tistically significant besides k_d and k_g for the prediction 
of BOR, whereas baseline ALB was associated with OS6 
response (p  <  0.01). Following 5-fold cross-validation 
of the training dataset, ALB remained a significant pre-
dictor for the OS6 classification. Indeed, ALB, k_d, and 
k_g were found to be the best predictors of OS6 response, 
giving the lowest classification error rate (mean of 19.8% 
with 90% confidence interval 15.8%–39.3%) with fewest 
degrees of freedom.
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A scatterplot of k_d and k_g in logarithmic scale is 
provided in Figure 3b for BOR observed responses, and in 
Figure  3c for OS6 observed responses. The classification 
error rates and contingency tables comparing predictions and 
observed responses were computed during the fivefold cross-
validation of the training dataset. Error rates of the cross-
validation are displayed in Figure 4 alongside AUC ROC for 

both the primary analysis and for the 2 sensitivity analyses. 
Overall, no major inflation of the error rates or AUC ROC 
was noted, suggesting that neither the inclusion of patients 
on combination therapy (sensitivity analysis 1) nor a larger 
training dataset sample size (sensitivity analysis 2) have 
significant impact on the classification accuracy (see the 
Supplementary Materials).

F I G U R E  2   Top panels. Longitudinal tumor data of durvalumab-treated patients with recurrent and metastatic head and neck squamous cell 
carcinoma used for training the model (panel a, 4 studies) and for validation (panel b, one confirmatory study). Best overall response outcome 
classifications used are as follows: responders are patients with complete response (CR) or partial response (PR); nonresponders are patients 
with stable disease (SD), progressive disease (PD), or not evaluable (NE). Bottom panels. Kaplan-Meier plots of overall survival (OS) for all 
four clinical trials used in the training dataset stratified by study (panel c), and validation dataset OS time profile (panel d). A 6-month landmark 
time was used in the analysis to dichotomize OS (responder = alive and still in the trial at 6 months; nonresponder = not in the trial at 6 months), 
denoted as overall survival at 6 months (OS6)
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External validation

During the external validation of EAGLE trial data, we used 
NLME modeling to fit the tumor dynamics model to the test 
data set, whereas the individual parameters for the train-
ing data and the overall population estimates were frozen. 
The longitudinal tumor size profiles of patients were well-
characterized by the NLME fit, and this provided a set of 

individual parameters (k_d and k_g) for each patient in the test 
data set. Individual plots of tumor size longitudinal data and 
model predictions are shown in Figure 5a for data truncation 
at 24, 18, and 12 weeks. ROC curves showed good predic-
tive performance irrespective of data truncation (Figure 5b). 
The BOR classification yielded very small decreases of AUC 
ROC from 0.968 (24 weeks) to 0.971 (18 weeks) to 0.937 
(12  weeks). For OS6, the AUC ROC values were 0.847, 

F I G U R E  3   (a) Scatterplot of sum of longest diameter of target lesions time-course data (plain circles) and nonlinear mixed-effect tumor model 
fit (solid line) for eight representative individuals selected from the training data. Individual parameter estimates k_d and k_g, expressed in week−1, 
are provided. (b) Scatterplot of the individual parameter estimates (k_d vs. k_g) and categorization by best overall response (BOR) in the training 
dataset. (c) Scatterplot of (k_d vs. k_g) and categorization by overall survival at 6 months (OS6) response in the training dataset. In (b) and (c), 
the solid black demarcation curve represents the machine learning output separating responders (above the curve) from nonresponders (below the 
curve). Observed clinical outcomes of BOR and OS6 are color-coded as indicated in the legends
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0.843, and 0.821, for 24, 18, and 12  weeks, respectively. 
Classification error rates were 6.64%, 7.05%, and 9.75% for 
BOR and 18.0%, 18.3%, and 20.5% for OS6 when truncating 
data based on 24-, 18-, and 12-week periods, respectively, 
from treatment initiation.

As illustrated in Figure 4, the classification error rates 
and AUC ROC results of the external validation at week 
12 are within the distribution of values obtained during 
the 5-fold cross-validation both for BOR and OS6. This is 
suggestive of good predictive performance of the classifi-
cation method with limited data, because no data trunca-
tion was performed during the cross-validation, and hence 
the distribution obtained represents the most conservative 
scenarios where all data are available for trial outcome pre-
dictions. Sensitivity analyses did not provide noticeable 
differences in performance compared with the primary 
analysis (Figure 4).

A more complete summary of the performance of the 
method is provided in Table 2. All specificity estimates ex-
ceeded 0.9 for the full data, 24-, 18-, or 12-week external 
validation. For sensitivity, the method had 0.773 probabil-
ity for correct BOR responder classification for the full test 
data set, and 0.574 for OS6. The method was sensitive to 
truncation of data with higher false negative rates at earlier 
times. Hence, error rates appear to be affected more by the 
increased incidence of false negative classification rather 
than false positive misclassification when truncating the 
data. Finally, positive and negative predictive values (PPV 
and NPV) were also evaluated for predicting responders 
and nonresponders, respectively. The PPV for BOR was 
0.829 when using the full data and 0.773 for 12-week trun-
cation, whereas for OS6, PPV dropped from 0.705 to 0.660 
in the same settings. NPV for BOR was 0.95 and 0.926 
for full and 12-week data, respectively. For OS6, NPV was 

F I G U R E  4   Area under the curve (AUC) estimates of receiver-
operator curve (ROC) and error rate estimates of the classification 
algorithm in various settings. Primary analysis: Fivefold cross-
validation (mean and 90% prediction interval), and external validation 
(12-week truncation) for best overall response (BOR) and overall 
survival at 6 months (OS6) trial outcomes. Sensitivity analysis 1: 
comparison of results for monotherapy compared with combination 
therapy. Sensitivity analysis 2: analysis of the effect of sample size 
(see the Supplementary Materials for details on these analyses)

F I G U R E  5   (a) Spider plots of observed (dots) and individually 
predicted (lines) tumor size change from baseline over time at 
various early cutoff times of the test data set: left (24 weeks), middle 
(18 weeks), and right (12 weeks). (b) Receiver operating characteristic 
curve for prediction of best overall response (BOR; red) and overall 
survival at 6 months (OS6; green) corresponding to each data 
truncation. Classification error rates and areas under the curve (AUC) 
of the ROC curve for BOR (red) and OS6 (green) corresponding to 
each data truncation
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0.854 and 0.827 for full and 12-week data, respectively. 
However, AUC PRC based on full EAGLE data was 0.836 
for BOR (0.793 for 12-week truncation), and 0.611 for OS6 
(0.591 for 12-week truncation).

DISCUSSION

In this proof-of-concept work, we introduced a method 
for early prediction of clinical response to IO therapy. Our 
method uses NLME model fitting to early tumor size data, 
coupled with machine learning to classify patients’ responses, 
minimizing total classification error. We evaluated the pre-
dictive performance of this method using clinical trial data 
from durvalumab-treated patients (either monotherapy or in 
combination with tremelimumab) with HNSCC. Our analy-
sis included cross-validation for model development and an 
external validation for predictive performance evaluation. To 
our knowledge, this is the first paper describing a machine 
learning method that incorporates pharmacometrics-based 
tumor dynamics model predictions for classification of re-
sponders and nonresponders in oncology.

Two clinical end points used in oncology, BOR and OS6, 
were examined, with overall survival (OS) being assessed at 
a landmark time of 6 months. Overall, our method demon-
strated good predictive performance when prospectively 
validated with data from an external clinical trial, even for 
predictions made from only 12 weeks of tumor size data. 
Minimum gains in predictive power were obtained by incor-
porating data beyond 12 weeks or by increasing sample size 
in the sensitivity analyses conducted. The method correctly 
classified OS6 responders and nonresponders in ~ 80% of 
cases (AUC of ROC = 0.821 and error rate of 20.5% at week 
12) when using at most 3 postbaseline observations of tumor 
size per patient (average: 1.1 postbaseline observations). For 

BOR, the performance metrics for external validation were 
even better, with AUC ROC and specificity reaching 95% in 
most instances of truncation and a total error rate of 9.75% 
using only 12 weeks of data.

Because NLME model parameter distributions can vary 
greatly by cancer type and treatment, the accuracy of our 
method depends on having adequate prior data for patients with 
the same indication and same treatment. Nonidentifiability of 
NLME model parameters for patients with limited longitudi-
nal tumor data reduces the informativeness of individual k_d 
and k_g estimates, which can result in classification inaccu-
racy. We hypothesize that a richer dataset, with more frequent 
early tumor size measurements, would improve the predictive 
performance of the method.

In addition to its simplicity, another advantage of the pro-
posed method is its modular structure and its adaptability 
for different objectives. In this work, we minimized the total 
classification error rate, based on a particular tumor dynam-
ics model, using a logistic regression classification. The true 
negative rate of the method is consistently above 90% accu-
racy for BOR and OS6 with this choice of optimization. In 
other settings, the method could be optimized by penalizing 
more for false negatives, to reduce the risk of stopping treat-
ment for patients who could benefit from the therapy.

Our method can be adapted for cancers other than HNSCC 
and for therapies other than IO. Equation 1 is flexible enough 
to provide good fits to data from patients on therapies other 
than IO.23 Additionally, the type of data and features (incor-
porating prognostic, predictive biomarkers at baseline or with 
time-varying components), as well as the machine learning 
algorithm can also be selected or optimized to match the un-
derlying objective of the research question.

In this work, OS6 response category was defined by a 
mixture of survival and censored data. Informative dropout 
was not handled with traditional statistical methods proposed 

T A B L E  2   Performance metrics of the classification based on external validation results from the analysis of EAGLE trial outcomes (BOR and 
OS6) with the entire dataset or 24-, 18-, or 12-week data truncation

BOR OS6

Data used All data 24 wk 18 wk 12 wk All data 24 wk 18 wk 12 wk

AUC ROC 0.957 0.968 0.971 0.937 0.838 0.847 0.843 0.821

Sensitivity 0.773 0.795 0.761 0.659 0.574 0.574 0.566 0.481

Specificity 0.964 0.964 0.967 0.957 0.912 0.909 0.909 0.909

Error rate (%) 7.05 6.64 7.05 9.75 17.8 18.0 18.3 20.5

PPV 0.829 0.833 0.838 0.773 0.705 0.698 0.695 0.66

NPV 0.950 0.955 0.948 0.926 0.854 0.854 0.851 0.827

AUC PRC 0.836 0.866 0.861 0.793 0.611 0.641 0.626 0.591

Youden Index 0.737 0.759 0.728 0.616 0.486 0.483 0.475 0.39

MCC 0.757 0.774 0.756 0.656 0.521 0.516 0.510 0.436

Abbreviations: AUC, area under the curve; BOR, best overall response; MCC, Matthews correlation coefficient; NPV, negative predictive value; PPV, positive 
predictive value; PRC, precision and recall curve; 0S6, overall survival at 6 months; ROC, receiver-operator curve.
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for NLMEs analyses.21,22 Although more than 20% of the pa-
tients had only baseline tumor size information, they were 
included in the predictions because the missingness is likely 
driven by noncompletely missing data at random effect due 
to disease progression, which would be informative for both 
OS6 and BOR outcomes. A dropout or joint model, as devel-
oped by Tardivon et al. for atezolimumab,17 based on urothe-
lial carcinoma SLD and OS data, could be implemented to 
minimize expected bias in tumor model parameter estimates 
due to informative dropout. However, even in its current 
form, our method performs with reasonable predictive accu-
racy, comparable to more complex methodologies.17

Feature selection provided only minor improvement in 
predictive performance. Only ALB at baseline was infor-
mative for predicting OS6 compared with prediction based 
solely on tumor dynamics, whereas no covariate was found 
to improve BOR predictions. ALB is a known prognostic 
marker of OS,27 and low values of albumin at baseline im-
proved the classification of nonresponders in cases of unin-
formative tumor dynamic parameters.

Last, in this paper, we only show predictions for a sin-
gle indication, with all patients treated with durvalumab (ei-
ther monotherapy or in combination with tremelimumab). 
Available data from patients with r/m HNSCC treated with 
durvalumab offered a good sample size for training and an 
independent clinical trial for a robust external validation of 
our method. However, patients with r/m HNSCC are a fast-
progressing and difficult to treat population with low IO 
response rates, which did not permit full appraisal of the sen-
sitivity and specificity of our method due to the large num-
ber of nonresponders compared with responders. To mitigate 
inherent limitations in our data set, we calculated precision-
recall AUC as an additional performance indicator. For OS6, 
we noted a disparity between the ROC AUC and PRC AUC 
estimates (0.8 vs. 0.6) at 12 weeks. The low sensitivity and 
PRC AUC observed for the OS6 data may be due to a lack 
of predictive power of target tumor size data alone for sur-
vival beyond 6 months in the HNSCC population. Although a 
model-based approach accounting for dropout could improve 
our tumor dynamics model parameter estimates, our method 
performed adequately for BOR with a PRC AUC ≥ 0.79 at 
12 weeks or higher.

We optimized the method to minimize the total error rates, 
but we could instead have optimized a metric that weighted 
PPV more heavily, for example. The choice of metric is one 
of the features that can be switched out in this modular ap-
proach. Youden’s J statistic and the Matthews correlation co-
efficient were not used for the model selection here, but their 
values indicate that our method is well-informed at week 12 
to predict OS6 with the current minimization setting. The 
method’s performance might be further improved by im-
plementing alternative methodologies designed to address 

the imbalance between responders and nonresponders in 
the training datasets for both OS6 and BOR.28 Furthermore, 
we note that the predictive performance of machine learn-
ing methods could improve with sufficiently increased data 
quality and size, which would then be expected to improve 
predictive performance of the overall approach.

Although Gong et al.18 used simulated data, we developed 
our method based on patient clinical outcomes data set. We 
designed an external validation strategy that ensured a robust 
evaluation of the method. Moreover, relying on an actual 
clinical dataset demonstrates its direct applicability in the 
drug development or clinical practice setting. Of course, the 
high variability in the assessment of tumor burden (SLD of 
target lesions, recording of new lesions or nontarget lesions), 
and other differences between studies or trial centers would 
need to be considered accordingly.

In summary, our proposed method combines traditional 
pharmacometrics and machine learning to make early predic-
tions of clinical outcome in durvalumab-treated patients with 
HNSCC. Despite the limitations noted above, the method 
accurately predicted BOR and OS6 and was externally val-
idated based on an independent phase III trial. An accurate 
method for predicting the response of a patient with cancer 
and survival using only early data could positively impact 
drug development as well as clinical practice. For example, 
such an early prediction method could inform platform trials 
by optimally switching patients to the most appropriate trial 
arms at earlier times. It could also aid in the optimization of 
therapy for individual patients with cancer.
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