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1  | FE ATURES OF CELLUL AR SENESCENCE

Cellular senescence is defined as a state of irreversible cell cycle 
arrest to prevent proliferation of damaged cells and reduce the 
risk of cancer. Therefore, cellular senescence is believed to be an 
essential tumor suppression mechanism in vivo.1,2 Hayflick and 
Moorhead3 initially mentioned “cellular senescence” after ob-
serving that primary human cells have a maximal number of cell 
proliferations in vitro. This proliferation limit caused by telomere 
shortening has been termed “replicative senescence.” Similar 
phenotypes can be induced by activation of certain oncogenes, 
“oncogene-induced senescence (OIS),”4 and a variety of stressors, 
such as irradiation and oxidative stress.1,5 Furthermore, recent 

studies have demonstrated that treatment with chemotherapeu-
tic drugs or ionizing radiation provokes “therapy-induced senes-
cence (TIS)” in tumor cells.6,7 Persistent DNA damage response 
causes cellular senescence in normal cells,8,9 and induces expres-
sion of the cyclin-dependent kinase (CDK) inhibitors p16INK4a and 
p21WAF1/CIP1. p16INK4a inhibits the cyclin D-CDK4/6 complex,10 
whereas p21WAF1/CIP1 blocks cyclin E-CDK2 activity.11 Both 
checkpoint proteins block retinoblastoma protein, thereby sup-
pressing expression of E2F target genes and inducing senescent 
cell cycle arrest (Figure 1).12-14 Generally, cellular senescence is 
a state of essentially irreversible cell cycle arrest; however, sev-
eral studies have reported that a small population of senescent 
cells can override the senescent cell cycle arrest and re-enter the 
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Abstract
Cellular senescence is historically regarded as a tumor suppression mechanism to pre-
vent damaged cells from aberrant proliferation in benign and premalignant tumors. 
However, recent findings have suggested that senescent cells contribute to tumo-
rigenesis and age-associated pathologies through the senescence-associated secre-
tory phenotype (SASP). Therefore, to control age-associated cancer, it is important to 
understand the molecular mechanisms of the SASP in the cancer microenvironment. 
New findings have suggested that the cyclic GMP-AMP synthase (cGAS)-stimulator 
of interferon genes (STING) signaling pathway, a critical indicator of innate immune 
response, triggers the SASP in response to accumulation of cytoplasmic DNA (cy-
toplasmic chromatin fragments, mtDNA and cDNA) in senescent cells. Notably, the 
cGAS-STING signaling pathway promotes or inhibits tumorigenesis depending on the 
biological context in vivo, indicating that it may be a potential therapeutic target for 
cancer. Herein, we review the regulatory machinery and biological function of the 
SASP via the cGAS-STING signaling pathway in cancer.
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cell cycle under some particular conditions.15,16 Recently, the se-
lective CDK4/6 inhibitors abemaciclib, palbociclib and ribociclib 
have been shown to induce senescence-like cell cycle arrest in 
some cancer cell lines. These effects led to their approval for es-
trogen receptor-positive breast cancer treatment.17,18

Senescent cells show some typical morphological features, such 
as a flattened shape and vacuolization.19 As persistent DNA dam-
age signals are critical for induction of cellular senescence, it has 
been suggested that DNA damage foci could be used to identify 
senescent cells. Potential targets include accumulation of 53BP1, 
phosphorylation of histone H2A.X, or other DNA repair mark-
ers.20 In addition, chromatin reorganization occurs in senescent 
cells, termed senescence-associated heterochromatin foci (SAHF), 
which colocalize with trimethylated histone H3 lysine 9 (H3K9me3) 
and heterochromatin protein 1 and suppress the transcription of 
proliferation-related genes.21 Moreover, downregulation of the nu-
clear lamina protein Lamin B1 also serves as a marker for senescent 
cells.22 Of these, senescence-associated β-galactosidase (SA-β-gal) 
staining is the most common and popular marker for identification 
of senescent cells.23 SA-β-gal activity is based on upregulation of 
the lysosomal β-galactosidase gene (GLB1) and is detectable at pH 
6.24 However, SA-β-gal activity is not specific for senescent cells.14 
Therefore, a combination of several markers is needed to identify 
senescent cells.

2  | DUAL ROLES OF CELLUL AR 
SENESCENCE IN TUMORIGENESIS

In 2005, several papers reported that cellular senescence occurs in 
premalignant tumors and benign tumors to prevent cancer develop-
ment.25-28 Coinciding with these reports, it was demonstrated that 
double knockout of p16INK4a and p21WAF1/CIP1 genes increased the 
rate of cancer development.29 These data strongly indicated that 
cellular senescence is an essential tumor suppression mechanism in 
vivo. Mice have also been generated to visualize the dynamics of 
p16INK4a and p21WAF1/CIP1 expression during the aging process. Real-
time imaging analysis revealed that senescent cells accumulated in 
benign tumors and throughout the body with age,30,31 suggesting 
that senescent cells may also have biological roles in aged tissues of 
the living body.

In the recent decade, many studies have demonstrated that 
senescent cells secrete a variety of proteins, such as inflammatory 
cytokines, chemokines, growth factors and MMP. Collectively, this 
phenotype was termed senescence-associated secretory phenotype 
(SASP).32-34 There is a myriad of physiological activity associated 
with SASP factors (Figure 2). At first, SASP factors secreted from 
senescent cells were regarded as paracrine and autocrine enhancers 
of tumor suppressive effects in cellular senescence to prevent the 
growth of damaged cells.33-35 In addition to this function, SASP 

F I G U R E  1   The characteristics of 
cellular senescence. Cellular senescence 
is triggered by various stressors, such 
as irradiation, reactive oxygen species 
(ROS), oncogene activation and telomere 
shortening. The senescent cells show 
increased expression of p16INK4a and/
or p21WAF1/CIP1, senescence-associated 
secretory phenotype (SASP) factors, DNA 
damage foci and senescence-associated 
heterochromatin foci (SAHF) formation. 
In addition, cell proliferation is inhibited 
and Lamin B1 expression is decreased. 
Senescent cell cycle arrest is induced by 
p16INK4a and/or by p21WAF1/CIP1
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factors can recruit immune cells to clear the senescent cells, which is 
termed “senescence-surveillance.”36 Senescence surveillance results 
in clearance of the senescent cells and stimulates the local immune 
reaction to eliminate oncogene-expressing cells. Thus, SASP factors 
might contribute to a fail-safe mechanism of cellular senescence.15,36 
Furthermore, it has been reported that some SASP factors can pro-
mote tissue repairing under a variety of conditions. Demaria et al37 
demonstrated that platelet-derived factor-AA (PDGF-AA) was se-
creted from senescent skin fibroblasts in the vicinity of damaged 
tissues to promote optimal wound healing. In response to liver in-
jury, hepatic stellate cells (HSC) began to proliferate and produce 
extracellular matrixes for tissue repair before undergoing cellular se-
nescence to prevent fibrosis.38,39 Moreover, these senescent HSC se-
creted growth factors, thereby promoting cell proliferation for tissue 

regeneration. In addition to tissue repair, SASP factors are involved 
in embryonic development of the apical ectodermal ridge and neural 
roof plate.40,41

In contrast to the beneficial effects of SASP in the living body, 
long-term survival of senescent cells also drives age-related dis-
eases, such as atherosclerosis, neuropsychiatric disorders, chronic 
nephritis and cancer.42 During the aging process, declining immune 
function leads to failures in senescence surveillance, resulting in ac-
cumulation of senescent cells.43 Therefore, prolonged secretion of 
SASP factors, such as interleukin (IL)-1β and MMP, could drive cancer 
development.44-46 Intriguingly, it has been reported that upregula-
tion of IL-8 in senescent carcinoma-associated fibroblasts promotes 
invasion and metastasis of pancreatic cancer cells.47 Our previous 
studies have established that IL-1β secreted from senescent HSC 

F I G U R E  2   The biological function of senescence-associated secretory phenotype (SASP) factors in physiological and pathological 
conditions. SASP factors play important roles in common physiological conditions, as shown by the red arrows, such as wound healing 
(PDGF-AA, platelet-derived growth factor-AA), embryonic development (TGF-β, transforming growth factor-β; Wnt) and immune 
recruitment (CXCL1, CCL2 and CCL5). However, SASP factors also induce tumor progression and migration (MMP; IL-1β, interleukin-1β; 
VEGF, vascular endothelial growth factor) and suppression of anti–tumor immunity (PGE2, prostaglandin E2) under pathological conditions, 
as shown by the blue arrows. Moreover, SASP factors induce and maintain senescence cell cycle arrest through paracrine and autocrine 
factors
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in the liver plays an essential role in promoting obesity-associated 
hepatocellular carcinoma (HCC) in the obese mice model. Increased 
levels of deoxycholic acid (DCA), a gut bacterial metabolite derived 
from altered gut microbiota in obesity, induced cellular senescence 
and production of SASP factors in HSC, thereby promoting devel-
opment of obesity-associated HCC.45 Moreover, it was found that 
expression of COX-2, a rate-limiting enzyme involved in prostaglan-
din biosynthesis, significantly increased in senescent HSC. COX-2 
induces overproduction of prostaglandin E2 (PGE2), resulting in 
suppression of anti–tumor immunity and progression of obesity-as-
sociated HCC.48 Remarkably, cellular senescence has beneficial and 
harmful effects on cancer development via SASP.

3  | MOLECUL AR MECHANISM OF 
SENESCENCE-A SSOCIATED SECRETORY 
PHENOT YPE INDUC TION

According to previous reports, numerous mechanisms have been 
implicated in the regulation of SASP factors. First, the transcription 
factors nuclear factor κB (NF-κB) and CCAAT/enhancer-binding pro-
tein (C/EBP-β) were identified as positive regulators of SASP factor 
expression.33,34,49 Second, elevated IL-1α in the early stage of cel-
lular senescence initiates the inflammatory signaling cascade and 
forms a positive feedback system to amplify SASP signaling.50

Notably, gene expression of SASP factors is regulated by 
epigenetic mechanisms. It has been previously reported that 
persistent DNA damage leads to proteasomal degradation of 
the major histone H3K9 dimethyltransferases, G9a and GLP, 
causing increased SASP factor genes in senescent cells.51 Other 
epigenetic regulators, such as macroH2A1, high mobility group 
box 2 (HMGB2), mixed-lineage leukemia 1 (MLL1) and bromo-
domain-containing protein 4 (BRD4), have been demonstrated as 
regulators of SASP factor gene expression in response to DNA 
damage.52-55 In addition, the nutrient sensing pathways, mTOR and 
NAD, are involved in SASP regulation.56-58

Recently, it has become apparent that toll-like receptors (TLR), an 
innate immune receptor, can trigger SASP induction.48,59,60 TLR are 
pattern-recognition receptors that can recognize microbe-specific 
molecular signatures, known as pathogen-associated molecular pat-
terns (PAMP) and self-derived molecules from damaged cells, known 
as damage-associated molecules patterns (DAMP).61 A recent study 
by Hari et al indicated that the acute-phase serum amyloids A1 and 
A2 function as DAMP and are recognized by TLR2. Thereafter, TLR2 
initiates the inflammatory signaling cascade and induces SASP.60 
It has also been reported that TLR2 is stimulated by lipoteichoic 
acid (LTA), a component of the cell wall of gram-positive bacteria. 
TLR2 stimulation induces expression of SASP factors through the 
NF-κB signaling pathway to promote development of obesity-as-
sociated HCC.48 In concordance with these findings, HMGB1 was 
also recognized by TLR4, resulting in increased SASP factor secre-
tion.59 Taken together, these results indicate that senescent cells se-
crete pro–inflammatory factors in response to genotoxic stress and 

this may be associated with pathobiological effects in the cancer 
microenvironment.

4  | A NOVEL PATHWAY FOR 
SENESCENCE-A SSOCIATED SECRETORY 
PHENOT YPE INDUC TION: CGA S-STING 
SIGNALING

The antiviral cyclic GMP-AMP synthase (cGAS)-stimulator of inter-
feron genes (STING) signaling pathway has recently been identified 
as a SASP regulator.62-64 cGAS was originally observed as a cytosolic 
DNA sensor that recognizes pathogenic DNA and induces innate im-
mune responses. Once cGAS detects pathogenic DNA, it generates 
cyclic GMP-AMP (cGAMP). In turn, cGAMP acts as the second mes-
senger that stimulates STING, leading to recruitment and autophos-
phorylation of TANK-binding kinase 1 (TBK1). Thereafter, TBK1 
phosphorylates interferon-regulatory factor 3 (IRF3) transcription 
factor, resulting in translocation of IRF3 from the cytosol to the nu-
cleus and stimulating transcription of type-I interferon (IFN). TBK1 
also activates NF-κB to induce expression of IFN and inflammatory 
cytokines.65-67

The emerging evidence indicates that the cGAS-STING pathway 
detects self-derived DNA fragments and activates SASP in senescent 
cells (Figure 3).62,64 There are several possibilities for the candidate 
ligands that activate the DNA-sensing machinery underlying cellu-
lar senescence. Downregulation of Lamin B1 leads to collapse of the 
nuclear envelope, which can trigger release of chromatin fragments 
from the nucleus to the cytosol, termed cytoplasmic chromatin frag-
ments (CCF).68 DNA damage promotes the production of cytosolic 
DNA, such as CCF, mtDNA, cDNA, micronuclei and nuclear buds.69,70 
However, the mechanism of cytosolic DNA accumulation in the cy-
toplasm of senescent cells has remained unclear. Therefore, we fo-
cused on this molecular mechanism. In normal cells, the cytoplasmic 
DNases, DNase2 and TREX1, degrade the double-stranded and sin-
gle-stranded DNA in the cytoplasm to prevent activation of the in-
nate immune response.71,72 However, downregulation of DNase2 and 
TREX1, which are transcriptional targets of the E2F complex, results in 
accumulation of cytosolic DNA, promoting SASP in senescent cells.73

De Cecco et al74 reported high transcription levels of the 
long-interspersed element-1 (LINE-1, also known as L1), a retro-
transposable element, in senescent cells. LINE-1 possesses high 
reverse transcriptase activity, which can transcribe mRNA to cDNA 
in the cytosol.75 Therefore, increases in LINE-1 transcription during 
senescence facilitates accumulation of cDNA in the cytoplasm and 
triggers cGAS-STING signaling to produce SASP factors.

We propose that senescent cells secrete not only inflamma-
tory proteins but also small extracellular vesicles, such as exo-
somes.76,77 Interestingly, cGAMP is also secreted from cancer cells 
via SLC19A1, which induces activation of the STING pathway in 
recipient cells.78,79 There is a possibility that senescent cells se-
crete cGAMP to promote the paracrine innate immune response 
via SLC19A1.
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5  | THE CGA S-STING PATHWAY AND 
C ANCER

Chronic inflammation caused by SASP via the cGAS-STING path-
way is crucial for the development of HCC in the obesity-induced 
liver cancer model.73 Knocking out the STING gene blunted SASP 
factor production in HSC and attenuated the development of obe-
sity-associated HCC in the mouse model.73 However, Dou et al68 
demonstrated that inhibiting the cGAS-STING signaling pathway 
impaired the immuno-surveillance of senescent hepatocytes and 

premalignant hepatocytes, resulting in tumorigenesis in the liver. 
Accordingly, function of the cGAS-STING pathway appears to de-
pend on the biological context (Figure 4). Although short-term ex-
posure to SASP factors may encourage immuno-surveillance and 
prevent tumorigenesis, persistent exposure to SASP factors may 
cause tissue damage and chronic inflammation linked to tumor 
growth.

The importance of STING-associated inflammation has also 
been reported in lung cancer. Kitajima et al provided evidence that 
STING expression was silenced in KRAS-LKB1 mutant lung cancer. 

F I G U R E  3   The cGAS-STING pathway in senescence-associated secretory phenotype (SASP) regulation. Various stressors such as 
reactive oxygen species (ROS) or UV irradiation cause accumulation of DNA fragments from nucleic double-strand breaks (DSB), termed 
cytoplasmic chromatin fragments (CCF), in senescent cells. Damaged mitochondria release mtDNA into the cytoplasm. Long-interspersed 
element-1 (LINE-1) transcription is upregulated, thereby promoting cDNA production in senescent cells. These DNA fragments are 
recognized by cGAS to generate 2′3′-cyclic GMP-AMP (2′3′-cGAMP). 2′3′-cGAMP activates both STING and TANK-binding kinase 1 (TBK1), 
resulting in phosphorylation of IRF3. 2′3′-cGAMP also activates IκBa. These transcription factors enter the nucleus and induce expression of 
type-I interferon (IFN) and inflammatory cytokines. Both IRF3 and NF-κB induce senescence-associated secretory phenotype (SASP) factors 
such as IFN-β, IL-6 and IL-8, which are known to induce ROS and maintain cellular senescence
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LKB1 is the upstream activator of AMPK. Double mutation of KRAS 
and LKB1 genes in lung cancer resulted in failure to respond to im-
mune checkpoint blockade.80 Reinduction of LKB1 and STING re-
stored the immune checkpoint blockade response and promoted 
T-cell chemotaxis. Collectively, production of SASP factors via the 
cGAS-STING signaling pathway plays a prominent role in promoting 
or inhibiting tumorigenesis depending on the biological context in 
the cancer microenvironment.

6  | CONCLUSION

In this review, we illustrated that SASP factors can induce immuno-
surveillance and act as a tumor suppression mechanism. Conversely, 
SASP factors may provoke both tumorigenesis and age-related dis-
eases due to exposure to chronic inflammation. Many researchers 
have attempted to establish senolytic drugs to eliminate harmful 
senescent cells from aged tissues, thereby preventing cancer and 
age-related pathologies. Several senolytic drugs, such as ABT-737, 
BET inhibitors and dasatinib plus quercetin, can selectively induce 
cell death in senescent cells and effectively improve some symptoms 
of age-related disease, including cancer, by attenuating SASP fac-
tor production.81 However, the off-target effects of these senolytic 
molecules are still unknown. In addition, evaluating the efficiency 
of senolytic therapies in the living body is an important factor to 
optimize treatment. Thus, we need to carefully consider the clinical 

application of senolytic drugs for cancer treatment and prevention 
of age-related disorders. The cGAS-STING pathway may be an al-
ternative potential therapeutic target to control cancer.82 Based 
on the role of the cGAS-STING pathway in facilitating anti–tumor 
immunity and SASP induction, modulation of its activity would be 
beneficial for cancer immune therapy and to inhibit cancer develop-
ment. Finally, to extend healthy lifespans via effective therapeutic 
strategies, significantly more research is necessary to investigate the 
molecular mechanisms of SASP regulation.
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F I G U R E  4   The cGAS-STING pathway plays two different roles in liver tumorigenesis. DNA damage induces cellular senescence in 
hepatic stellate cells (HSC) and hepatocytes in the liver. Accumulation of cytosolic DNA leads to activation of the cGAS-STING pathway, 
resulting in production of senescence-associated secretory phenotype (SASP) factors. Short-term exposure to SASP factors drives 
recruitment of immune cells to clear pre–malignant cells and senescent cells, thereby preventing tumorigenesis. However, long-term 
exposure to SASP factors generates chronic inflammation and promotes tumorigenesis in obese mice
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