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Abstract: Viscoelastic surfactant (VES) fluid and hydrolyzed polyacryamide (HPAM) solution are two
of the most common fracturing fluids used in the hydraulic fracturing development of unconventional
reservoirs. The filtration of fracturing fluids in porous media is mainly determined by the flow
patterns in pore-throat structures. In this paper, three different microdevices analogue of porous
media allow access to a large range of Deborah number (De) and concomitantly low Reynolds number
(Re). Continuous pore-throat structures were applied to study the feedback effect of downstream
structure on upstream flow of VES fluid and HPAM solution with Deborah (De) number from 1.11 to
146.4. In the infinite straight channel, flow patterns between VES fluids and HPAM solution were
similar. However, as pore length shortened to 800 µm, flow field of VES fluid exhibited the triangle
shape with double-peaks velocity patterns. The flow field of HPAM solution presented stable and
centralized streamlines when Re was larger than 4.29 × 10−2. Additionally, when the pore length was
further shortened to 400 µm, double-peaks velocity patterns were vanished for VES fluid and the
stable convergent flow characteristic of HPAM solution was observed with all flow rates.

Keywords: viscoelastic surfactant fluid; hydrolyzed polyacryamide solution; pore-throat structure;
flow patterns

1. Introduction

Conventional oil and gas resources are steadily diminishing worldwide [1,2]. Most of the
remaining oil and gas resources are unconventional oil and gas reservoirs, such as coalbed methane,
shale gas, and tight oil and gas reservoirs. [3,4]. Therefore, the efficient and economic development
of unconventional reservoirs has become an important research area [5,6]. Hydraulic fracturing
technology is one of the most effective techniques to increase the productivity of unconventional
reservoirs [7–9]. In this technique, a particular viscoelastic fluid injected into the formation is referred
as a fracturing fluid. The type and performance of fracturing fluids is the key to successful application
of fracturing processes. Polymer fracturing fluid (HPAM solution) and viscoelastic surfactant (VES)
fluids are the two most representative fracturing fluid systems in low permeability reservoirs [10–13].

Filtration loss of fracturing fluid is one of the most important indexes for evaluating the performance
of fracturing fluids. [14]. Compared with polymer fluids, the VES fluids have a much higher filtration
loss to reservoir matrix. Excessive filtration loss increases development costs and reduces economic
benefits [15,16], which is a serious problem for further application. It was found that the flow
characteristics of the fracturing fluid in the porous media affect the amount of filtration loss. However,
research in this field is still insufficient. Therefore, further experimental studies are needed to clarify
the flow characteristics of fracturing fluids in pore throat structures [17,18].
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VES fluids are composed of low molecular weight surfactants. The surfactants are weakly bound
by non-covalent bonds that repeatedly undergo scission and recombination in dynamic equilibrium.
As the surfactant concentration increasing, the spherical micelles will transform into giant wormlike
micelles and fluid viscosity will increase [19,20]. What’s more, the viscoelastic properties can recover
from micellar degradation in strong shearing and stretching deformation [21–27].

In recent years, microfluids have become a common method for dealing with fluids at micro-length
scale, especially for generating and operating complex fluids with controllable size and customized
structure [28,29]. Furthermore, it has been developed as microfluidic rheometers or tools to study new
flow characteristics, providing a powerful and efficient way to simulate the flow patterns of the VES
fluids in geometric structures similar to porous media [30].

However, previous study of the microfluids are focusing on single abrupt contraction–expansion
geometry, while the research on the flow characteristics in the continuous pore-throat structure are
insufficient and unclear [31]. In this work, we present the flow patterns of the VES fluids and the HPAM
solutions in two continuous pore-throat structures with different length to observe the deformations of
the flow patterns. The evolution process of all solutions with increasing injection rates is captured and
recorded by microparticle image velocimetry (µ-PIV) in the first place. The three-dimensional velocity
fields and velocity magnitude maps are illustrated in detail to further reveal the feedback effect of
downstream structure on upstream flowing.

2. Materials and Experimental Methods

2.1. Microchannel Design and Fabrication

The microfluidic devices were fabricated on a plate (100 × 80 × 10 mm) of polymethyl methacrylate
(PMMA) by precisely milling and sealed with another PMMA plate (100 × 80 × 3 mm). The layout
of the device is displayed in Figure 1. All the microfluidic devices consisted of an injection point,
an outlet point, a liner microchannel and a continuous pore-throat structure with two pressure taps
located 10 mm away at upstream and downstream. The continuous pore-throat structure had a
contraction–expansion structure at upstream and an expansion–contraction structure at downstream
(Figure 1b). The solution at the inlet was connected to an independent syringe (10 mL, Hamilton,
Germany) driven by a syringe pump (Harvard Apparatus, PHD2000, Plymouth Meeting, PA USA) to
obtain accurate flow rates ranging from 0.5 mL/h to 12 mL/h.
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The microfluidic devices with three different continuous pore-throat structures were fabricated as
mentioned to investigate the effect of flow length. Pore width wp = 800 µm, throat width of wt = 100
µm as well as the pore length l are illustrated in Figure 1a.

2.2. Fluid Rheological Characterizations and Dimensionless Number

Two kinds of viscoelasticity solutions were prepared in this study, and a Newtonian fluid was used
as the contrast. The viscoelasticity fluids were 0.2% hydrolyzed polyacrylamide (HPAM) and water
solutions with HPAM molecular weights of 9.6 × 106 g/mol. The VES fluid composed of 25 mMol/L
cetyltrimethylammonium bromide (CTAB) and 12 mMol/L sodium salicylate (NaSal). In contrast,
the Newtonian fluid was 93% glycerol-water solution to match the approximate viscosity of 95 mPa s.
All the solutions were mixed for at least 24 h under temperature 25 ◦C.

HAAKE MARS 60 Rheometer were equipped with a cylinder rotor at 25 ◦C to test the rheological
characteristics of all solutions. Before testing, samples were kept stable for 5 min to reach equilibrium.
The oscillatory measurements were proceeded with shear rates rising from 0.01 s−1 to 1000 s−1. Due to
the rheological characteristics of shear thinning, the viscosities (η) of both solutions were similar while
shearing rates γ > 5 s−1 (shown in Figure 2). The relaxation times were 1.41 s for the VES fluid and
0.51 s for the HPAM solution. In contrast, the Newtonian fluid was 83% glycerol–water solution with a
viscosity of 75 mPa s.
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The dimensionless numbers were used in this investigation to quantitate the deformation of the
macroscopic flow field observed in different pore-throat structures. The Reynolds number was defined

by the average flow velocity
−

Vp in pore channel, in which Dh = 2wph/(wp + h):
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Deborah number (De) is the ratio of a solution’s relaxation time to residence time in the flow as:

De =
λ1

wplh/Q
=
λ1Q
wplh

(2)

where Q is the injection rate, h is the depth of the microchannels and l is the length of the
pore-throat structures.

2.3. Flow Visualization

In order to obtain and analyze flow fields of contraction and expansion structures,
micro-particle image velocimetry, µPIV (LaVision. Ltd) was used to perform quantitative measurements
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on the flow kinematics. For this purpose, mono-disperse fluorescent polystyrene microspheres,
with 0.1 mL per 50 mL of bulk fluids, were blended into the fluids. A quite low magnification Zeiss
Plan-Neofluar objective lens was used to capture the full width of the flow channel and a reasonable
length of both upstream and downstream. Using a light sheet, formed by passing a double pulsed
laser beam through an optical arrangement including cylindrical lenses, the fluorescent particles in
the flow are illuminated twice within a small time separation between (dt). The images of particles
displacement between the laser pulse were captured and recorded by the CCD (charge coupled device)
camera. The whole velocity vectors were calculated by a conventional cross-correlation PIV algorithm.

3. Result and Discussion

3.1. Flow Characteristics in Infinite Length Pore-Throat Structure

The flow characteristics of all solution were first examined in the microchannel with single
pore-throat structure at upstream. Here, the downstream pore structure was treated as an infinite
straight channel, which eliminates the impact of downstream structure on flow field in the pore.
As displayed in Figure 3, the flow characteristics of all three solutions exhibited similar flow patterns
with different Reynolds numbers (Re). After flowing through the entrance at upstream, the streamlines
consisted of velocity components on both x-axis and y-axis directions. The velocities from the centerlines
and the boundaries were different in the beginning. Afterwards, the velocity at centerlines gradually
reduced until arriving at a relatively stable value. Finally, the streamlines tended to follow the stable
linear flow expected behaviors, that is to say the velocity component was along the x-direction and
barely changed. The difference of the divergent degree was visible among three solutions. The HPAM
solution exhibited the most convergent patterns, while the VES fluid was observed as the most
divergent patterns.
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3.2. Flow Characteristic in Long Pore-Throat Structure

The velocity fields of the Newtonian fluid in long continuous pore-throat structures were
illustrated in Figure 4a. When Newtonian fluid flowed through the continuous pore-throat structure,
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the streamline underwent three stages including the divergent flow, the stable flow and the contractive
flow. The maximum velocity was observed at the entrance due to the gathering of streamlines.
After that, the streamlines performed to be divergent from the centerlines to boundaries. This flow
stage was signed as the divergent flow. Then the streamlines tended to follow the stable linear flow
expected behaviors, in other words, entered the stable flow stage. Afterwards, the streamlines got
gathering from surrounding to centerlines causing the increase of velocity near the exit, which was
classified as the contractive flow. It was found that all the velocity fields of the Newtonian fluid
in continuous pore-throat at different flow rates (Re number increasing from 2.59 × 10−2 to 0.621)
presented the same flow pattern. Namely, the rising of flow rate has little effect on the transformation
of the flow patterns. In addition, the upstream and downstream velocity fields of microchannels were
basically symmetrical.

When it came to the HPAM solution, at low Re number (Re = 1.79 × 10−3), the streamlines were
still divergent to the boundaries at upstream. The streamlines tended to gather to the centerlines at
downstream. However, unlike the flow pattern of Newtonian fluid, the gathering of streamlines was
observed farther away from the exit of microchannel, about 250 µm before expansion–contraction
structure. As the Re number rising to 4.29 × 10−2 (shown in Figure 4b), the flow of HPAM solution
only experienced one stage that the flow patterns kept stable from the entrance to the exit, and there
was no dispersion of streamlines from the centerlines to the boundaries. Additionally, the arrows of
velocity in flow fields showed that there were only velocity components along the flow direction on
the x-axis direction. The velocities at boundaries were quite small compared with the centerlines.
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As shown in Figure 4c, the velocity fields of the VES fluid were measured with flow rates spanning
0.5 < Q < 12 mL/h. The flow patterns of the VES fluid was similar with the HPAM solution at low Re
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number rates (1.52 × 10−3), but transformed into new patterns as Re number larger than 3.04 × 10−3.
The velocity fields of VES fluid at high flow rates were illustrated as triangle shape, which was distinct
from the HPAM solution. When flow rates were higher than 2 mL/h, there was almost no velocity
component on y-axis direction along the streamline of the HPAM solution. However, the streamlines of
VES fluid still maintained the characteristics of Newtonian-like flow at upstream of the long continuous
pore-throat structures. The streamlines of VES fluid were observed to have the contractive behavior far
away from the expansion–contraction structure. The streamlines were accelerated to flow from the
boundary to the exit at about 300 µm from the entrance, leading to the contractive behavior of flow
patterns. In addition, the velocities of streamlines outside the triangle shape flow fields were close to
zero. In those areas, flow rates were very minimal compared with the main flow areas.

3.3. Flow Characteristic in Short Pore-Throat Structure

The results of the Newtonian fluid, HPAM solution and VES fluids in short continuous pore-throat
structure are shown in Figure 5. The velocity fields indicated that the flow patterns of Newtonian fluid
were barely affected by the length of the pore-throat structure and flow rates. Similar with the flow
characteristics from Figure 4a, the process of Newtonian flow was separated into the divergent flow,
the stable flow and the contractive flow. Even though the length of the pore-throat structure were
shortened to 400 µm.

As shown in Figure 5b, in the case of the HPAM solution, at low flow rates (Re = 1.79 × 10−3)
there was an existence of the dispersion of streamlines observed in the microchannel at upstream.
Compared with the µ-PIV velocity field in Figure 4b at Re = 1.79 × 10−3, the streamlines in short
microchannel performed a more distinct contractive behavior. This phenomenon was generated by
the influence of the length between the structure entrance and exit. According to the former study on
the Newtonian fluid and HPAM solution in long continuous pore-throat structures, the streamlines
would experience contractive flow stage before going through the exit at downstream. The elastic of
HPAM solution was capable to result in the stronger gathering of streamlines. The distinct contractive
behavior in Figure 5b was caused by the length of the microchannel. Before the streamlines were able
to show the Newtonian-like divergent characteristic, streamlines have already been influenced by the
contractive behavior at downstream. However, the flow patterns were similar with Figure 4b at higher
flow rates (Re = 1.43 × 10−2 and 4.29 × 10−2).
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The more distinct contractive behavior of streamlines was also observed as VES fluid flowing
through short microchannel shown in Figure 5c. Flow patterns of VES fluid were more similar with
Newtonian fluid compared with HPAM solution, particularly at Q = 0.5 mL/h. The streamlines were
observed with divergent behavior at all flow rates increasing from 0.5 mL/h to 12 mL/h, while the
flow patterns of HPAM solution were contraction flow at Q = 1 mL/h and 12 mL/h. However,
there were obvious differences between the flow pattern of VES fluid in long and short pore-throat
structure, with the streamlines performed as triangle shape velocity fields as flowing through the



Polymers 2019, 11, 1291 10 of 15

long microchannel. While the flow length was shortened to 400 µm, the arrows of velocity in short
microchannel were mostly along the x-direction. This is different from the velocity components
shown in Figure 4b. Because of lacking enough velocity components along the vertical flow direction,
the divergent flows of VES fluid were not obvious compared with the triangle shape flow patterns
visualized in the long microchannel.

As non-Newtonian fluids flowing through the continuous pore-throat structures, the flow patterns
were influenced by the structure of upstream entrance, downstream exit and the flow length. There were
divergent flows at upstream and contractive flows at down, due to the sudden change of width in
pore-throat structures. However, the elasticity of both HPAM solution and VES fluid affected the
streamlines distribution near the entrance and exit. With the influence of fluids elasticity, there was
a process of streamlines to establish the flow patterns after flowing out or before entering the width
changing structures of pore-throat. The length between the entrance and exit determined the process
space to generate the divergent flow or contractive flow. In the short microchannel, the flow patterns
at upstream were influenced by the downstream structure to come into being the insufficiency
divergent flow.

3.4. Velocity Distribution in Continuous Pore-Throat Structure

To quantify the flow pattern differences among those three solutions in both pore-throat structures,
matrix tool was used to establish 3D velocity fields at Q = 12 mL/h. The heights of 3D-velocity fields
represented the velocity at each point (located by x-position and y-position), which were marked with
different colors as shown in Figures 6 and 7.

The velocity contour in those 3D velocity fields primly explained the velocity distributions seized
by µ-PIV equipment. The flow pattern of the Newtonian fluid was nearly symmetrical in Figure 6a
with the ellipsoid shape, which was similar to the former study of Rodd [32]. The streamlines of the
HPAM solution has shown a strong contractive behavior at high flow rates as the velocity component of
each point was almost always along x-axis. The 3D velocity field of the HPAM solution was observed
as a banded shape where most of the streamlines were gathering (shown in Figure 6b). Thus, other area
outside the banded shape owned little velocity. At the upper part in Figure 6c, the velocity distribution
of the VES fluid was similar with the Newtonian fluid that the streamlines diverged gently to each
area (from x = 400 µm to x = 200 µm). After that, two high velocity isoline parts were generated at
both sides causing the gathering of streamlines, accelerating the contractive stage of the VES fluid
flow patterns.
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Furthermore, the 3D velocity fields and velocity magnitude lines of all solutions flowing through
short continuous pore-throat structure at Q = 12 mL/h are illustrated in Figure 8. All the data of the
Newtonian fluid are used as the standard comparison. It can be seen that the length of pore channel
has little effect on the flow characteristics of the Newtonian fluid and the HPAM solution.

However, the VES fluid presented a different flow pattern. As mentioned in Figure 4c, the behavior
of VES fluid was divergent flow and similar with the Newtonian fluid at upstream. But it was more
contractive than the Newtonian fluid, which was in contrast with the result in the long continuous
pore-throat structure (Figure 6c). Comparing Figure 8b,e, there was no appearance of the velocity
along the y-direction and ‘approximate inviscid flow area’ near the contraction–expansion structure
in the short pore-throat structure. At the middle area of the structure, flow patterns developed into
double-peaks velocity line in the long structure (Figure 8c), while kept a single-peak shape as well in
Figure 8f. After flowing near the exit at downstream, they reappeared as a similar shape (Figure 8d,g).
In general, the structure of downstream was able to affect the development of flow pattern upstream.
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Figure 8. (a) The schematic of velocity line positions; Velocity magnitude maps of the Newtonian fluid,
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µm, (d) x = −290 µm and in short continuous pore-throat structure at (e) x = 150 µm, (f) x = 0 µm, (g) x
= −75 µm.
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4. Conclusions

Viscoelastic fluids underwent shear and extensional flow when flowing in porous media as
characterized by pore-throat structures. Because of the feedback effect, the pore length has significant
influence on the distribution of velocity fields. In continuous pore-throat structures, the distance
between the upstream and downstream structures determined the development degree of flow patterns,
especially for VES fluid. For infinite length distance, the extensional deformations of both VES fluid
and HPAM were negligible without the contraction at downstream. As the flow length shortened
to 800 µm, there were double-peak velocity patterns obtained for VES fluid. However, this pattern
vanished at a microchannel length of 400 µm. Through this work, we have clearer knowledge about
the characteristics of the viscoelastic surfactant fracture fluid in porous media, which is beneficial for
developing hydraulic fracturing technology.
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