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Abstract: Rubber from recycled car tires and styrene-butadiene-styrene (SBS) were used for
the chemical modification of commercially available road bitumen 50/70 (EN 12591). The modification
process began with the addition of rubber into asphalt and heating the whole amount at the temperature
of 190 ◦C or 220 ◦C. Under such conditions, de-vulcanization of rubber took place. Next, SBS and
sulfur as a cross-linker were added and the heating was continued so that cross-linking of SBS
and the de-vulcanized rubber proceeded. In the studies on the influence of rubber concentration
on the final properties of asphalt 10% or 15% of rubber was considered. Chemical modification
reactions were performed within 2, 4, and 8 h. The results showed that both the modification at
190 ◦C and 220 ◦C affected the properties of the base asphalt efficiently, although the asphalt modified
at 190 ◦C contained more non-degraded rubber. Increasing the modification time led to dissolution of
the rubber crumbs and its de-vulcanization. Bitumens modified in this way are characterized by high
storage stabilities. Their behavior at low temperatures also deserves attention.
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1. Introduction

The increased traffic loads and improvement of pavement working have led to the development
of polymer modified bitumens (PMB) during the last few years [1]. There are many categories of
asphalt modifiers in use. The most common are thermoplastic elastomers such as styrene-butadiene-
styrene (SBS), styrene-isoprene-styrene (SIS), and styrene-ethylene/butylene-styrene (SEBS);
different polyolefinic plastomers such as polyethylene (PE), polypropylene (PP), ethylene vinyl
acetate (EVA), and crumb rubber [2–7].

Mostly, 2–6% polymer is added to bitumen. The added polymer intensifies the binder properties
and allows for the construction of better quality roads. For example, elastomers can resist permanent
deformation over stretching and elastically recover once the load is removed. Simultaneously,
the addition of polymers causes a significant increase in production costs and complications related to
their storage. The low compatibility between the asphalt and polymer can lead to phase separation
when the product is stored at a high temperature without mixing [1]. As a result, the polymer-rich phase
concentrates on the top. This upper part exhibits high viscosity and is useless for paving applications.

A much cheaper modifier is rubber, particularly from recycled car tires. It has been shown that,
on one hand, bitumen–rubber mixtures reduce distress observed in bituminous pavements, but on
the other hand, separation of the asphalt and rubber phases creates problems during storage [8,9].
Another disadvantage is the noticeable increase in viscosity, especially at low temperatures [10–13].
To reduce the problem of phase separation, Wang [14] proposed using swollen rubber powder. In this
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form, it allows for the creation of a two-phase continuous mixing system consisting of rubber and
bitumen. It was found that the addition of rubber crumbs to the pavement technology is very beneficial
as it allows waste tire utilization to solve the problem of, but also improves the performance properties of
asphalt pavements including the reduction of street noise [15]. Rodríguez-Fernández et al. [16] reported
that the asphalt mixtures with crumb rubber were less susceptible to aging than the conventional
polymer modified mixtures. Thodesen et al. [17] tested the properties of the mixture containing 10%
of crumb rubber and 1% of SBS polymer as an asphalt modifier. The environmental and economic
aspects of using crumb rubber as an asphalt binder are described by Pouranian et al. [18,19]. Generally,
the rubber modification is advantageous because it makes asphalt materials tougher and reduces
the tendency of surfaces to crack and bleed, improving aggregate retention.

Seghar et al. [20] showed that re-vulcanization of the de-vulcanized rubber with the fresh sample
did not significantly affect the quality of the final product. Thus, waste rubber management methods
are particularly desirable for the production of pavements with properties corresponding to those of
the polymer-modified asphalt. In our previous paper, both recycled rubber and synthetic polybutadiene
were used as bitumen modifiers [21]. In this study, the results of bitumen modification using rubber
and SBS are presented. The aim of our research was to determine whether the resulting products
would have properties comparable to those of polymer modified bitumen (PMB), if recycled rubber
was used as a modifier. The influence of rubber concentration, temperature, and modification time on
asphalt properties was investigated.

2. Experimental

2.1. Materials

The asphalt 50/70 (EN 12591) used in this study came from ORLEN Asphalt LTD, Płock
(Płock, Poland), while the powdered rubber from recycled tires came from Orzel S.A.
Poniatowa, Poland. Synthetic poly(styrene-butadiene-styrene) (SBS) was purchased from
Brenntag, Poland Ltd (Kędzierzyn-Koźle, Poland). The sulfur donor and paraffin were from POCh
(Gliwice, Poland).

The rubber powder in the presented research had a 0–0.4 mm granulation. The chemical
composition of the used bitumen was as follows: saturated hydrocarbons 13.2%, aromatics 53.6%,
resins 19.3%, asphaltenes 13.9% (SARA—Saturated hydrocarbons, Aromatics, Resin, Asphaltenes),
and crystallizing fraction 0.3% [22].

2.2. Bitumen Modification

A total of 760 g of bitumen (88% by weight) and 200 g of crushed rubber (10% by weight) were
introduced into a 3000 cm3 three-necked round bottom flask, equipped with a mechanical stirrer,
thermometer, and reflux condenser. The contents of the flask were heated to 190 ◦C (or 220 ◦C),
the temperature at which de-vulcanization of the rubber occurs [23,24]. After 1 hour, sulfur and 40 g of
SBS (2% by weight) previously swollen with paraffin were added with stirring. Stirring was continued
so that the total heating time was: 2, 4, and 8 h. Similar syntheses were performed for the 15% rubber
samples (Figure 1). After modification, the bitumen was poured from the flask into molds in which it
was cooled to ambient temperature. Each synthesis was repeated three times, and the average product
was used in further studies.
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Figure 1. Scheme showing the chemical modification of the studied bitumen. 

2.3. Methods Used in the Characterization of Bitumen Properties 

2.3.1. Penetration at 25 °C 

Penetration (Pen25) at 25 °C was determined according to the standard method (EN 1426). 
Penetration is the depth at which the needle of the penetrometer is immersed in the asphalt for 5 s 
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The ring and ball softening point (SPR&B) was measured according to EN 1427. SPR&B of asphalt 
is the conventional temperature at which the asphalt transitions from a viscoelastic to a viscous state.  

This is the temperature at which the asphalt samples in the two rings supporting the steel ball 
softened, so each ball surrounded by asphalt traveled a distance of 25 ± 0.4 mm. 
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Figure 1. Scheme showing the chemical modification of the studied bitumen.

2.3. Methods Used in the Characterization of Bitumen Properties

2.3.1. Penetration at 25 ◦C

Penetration (Pen25) at 25 ◦C was determined according to the standard method (EN 1426).
Penetration is the depth at which the needle of the penetrometer is immersed in the asphalt for 5 s
under the test at a load of 100 g at 25 ◦C.

2.3.2. Softening Point

The ring and ball softening point (SPR&B) was measured according to EN 1427. SPR&B of asphalt
is the conventional temperature at which the asphalt transitions from a viscoelastic to a viscous state.

This is the temperature at which the asphalt samples in the two rings supporting the steel ball
softened, so each ball surrounded by asphalt traveled a distance of 25 ± 0.4 mm.

2.3.3. Fraass Breaking Point

The Fraass breaking point characterizing the behavior of bitumens at low temperatures,
was measured according to EN 12593. The breaking point determination consisted in cooling
a steel plate with a 0.5 mm thick asphalt layer at a constant speed, and the bending test was applied
every minute until asphalt layer cracking was observed.

2.3.4. Softening Point SPR&B Increase

To determine the increase of the SPR&B softening point, a roller thin film oven tester (RTFOT) was
used according to EN 1427.

2.3.5. Elastic Recovery at 25 ◦C

Conventional ductility test was used to determine the elastic recovery of bitumen at 25 ◦C
(EN 13398). It was evaluated as a percentage of recoverable strain measured after elongation.

2.3.6. Stability

Storage stability refers to the tendency of rubber to separate from asphalt and provides an indication
of the degree of chemical compatibility between the two individual components. This was determined
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using aluminum test tubes with a Φ25 mm × 160 mm. The studied samples in the aluminum tubes
were heated in the vertical position at 180 ◦C for 72 h. After cooling, the sample was cut into three
parts. For the lower and upper parts, the penetration and softening tests were carried out (difference
between penetration top/penetration bottom as delta Pen25, and difference between SPR&B top/SPR&B
as delta SPR&B), while the middle part was discorded.

2.3.7. The Mass Change after RTFOT

The mass change after RTFOT (according to EN 12607-1) represents the difference in mass for
the samples heated in the thin rolling furnace compared to the mass of the fresh bitumen.

2.3.8. Cohesion Energies and Maximal Tensile Force

The cohesion energies at 5 ◦C and 10 ◦C (according to EN 13589 and EN 13703) and the maximal
tensile forces [N] were determined by the force ductility method.

2.3.9. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) measurements were carried out with a Netzsch
204 calorimeter (Selb, Germany) operating in dynamic mode. The dynamic scans were performed
at the heating rate of 10 ◦C/min from room temperature to 300 ◦C in an argon atmosphere
(flow = 20 cm3/min). The samples were placed in an aluminum pan with a pierced lid (mass of
40 ± 1 mg). The empty pan was used as a reference sample. The sample masses of 10.0 ± 0.2 mg
were used.

2.3.10. Solid Residue

The solid residual was determined by the gravimetric method.
The values of penetration at 25 ◦C, softening point (R&B), penetration index (IP) according to EN

12591/Ann.A., elastic recovery, softening point after RTFOT, mass change after RTFOT, and stabilities
are the mean of three determinations. The values such as penetration index, delta R&B, and increasing
of softening point after RTFOT were calculated based on these mean values. The values of the Fraass
breaking point refer to one measurement.

3. Results and Discussion

In analogy to the previous studies, modifications of bitumen with the de-vulcanized rubber and
SBS in the presence of sulfur were performed at 190 and 220 ◦C [21,24]. The rubber was added at
a concentration of 10 or 15% while the SBS concentration was constant at 2%. To improve the solubility
of SBS in asphalt, it was previously swollen in paraffin.

The use of the waste product, recycled rubber as a substitute for synthetic polymers,
reduces the costs of preparing the polymer-modified bitumen. Technologies for producing road
bitumens with the use of rubber are known, but in the mentioned technologies, rubber is usually
used as a cross-linked polymer [25,26]. In this form, rubber does not form a homogeneous mixture
with bitumen.

In this study, rubber in the de-vulcanized form was used for the production of PMB. The de-
vulcanized rubber can be considered as a thermoplastic polymer. During heating, some polysulfide
and disulfide bonds in the three-dimensional network of rubber are converted to the monosulfide
bonds, which leads to the formation of uncured rubber [27]. The pre-de-vulcanized waste rubber was
then used to create a joint network with SBS in the crosslinking process. The creation of a new polymer
network was possible after adding a new dose of sulfur. For better visualization of the process of joint
cross-linking of de-vulcanized rubber with SBS in the asphalt environment, this process was carried
out without asphalt. Figure 2 presents the results of DSC analysis for the fresh rubber and the rubber
samples heated at 190 ◦C for 2 h to which SBS and sulfur were added.
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Figure 2. Results of differential scanning calorimetry (DSC) analysis of fresh rubber (1); rubber heated 
at 190 °C for 2 h to which sulfur was added (2); rubber heated at 190 °C for 2 h to which sulfur and 
SBS were added (3). 
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Figure 2. Results of differential scanning calorimetry (DSC) analysis of fresh rubber (1); rubber heated
at 190 ◦C for 2 h to which sulfur was added (2); rubber heated at 190 ◦C for 2 h to which sulfur and SBS
were added (3).

From their courses, one can see that for the fresh rubber, no effects were observed, whereas for
the samples with a new portion of sulfur, the cross-linking effect was observed. The maximum of
an exothermic effect appeared around 200 ◦C and was even higher in the process of rubber and SBS
cross-linking. Small peaks at 115 ◦C and 120 ◦C indicate the melting of sulfur in the rhombic and
monoclinic allotropic forms.

When such processes take place in asphalt, a new portion of sulfur gives rise to the formation
of sulfur links with different lengths, and additionally, they counteracted high molecular weight
phenols present in bitumen (as aromatics and asphaltenes) that have strong polymerization inhibiting
properties. Phenols are part of aromatics that are formed during the oxidation process of bitumen [28].
Other compounds are rather nonpolar and can only swell the rubber [12]. These compounds are
unlikely to interfere with the polymerization process.

Table 1 and Table 2 present the results of the research on the impact of the time of bitumen
modification on the concentration of insoluble residue.

Table 1. Bitumen modified at 190 ◦C.

Sample No.
Modifiers (%)

Modification Time (h).
Residue after

Devulcanization (%)Rubber 0.4 SBS Donor S

1 10 2 0.07 2 5.6
2 15 2 0.07 2 12.7
3 10 2 0.07 4 5.2
4 15 2 0.07 4 9.0
5 10 2 0.07 8 5.0
6 15 2 0.07 8 6.4
7 - 2 0.07 8 -
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Table 2. Bitumen modified at 220 ◦C.

Sample No.
Modifiers (%)

Modification Time (h)
Residue after

Devulcanization (%)Rubber 0.4 SBS Donor S

8 10 2 0.07 2 3.6
9 15 2 0.07 2 5.0

10 10 2 0.07 4 4.0
11 15 2 0.07 4 5.0
12 10 2 0.07 8 3.3
13 15 2 0.07 8 4.5

From these data, one can see that the content of insoluble residue depends on both the modification
time and the concentration of the rubber. As the modification time increases, the amount of insoluble
residue decreases, indicating that the rubber is effectively de-vulcanizing. After 8 h of de-vulcanization
at 190 ◦C, the residue concentrations were 5.0 and 6.4%. The residue contains carbon black and
the residues of rubber that were not de-vulcanized. Obviously, for bitumen with a greater rubber
concentration, the percentage of residue is larger. The decrease in residue concentration with
the increasing reaction time is also visible at 220 ◦C. At this temperature, the de-vulcanization process
runs faster. After the 8 h modification, the residues are 3.3 and 4.5%.

The properties of the modified bitumen are summarized in Table 3 and Table 4.

Table 3. Properties of bitumen modified at 190 ◦C.

Property
Sample No.

1 2 3 4 5 6 7

penetration at 25 ◦C (0.1 mm) 50.4 50.6 50.0 54.0 47.0 64.0 502
softening point (R&B) (◦C) 65.9 64.4 64.0 73.8 626 70.0 57.0

penetration index 1.9 2.3 1.7 2.6 1.4 2.5 -
Fraass breaking point (◦C) −17 −18 −18 −18 −18 −16 −14

elastic recovery at 25 ◦C (%) 75.0 80.0 75.0 76.3 76.0 76.1 58.8
stability (values of penetration

top/penetration bottom) (0.1 mm) 56/62 58/65 69/63 58/66 47/52 64/61 -

delta penetration (difference between
top and bottom of the tube) (0.1 mm) 4 7 6 8 5 3 -

stability (R&B top/R&B bottom) 56.2/65.0 59.0/72.0 57.0/63.4 60.0/74.0 60.2/66.8 63.2/73.0 -
delta R&B (◦C) 8.8 13.0 6.4 14.0 6.6 9.8 -

softening point after RTFOT (◦C) 66.0 70.2 65.6 76.6 66.8 70.4 -
increasing of softening point R&B after

RTFOT (◦C) 0.1 5.8 1.6 2.8 4.2 0.4 -

mass change after RTFOT (%) +0.02 −0.10 −0.05 −0.04 +0.04 +0.09 -
cohesion energy at 5 ◦C (J/cm2) 4.8 breaking 4.8 breaking 4.8 4.3 -

cohesion energy at 10 ◦C (J/cm2) 2.6 1.9 2.5 2.0 2.6 2.4 -
maximal tensile force at 5 ◦C (N) 54.3 39.5 32.0 9.6 59.0 32.4 -

maximal tensile force at 10 ◦C (N) 26.8 18.8 16.0 6.6 30.0 18.0 -

For the samples heated at 190 ◦C, the increase in the modification time caused rather insignificant
changes of properties (Table 3). For the samples containing 10% of rubber penetration at 25 ◦C,
there were changes in the range of 50.4–47.0 units (0.1 mm). Penetration for bitumens with 15% of
rubber had higher and more diverse values (between 54.0 and 64.0 units). The softening point (R&B)
of the samples containing 10% of rubber decreased insignificantly with the increasing modification
time, whereas for the bitumens containing 15% of rubber, their values increased. However, all obtained
values were high. For all modified samples, the Fraass breaking points characterizing bitumen behavior
at low temperatures were also impressive. Their values were rather independent of modification time.
In turn, the elastic recovery decreased slightly with the increasing modification time.
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To observe the effect of the rubber on the properties of bitumen, 8 h modification without
the addition of rubber was also carried out. The basic properties of bitumen modified in this way are
presented in Table 3. Though the lack of rubber does not affect the penetration value, it is significant
for the Fraass break point and elastic recovery. The sample without rubber had at least a 15% lower
elastic recovery and was less resistant to low temperatures by 2–4 ◦C. Moreover, the softening point of
a sample without rubber indicates that it becomes softer and less viscous much faster compared to
asphalt containing rubber.

Table 4. Properties of bitumen modified at 220 ◦C.

Property
Sample No.

8 9 10 11 12 13

penetration at 25 ◦C (0.1 mm) 53.8 61.0 50.3 59.5 50.1 57.8
softening point (R&B) (◦C) 60.8 71.0 59.4 64.0 59.0 59.2

penetration index 1.4 1.7 0.9 1.7 0.6 1.2
Fraass breaking point (◦C) −18 −20 −18 −18 −19 −18

elastic recovery at 25 ◦C (%) 74.8 78.9 78.2 71.3 76.6 75.0
stability (values of penetration

top/penetration bottom) (0.1 mm) 53/52 6/65 54/56 64/59 59/55 62/59

delta penetration (difference
between top and bottom of the

tube) (0.1 mm)
1 3 2 5 4 3

stability (R&B top/R&B bottom) 57.4/66.2 62.2/69.4 54.8/65.0 58.4/67.8 58.0/59.0 59.8/66.0
delta R&B (◦C) 8.8 7.2 10.2 9.4 1.0 6.2

softening point after RTFOT (◦C) 64.4 73.7 66.4 70.2 58.0 66.4
increasing of softening point R&B

after RTFOT (◦C) 3.6 2.7 7.2 6.2 7.6 5.8

mass change after RTFOT (%) −0.07 −0.11 −0.10 −0.15 −0.02 −0.04
cohesion energy at 5 ◦C (J/cm2) 3.5 3.0 3.7 2.5 3.6 2.7

cohesion energy at 10 ◦C (J/cm2) 2.1 1.4 1.9 1.4 1.9 1.5
maximal tensile force at 5 ◦C (N) 53.0 30.5 52.6 37.5 54.0 37.0
maximal tensile force at 10 ◦C (N) 26.0 15.9 25.0 18.0 25.0 17.2

For the samples modified at 220 ◦C (Table 4), penetration had a more regular tendency to decrease.
The softening points also became lower as the modification time increased. It is worth noting that
the Fraass breaking points were even slightly lower. Regardless of the modification time, the breaking
points for all tested samples were in the range of −18 ◦C to −20 ◦C. This indicates that the modification
at 220 ◦C promotes an increase of resistance to low temperatures. At this temperature, the degree of
rubber degradation was greater than at 190 ◦C. As a consequence, a more homogeneous structure
is created. Additionally, delta penetration and retained penetration values after RTFOT for asphalt
modified at 220 ◦C confirmed the appearance of a homogeneous phase. Due to the homogeneous
structure, such bitumens retain their viscoelastic properties at low temperatures and do not flow at
higher temperatures under prolonged loading. In the presented approach, no unfavorable phenomenon
of asphalt phase separation was observed [27]. Independently of modification time, the obtained
asphalts exhibited resistance to aging. Such properties are particularly important from the point of
view of storage and distribution [29]. The results of the studies of their storage stabilities are presented
in Figure 3 and Figure 4.
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Figure 3. Relations between the penetration top/penetration bottom for the bitumens modified at:
(a) 190 ◦C and (b) 220 ◦C.
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The values of the penetration index (PI) are also very promising. The PI expresses a quantitative
measure of bitumen response to temperature changes [30]. When the asphalt penetration index is
known, the behavior of such asphalt in a specific application can be predicted. The PI value should
be from about −3 for high temperature bitumen to about +7 for high temperature sensitive (high PI)
bitumen. For all samples modified at 220 ◦C, their values were in the range 0.6–1.7 and insignificantly
decreased with the increasing modification time. It is important that the mass change after RTFOT for
this series of samples was very small. The loss of mass, and more precisely the change of bitumen mass,
is determined to check whether its density does not change as a result of oxidation or evaporation of
volatile solvents [31]. For the bitumens modified at 190 ◦C, they change from 0.10 to 0.04%, whereas for
those modified at 220 ◦C, they dropped from 0.15 to 0.02%.
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The additional information on the effectiveness of bitumen modification with rubber is provided by
the determined values of cohesion energy and maximum tensile force. The cohesive strength of asphalt
represents the deformation resistance capability of the asphalt’s molecular structure. According to Tan
and Guo [32], the tensile strength of the asphalt mixture is related to cohesion. The cohesion energies at
5 ◦C and 10 ◦C determined for the samples containing 10% of rubber and modified at 190 ◦C had constant
values. The values 4.8 J/cm2 at 5 ◦C and 2.6 J/cm2 at 10 ◦C were independent of modification time.
For the samples containing 15% rubber at 5 ◦C, breaking was observed. Cohesion energy determination
was possible only for the longest-modified sample. For a larger amount of rubber, a longer time
is probably needed to form a more homogeneous mixture. Such behavior confirms the results of
the maximal tensile force determinations. For the samples modified at 190 ◦C, large fluctuations of
tensile force values could be found. For the samples modified at 220 ◦C, such a phenomenon was not
observed. In this case, changes in the maximal tensile forces were more regular. While for the samples
containing 10% rubber, the values were independent of the modification time; for the samples containing
15% rubber, they increased slightly with the increasing modification time. Additionally, the values of
cohesion energies at 5 ◦C and 10 ◦C were rather constant and independent of modification time.

These data show that the addition of rubber and modification temperature have a significant
impact on the quality of bitumen. The process in which instead of using rubber as a bitumen filler,
the rubber de-vulcanized and then co-vulcanized with SBS led to a homogeneous product. The most
homogeneous and spatially stable structures were obtained when 10% of rubber was added at 220 ◦C.
It seems that a modification time of 2 h is sufficient.

It should be emphasized that these bitumens contained only 2% SBS and the rubber was responsible
for their properties.

4. Conclusions

It is possible to replace part of the SBS with a waste product such as recycled rubber during
the production of polymer modified bitumen. To achieve this, the rubber must be converted
from a cross-linked polymer into a thermoplastic polymer in the process of de-vulcanization.
The de-vulcanized rubber was next used to create the joint net with SBS while cross-linking.
The de-vulcanization and cross-linking were carried out at different times at temperatures of 190 ◦C and
220 ◦C. The co-vulcanization process carried out at 220 ◦C with the 10% rubber content was very fast,
whereas modification at 190 ◦C required a longer time. As a result, products that meet the standards
(PMB 45/80-55 PG 70-22) according to AASHTO-MP1, were obtained. Almost all functional properties
of bitumens modified in this way reached the values for PMB. Particularly noteworthy were their
high elasticity, high softening point, and favorable low-temperature properties. This means that
for road building purposes, the waste product of recycled rubber can partially replace much more
expensive SBS.

5. Patents

Gawdzik Barbara, Matynia Tadeusz. Bitumen modifier and method of bitumen modification with
its use. Polish Patent No. 226748 (2017).
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