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Background and objective: Dopamine plays an important role in the disease pathology of

Parkinson’s disease and schizophrenia. These two neuropsychiatric disorders represent disease end

points of the dopaminergic spectrum where Parkinson’s disease represents dopamine deficit and

schizophrenia represents dopamine hyperactivity in the mid-brain. Therefore, current treatment

strategies aim to restore normal dopamine levels. However, during treatment patients develop

adverse effects due to overshooting of physiological levels of dopamine leading to psychosis in

Parkinson’s disease, and extrapyramidal symptoms in schizophrenia. Absence of any laboratory

tests hampersmodulation of pharmacotherapy.ApolipoproteinE and α-synuclein have an important

role in the neuropathology of these two diseases. The objective of this study was to evaluate

cerebrospinal fluid (CSF) concentrations of apolipoprotein E and α-synuclein in patients with these

two diseases so that they may serve as biomarkers to monitor therapy in Parkinson’s disease and

schizophrenia.

Methods: Drug-naïve Parkinson’s disease patients and Parkinson’s disease patients treated with

dopaminergic therapy, neurological controls, schizophrenic patients treated with antidopaminergic

therapy, and drug-naïve schizophrenic patients were recruited for the study and CSF was collected.

Enzyme-linked immunosorbent assays were carried out to estimate the concentrations of apolipo-

protein E and α-synuclein. Pathway analysis was done to establish a possible role of these two

proteins in various pathways in these two dopamine dictated diseases.

Results: Apolipoprotein E and α-synuclein CSF concentrations have an inverse correlation

along the entire dopaminergic clinical spectrum. Pathway analysis convincingly establishes a

plausible hypothesis for their co-regulation in the pathogenesis of Parkinson’s disease and

schizophrenia. Each protein by itself or as a combination has encouraging sensitivity and

specificity values of more than 55%.

Conclusion: The dynamic variation of these two proteins along the spectrum is ideal

for them to be pursued as pharmacotherapeutic biomarkers in CSF to monitor pharma-

cological efficacy in Parkinson’s disease and schizophrenia.

Keywords: cerebrospinal fluid, Parkinson’s disease, schizophrenia, dopamine,

apolipoprotein E, α-synuclein, biomarkers, treatment monitoring

Introduction
Parkinson’s disease is a progressive neurodegenerative disorder diagnosed based on

the presence of motor symptoms like tremor, rigidity, bradykinesia, and postural

Correspondence: Gururao Hariprasad
Department of Biophysics, All India
Institute of Medical Sciences, New Delhi
110029, India
Tel +91 112 659 4029
Fax +91 112 658 8663
Email dr.hariprasadg@gmail.com

Neuropsychiatric Disease and Treatment Dovepress
open access to scientific and medical research

Open Access Full Text Article

submit your manuscript | www.dovepress.com Neuropsychiatric Disease and Treatment 2019:15 2073–2085 2073
DovePress © 2019 Gupta et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.

php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the
work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

http://doi.org/10.2147/NDT.S205550

http://www.dovepress.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php


instability.1 The prevalence increases with age and around

1–2% of the population over the age of 60 years is affected

by Parkinson’s disease.2,3 Schizophrenia is a chronic men-

tal disorder characterized by delusions, hallucinations, dis-

organized speech, or behavior and impaired cognitive

ability.4 The worldwide prevalence of schizophrenia is

1%.1,5,6 Dopamine is an important neurotransmitter pro-

duced in the substantia nigra and ventral tegmental regions

of the brain and its dysfunction plays a crucial role in both

Parkinson’s disease and schizophrenia.7 In Parkinson’s

disease, the decrease in dopamine in the substantia nigra

of the mid-brain caused by selective loss of dopaminergic

neurons has been implicated in disease pathology.8 On the

contrary, dopamine hyperactivity is associated with

schizophrenia.9 The treatment strategies for both the dis-

eases exploit the difference in dopamine level from the

baseline. In Parkinson’s disease, clinical intervention is

aimed at increasing the concentration of dopamine in

mid-brain.10 On the other hand, in schizophrenia, neuro-

leptics are prescribed which block dopamine receptors and

decrease overall dopamine activity.11 However, there is a

strong chance that during the treatment period patients

develop symptoms related to the other extreme of dopa-

mine spectrum, wherein Parkinson’s disease patients tend

to develop psychosis, and schizophrenia patients tend to

develop extrapyramidal side effects.12 This clinical sce-

nario is depicted by the patients recruited in this study

(Table 1).

Currently, there is no definite parameter to monitor the

treatment and assist the clinicians to modulate therapy to

avoid adverse effects. In this regard, biomarkers provide a

convenient tool that can be objectively evaluated and used as

an indicator of biological processes and pharmacologic

response in the human body.13–15 Biomarker discovery for

various diseases including neurological conditions has pro-

vided an efficient medium to monitor various disease

conditions.16–18 Despite the discovery of many protein bio-

markers for diagnosis or prognosis of Parkinson’s disease

and schizophrenia, there is no significant clinical proteomic

study to monitor drug therapy in these two diseases.19,20 The

unavailability of reliable biomarkers to monitor drug therapy

in Parkinson’s disease and schizophrenia provides opportu-

nities for clinical proteomic-based biomarker discovery in

this field. In the recent past, our group has been dedicatedly

involved in protein biomarker discovery to assess treatment

in both Parkinson’s disease and schizophrenia.21,22

Apolipoprotein E is a ligand for low-density lipoprotein

receptors and is the most important lipid transport protein T
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present in the brain.23 The gene is located on the chromo-

some19q13.2 with three alleles e2, e3, and e4.24 It is involved

in many complex biological processes such as regulation of

intracellular signaling, lipid metabolism, modulation of nitric

oxide synthase-mediated cell proliferation, immune system

regulation, and extracellular signaling.25–27 Apolipoprotein E

is mainly synthesized by astrocytes in the brain and is known

to be associated with various neurodegenerative disorders

including Alzheimer’s disease and Parkinson's disease.28,29

It is a predominant genetic risk factor for Parkinson’s disease

as it imparts vulnerability to early semantic memory

impairment.30 In schizophrenia, aberrant apolipoprotein E

signaling and the evidence of common receptors with schi-

zophrenia susceptibility gene, reelin, supports its role in the

disease pathology.31

α-synuclein is encoded by the SNCA gene located on the

chromosome 4q22.1.32 It is abundantly expressed in the brain

and is known to interact with lipids, presynaptic vesicles, and

plasma membrane by lipid rafts.33–35 It is a core component

of Lewy bodies which is a clinical hallmark for Parkinson’s

disease.36 In addition, point mutations in the α-synuclein

gene are known to be a risk factor for Parkinson’s disease.37

The association between α-synuclein expression and schizo-
phrenia has been shown by a previous study.38 α-synuclein

expression at the mRNA level is down regulated in lympho-

cytes of schizophrenic patients.39

The intricate association of apolipoprotein E and α-
synuclein, with neuropsychiatric disorders, prompted us

to study the expression of these proteins in cerebrospinal

fluid (CSF) along the clinical dopaminergic spectrum, with

a view to developing them as therapeutic efficacy monitor-

ing biomarkers in Parkinson’s disease and schizophrenia.

Methods
Ethics, patient selection criteria, and

consent
The study was approved by the ethics committee of All

India Institute of Medical Sciences, New Delhi (Reference

no.: IESC/T-418/26.08.2015), and the methods followed

were as per the ethical standard formulated in the Helsinki

declaration. The Parkinson’s disease and schizophrenia

patients were screened and recruited for the study at the

Department of Neurology and Department of Psychiatry,

All India Institute of Medical Sciences, New Delhi,

respectively. The neurological control group comprised

of patients with bladder, prostate, and uterine pathologies,

who were screened at urology and gynecology clinics at

the institute. These patients were recruited for surgeries

under spinal anesthesia. Before enrolling the patients in

the study written informed consent was obtained. Briefly,

1.5 mL of CSF was collected under sterile conditions in

microfuge tubes and was centrifuged at 4°C for 5 min at

3,000 rpm. The supernatant was taken in a separate micro-

fuge tube and stored in −80°C until further experiments.

Proper care was taken while collecting the CSF samples to

avoid blood contamination, and samples with even minute

contamination with blood were excluded from the study.

Patient inclusion and exclusion criteria
Inclusion criteria: The Unified Parkinson's Disease Rating

Scale was used for screening patients with Parkinson’s dis-

ease according to which a score of zero represents no dis-

ability and a score of 199 represents complete disability.40

For describing the progress of symptoms in Parkinson’s

disease patients, the Hoehn and Yahr scale was used and

was graded from stage 1 to stage 5.41 ICD 10 was used to

diagnose schizophrenia.42 Exclusion criteria: The patients

with other disease or coexisting pathology or those under

any therapeutic interventions were excluded from the study.

Enzyme-linked immunosorbent assay

(ELISA)
The estimation of apolipoprotein E and α-synuclein in the

recruited patients was done using ELISA kits (Elabscience,

China). The methodology used was as per the manufacturer’s

instruction protocol. The concentrations of apolipoprotein E

and α-synuclein were extrapolated from the standard curves.

Statistical analysis
The mean concentrations for all the five groups were

plotted and a linear curve with line equations and R2

value was obtained. Correlation coefficient and p-value

(<0.05) for CSF apolipoprotein E and α-synuclein were

obtained using Student’s t-test. Receiver operating charac-

teristic (ROC) curve was obtained using GraphPad Prism

(GraphPad Prism software, San Diego, CA, USA) to

derive cut-off levels and area-under-the-curve for apolipo-

protein E and α-synuclein in Parkinson’s disease and

schizophrenia.

Pathway analysis
The entire information of genes corresponding to the

identified proteins, their related functions were obtained

from UniProt and from published literature in PubMed.
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Using this information, the proteins were analyzed for

their biological interactions in Parkinson’s disease and

schizophrenia pathways using KEGG and Schizo-Pi

database.43 For visualizing the interaction and pathways

of identified proteins and its interactors Cytoscape v2.8.0

software was used.44,45 Michigan Molecular Interactions

plugin was used to collect the human gene regulatory

interactome obtained from the public databases including

STRING, MINT, MENTHA, and HPRD and merge the

information.46–50 From this complete network, sub-net-

works for Parkinson’s disease and schizophrenia were

obtained up to the first neighboring nodes using the plugin

BiNoM v2.5. The resulting networks were merged using

Cytoscape. Venn/Euler diagram was used to analyze the

intersection between Parkinson’s disease and schizophre-

nia. The corresponding interactions of the identified pro-

teins were noted and analyzed.

Results
Clinical profile
A total of 61 CSF samples of patients with Parkinson’s

disease and schizophrenia were obtained from the neurol-

ogy and psychiatry out-patient departments. The sample

group included drug- naïve patients and those treated for

Parkinson’s disease and schizophrenia and neurological

controls. The demographic profile of the patients recruited

for the study is mentioned in Table 2. The sex distribution

of the patients has fewer females as compared to males.

Also, the mean age of Parkinson’s disease patients is

almost twice that of schizophrenia patients, and the mean

age of the neurological control group is 61.4 years.

Apolipoprotein E and α-synuclein
expression in CSF of Parkinson’s disease
and schizophrenia
ELISA was done to determine the CSF concentrations of

apolipoprotein E and α-synuclein across five groups; (1)

drug-naïve Parkinson’s disease, (2) treated Parkinson’s

disease, (3) neurological controls, (4) drug-naïve schizo-

phrenia and, (5) treated schizophrenia. The relationship

between apolipoprotein E and α-synuclein concentrations

and dopamine level in CSF is represented in Figure 1. It

should also be noted that the concentrations of both apo-

lipoprotein E and α-synuclein correlate with each other as

indicated by a positive correlation coefficient value of 0.5

in Figure 2. ROC curve was plotted for apolipoprotein E

and α-synuclein levels in CSF in Parkinson’s disease,

neurological control, and schizophrenia as shown in

Figure 3. Individual values corresponding to the cut-off

values, sensitivity, and specificity are given in Table 3. It

can be observed that when either of the two proteins,

apolipoprotein E and α-synuclein, were considered for

evaluation with the individual estimated cut-off values,

the sensitivity and specificity values ranged from 53.3%

to 79.3%.

Pathway analysis
Pathway analysis was carried out to study the interactions

of these proteins in these dopamine dictated diseases. A

total of 25 proteins were found to be directly interacting

with apolipoprotein E and α-synuclein in Parkinson’s dis-

ease, and 18 proteins were found to be directly interacting

with apolipoprotein E and α-synuclein in schizophrenia,

with 13 proteins being common amongst the two groups

(Figure 4). The functions of these proteins and their rele-

vance in this study have been delineated in Table 4. A

hypothesis has been proposed based on the ELISA results,

highlights of the pathway analysis, information from pre-

vious studies, and the same has been diagrammatically

represented in Figure 5.

Discussion
Clinical profile
The incidence of Parkinson’s disease and schizophrenia

majorly affects the male population; therefore, the sex

distribution of the patients has fewer females as compared

to males.69 Secondly, the mean age of Parkinson’s disease

patients is almost double that of schizophrenia patients

because the incidence of Parkinson’s disease increases

above the age of 60 years, with only 4% of the affected

being under the age of 50 years.70 On the other hand, the

Table 2 Demographic profile of patients recruited in the study

Clinical

phenotype

Average age

(years)

Gender Total

Female Male

Parkinson 47.25 1 7 8

Parkinson Treated 52.75 3 25 28

Neurological

Control

61.4 6 9 15

Schizophrenia

Treated

27 1 5 6

Schizophrenia 25 0 4 4

Total 61
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incidence of schizophrenia occurs between 16 and 25

years.71 The mean age of the neurological control group

is 61.4 years since the patients selected as neurological

controls were those requiring surgical intervention for

urological disorders which presents around this age.72

The drug-naïve patients of Parkinson’s disease and schizo-

phrenia represent the extreme end points of dopamine

spectrum, patients who have been treated represent time

frames within this spectrum, and neurological controls

represent the mid-point of the spectrum that defines the

physiological range of dopamine.

Correlation of apolipoprotein E and α-
synuclein expression in CSF of

Parkinson’s disease and schizophrenia
The concentrations of both apolipoprotein E and α-synu-
clein inversely correlate with the dopamine concentrations.

It is higher in drug-naïve Parkinson’s disease patients and

linearly decreases through treated Parkinson’s disease,

neurological controls, treated schizophrenia patients and

drug-naïve schizophrenia patients. Such a relationship of

apolipoprotein E and α-synuclein concentrations with the

dopamine levels provides a window of opportunity to

modulate treatment in a way that patients do not develop

side effects. According to the ROC curve each protein,

apolipoprotein E and α-synuclein, individually or as a

combination has sensitivity and specificity values of

around 54%. This would, therefore, mean that using

these protein biomarkers for monitoring therapeutic effi-

cacy would help to reduce the number of patients affected

by drug-induced side effects in these two diseases by more

than half. These results and data are very encouraging

from a translational point of view in the field of neurop-

sychiatry. It may be noted that though the patients were

phenotypes and grouped based on certain clinical criteria,
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there exists a vast heterogeneity among the patients with

respect to the age of onset of the disease, stage of the

disease, quality of drug intervention, duration of therapy,

personal habits, and habitat. This explains the subtle var-

iations in the concentrations of these two proteins.

Interaction-based pathway analysis

involving apolipoprotein E and α-synuclein
in Parkinson’s disease and schizophrenia
In order to understand the role of apolipoprotein E and α-
synuclein in the pathogenesis of Parkinson’s disease and schi-

zophrenia, it becomes important to study the interaction of

these proteins in the dopaminergic pathway and subsequent

cellular damage. Based on these interactions, pathway analysis

was carried out to place the observed experimental outcomes

in the right perspective. The protein interactions and cellular

mechanisms explaining the observed results are shown in

Figure 5 and is discussed below.

(A) Apolipoprotein E is the most abundant apolipopro-

tein present in the brain and is mostly synthesized by

the astrocytes.73 It is a cholesterol transport protein

which is found associated with high-density lipopro-

tein (HDL).74,75 The most common apolipoprotein E

receptor is low-density lipoprotein receptor-related

protein (LRP) which is involved in its uptake across

the plasma membrane.25 Apolipoprotein E and LRP

play a major role in cholesterol regulation which

affects processes related to abnormal turnover of

synaptic proteins.76 This turnover is a response

mechanism to counter the damage at synaptic term-

inals because of inflammation or oxidative stress,

both of which are elevated in Parkinson’s disease.77

A B

DC

Figure 3 Receiver Operating Characteristic (ROC) for cut-offs that best differentiate disease from controls. (A) Apolipoprotein E for Parkinson’s disease and neurological

control; (B) Apolipoprotein E for schizophrenia and control; (C) α-synuclein for Parkinson’s disease and control; and, (D) α-synuclein for schizophrenia and control.
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In a previous study by our group, the level of alpha-

2-macroglobulin was found to be elevated in

Parkinson’s disease as compared to schizophrenia.22

Interestingly, LRP is a common receptor for apoli-

poprotein E, alpha-2-macroglobulin and amyloid

precursor protein.78 This further strengthens the

combined role of neuronal damage induced compen-

satory response involving LRP, apolipoprotein E,

and α-synuclein.
(B) α-synuclein is majorly a cytosolic protein; however,

its secretion into extracellular space has been

established.79 Extracellular α-synuclein has a hetero-

geneous population including both monomeric and

oligomeric forms that interact with Toll-like receptor

2 which is involved in its uptake.80,81 Cell surface

heparan sulfate proteoglycans are also known to be

involved in apolipoprotein E-mediated uptake of α-
synuclein.82 α-synuclein binds to cholesterol and mod-

ulates α-synuclein aggregation and its association with
HDL.83–85 Apolipoprotein E increases aggregation of

α-synuclein which is a known component of Lewy

bodies and promotes neurodegeneration.86

(C) α-synuclein also interacts with protein phosphatase

2A (PP2A) and increases its activity, activated PP2A

is involved in dephosphorylation of tyrosine hydro-

xylase, which is a critical enzyme in dopamine meta-

bolism, therefore leads to a reduction of dopamine

levels.66 α-synuclein is also known to bind to

Table 3 Pharmacotherapeutic monitoring value of Apolipoprotein E and α-synuclein in Parkinson’s disease and schizophrenia

Biomarker Cut-off values to differentiate neurological controls from the

disease

Parameters

Sensitivity

(%)

Specificity

(%)

Apolipoprotein E >3.4 pg (Parkinson’s disease) 41.7 86.7

Apolipoprotein E <2.6 pg (Schizophrenia) 50.0 60.0

α-synuclein >2.2 pg (Parkinson’s disease) 55.6 80.0

α-synuclein <1.9 pg (Schizophrenia) 20.0 93.3

Apolipoprotein E or α-

synuclein

>3.4 pg (Parkinson’s disease) 79.3 66.6

>2.2 pg (Parkinson’s disease)

Apolipoprotein E or α-

synuclein

<2.6 pg (Schizophrenia) 60.0 53.3

<1.9 pg (Schizophrenia)

Figure 4 Pathway analysis shows apolipoprotein E and alpha-synuclein, and their respective interactions. apolipoprotein E and alpha-synuclein are shown in white nodes,

interacting nodes in Parkinson’s disease pathway are highlighted in green, interacting nodes in schizophrenia pathway are highlighted in pink, and nodes that common to both

the groups are highlighted in yellow. Those nodes in the schizophrenia group that have four or more than four interactions are indicated in larger size boxes and those less

than four are indicated by smaller boxes. All the interactions are shown by gray lines.
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tyrosine hydroxylase gene promoter and down reg-

ulate its expression.87 This is substantiated by the

fact that there is a decreased level of tyrosine hydro-

xylase mRNA in Parkinson’s disease.88

(D) The inverse relationship between apolipoprotein E and

α-synuclein to the dopamine spectrum represented by

clinical phenotypes including Parkinson’s disease, neu-

rological controls, and schizophrenia is very interesting.

β2-adrenergic receptor agonists (β2AR) are known to

mimic endogenous catecholamines like dopamine, nor-

epinephrine, and epinephrine.89 β2AR activation

decreases histone acetylation of the α-synuclein gene

and suppresses its transcription.90 α-synuclein in asso-

ciationwithATP-binding cassette sub-familyAmember

1 (ABCA1), a plasma membrane transporter protein, is

known to increase the cholesterol efflux mechanism.91

In the brain, deficiency of ABCA1 which is required for

cholesterol efflux to apolipoprotein E leads to reduced

lipidation and an overall decrease of apolipoprotein E

levels.92

(E) In addition, psychotropic drugs up-regulate the

expression of apolipoprotein E by activation of sterol

regulatory element-binding protein transcription fac-

tors through an intracellular oxysterol sensor, liver X-

receptor.93 Liver X-receptor has been shown to

positively regulate α-synuclein expression.94 On the

contrary, levodopa-induced lipogenesis inhibition has

only been shown in certain non-neurological tissues.95

(F) Oxidative stress is another important parameter that

regulates apolipoprotein E and α-synuclein in

Parkinson’s disease and schizophrenia. Oxidative stress

is known to be elevated in Parkinson’s disease and is

decreased in schizophrenia.96 The increased formation

of reactive oxygen species in dopaminergic neurons in

Parkinson’s disease leads to the formation of cholesterol

aldehydes that enable α-synuclein aggregation, leading

to a pathologic cycle.97 Alterations in lipid metabolism

have an important role in the pathogenesis of

Parkinson’s disease since there is direct cross-talk

between lipids and α-synuclein, influencing both lipid

metabolism and α-synuclein aggregation.98,99 In the

brain, apolipoprotein E is expressed by astrocytes and

perivascular cells under normal conditions. However, it

has also been found to be intra-neuronally expressed.

Such a pattern of apolipoprotein E expression is seen

when neurons are under stress conditions.100 Increased

apolipoprotein E formation under such conditions can

affect neuronal survival due to the formation of a C-

terminal truncated form which causes mitochondrial

impairment in neurons.101

Conclusion
Apolipoprotein E and α-synuclein CSF concentrations

have an inverse correlation along the entire dopaminergic

clinical spectrum comprising of Parkinson’s disease and

schizophrenia. Each protein by itself or as a combination

α-syn
(protofibrils)

α-syn
(protofibrils)

α-syn
(protofibrils)

TLR2 TLR2 TLR2

HSPG
HSPG

A B C

HSPG

P2A P2A P2A

L B

LD
LDL RP

ApoE
ApoE

ApoE

Inflammation

Oxidative stress

L RP L RP

TH TH TH

LD

Dopamine Dopamine
Dopamine

α-syn
(fibrils)

Ty Ty Ty

L-DOPA L-DOPA L-DOPA

Figure 5 Diagrammatic representation of neuronal synapse depicting experimental result-based hypotheses that explain molecular events in Parkinson’s disease,

neurological controls, and schizophrenia.

Abbreviations: HSPG, Heparan Sulphate Proteo-Glycan; TLR2, Toll-Like Receptor 2; LRP, Low density lipid Receptor Protein; L-DOPA, Levo-Dopa; P2A, phosphatase 2A;

LB, Lewy body; LD, L-decarboxylase; TH, tyrosine hydroxylase; Ty, tyrosine.
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has the ability to differentiate either of the pathological

states from the physiological state. Pathway analysis sup-

ports the mechanism of coregulation in the pathogenesis of

the two diseases. The dynamic variation of these two

proteins along the spectrum is ideal for them to be pursued

as pharmacotherapeutic biomarkers in CSF to monitor

pharmacological efficacy in Parkinson’s disease and schi-

zophrenia with a reasonable accuracy. Outcome of this

study will be helpful for the clinicians and patients to

monitor pharmacotherapy and make informed treatment

decisions in Parkinson’s disease and schizophrenia.
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