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Background: As the most common neurodegenerative disease, Alzheimer’s disease
(AD) leads to progressive loss of cognition and memory. Presently, the underlying
pathogenic genes of AD patients remain elusive, and effective disease-modifying therapy
is not available. This study explored novel biomarkers that can affect diagnosis and
treatment in AD based on immune infiltration.

Methods: The gene expression profiles of 139 AD cases and 134 normal controls
were obtained from the NCBI GEO public database. We applied the computational
method CIBERSORT to bulk gene expression profiles of AD to quantify 22 subsets
of immune cells. Besides, based on the use of the Least Absolute Shrinkage Selection
Operator (LASSO), this study also applied SVM-RFE analysis to screen key genes. GO-
based semantic similarity and logistic regression model analyses were applied to explore
hub genes further.

Results: There was a remarkable significance in the infiltration of immune cells between
the subgroups. The proportions for monocytes, M0 macrophages, and dendritic cells
in the AD group were significantly higher than those in the normal group, while the
proportion of some cells was lower than that of the normal group, such as NK cell
resting, T-cell CD4 naive, T-cell CD4 memory activation, and eosinophils. Additionally,
seven genes (ABCA2, CREBRF, CD72, CETN2, KCNG1, NDUFA2, and RPL36AL)
were identified as hub genes. Then we performed the analysis of immune factor
correlation, gene set enrichment analysis (GSEA), and GO based on seven hub genes.
The AUC of ROC prediction model in test and validation sets were 0.845 and 0.839,
respectively. Eventually, the mRNA expression analysis of ABCA2, NDUFA2, CREBRF,
and CD72 revealed significant differences among the seven hub genes and then was
confirmed by RT-PCR.

Conclusion: A model based on immune cell infiltration might be used to forecast AD
patients’ diagnosis, and it provided a new perspective for AD treatment targets.
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INTRODUCTION

As a neurodegenerative disease, Alzheimer’s disease (AD) is
usually accompanied by cognitive dysfunction and memory
impairment, and even affects speech and motor ability (Ono
and Tsuji, 2019). Over 47 million people are estimated to
suffer from dementia, and AD as the most common form
accounts for 60–80% of them (Barker et al., 2002; Anand
et al., 2017). The pathologic changes of AD remain the
gold standard for diagnosis characterized by brain atrophy,
ventricular enlargement, extracellular amyloid plaques,
intracellular neurofibrillary tangles, and so on (Piguet et al.,
2009; Serrano-Pozo et al., 2011). However, the preclinical
stage of AD patients barely meets the diagnostic criteria until
pathology can be found in the postmortem brain. Although
amyloid and tau biomarkers can be detected before structural
brain changes, there is still a lack of effective diagnosis in the
pre-dementia phase.

The risk factors of development for AD diagnosis are
important, of which age is dominant (Currais et al., 2019).
As the population ages, the prevalence of AD is increasing
(Lee et al., 2019). Studies have shown that for people over
60, the incidence doubles per 6.3 years. Besides, family
history, Down syndrome, and cerebrovascular disease are
also important risk factors (DeTure and Dickson, 2019).
These different multifaceted contributors can increase risk for
the disease; nevertheless, the genetic factor warrants special
emphasis with a higher heritability percentage of about 60–80%
(Gratuze et al., 2018).

Familial AD is closely related to mutations in amyloid
precursor protein (APP), presenilin 1 (PSEN1), or PSEN2
genes (Ryman et al., 2014). Additionally, the apolipoprotein
E4 gene (APOE4) is one of the greatest risks in progressing
AD (Ballard et al., 2016; Lane et al., 2018). The genome-
wide association studies indicated that TREM2, ADAM10, and
PLD3 all affect APP and tau, and regulate directly known
functions, including immune response, cholesterol metabolism,
and endocytosis (Chouraki and Seshadri, 2014; Karch and
Goate, 2015; Jansen et al., 2019). Growing evidence suggests
that Alzheimer’s disease pathogenesis is strongly associated
with immunological mechanism (Shi and Holtzman, 2018;
Webers et al., 2020). The binding of AD-related proteins
and receptors on microglia can initiate an innate immune
response and subsequently cause disease deterioration (Sarlus
and Heneka, 2017). Previous studies showed that amyloid
plaque burden was negatively correlated with the levels of the
immune biomarker, anti-amyloid-β (anti-Aβ) autoantibodies in
AD, which links the disease progression and Aβ accumulation
(Kellner et al., 2009; Storace et al., 2010). The dysfunction of
central and peripheral immune systems was associated with
several differentially expressed immune markers including CD3,
CD4, CD7, CD28, and CD56 in AD. It has been shown
that TREM2 gene mutations greatly increase the risk of AD,
and phagocytosis of microglia is mediated with receptors on
microglia and astrocytes (Heneka et al., 2015; Yeh et al., 2017).
The phagocytic capability for Aβ is weakened, which may be
implicated in MGAT-III and Toll-like receptor-3 (Avagyan et al.,
2009). Increasing evidence suggests that the rare variants of

TREM2 can promote the development of amyloid and tau
pathologies due to the dysfunction of microglia (Gratuze et al.,
2018). Also, TREM2 can participate in the interaction with
other biomarkers including APOE (Qin et al., 2021). Collectively,
Trem2 acts as the immune checkpoint and the scavenger receptor
to clear harmful stimuli in the regulation of neurocyte survival
(Hickman et al., 2018). Risk genes consolidate a role of the
immune system in AD and have been identified relating to
complements and various immune cells, including microglia,
monocytes, and B and T lymphocytes (Jevtic et al., 2017). Up
to now, there is no disease-modifying therapy for Alzheimer’s
disease. Therefore, finding novel risk factors and targeting these
immune mechanisms are needed to develop future therapeutic
approaches for Alzheimer’s disease.

To explore and identify potential biomarkers of AD, gene
chips were obtained from the Gene Expression Omnibus
database. We then identified hub genes through LASSO and
BORUTA analysis. The combined use of two algorithms for
screening biomarkers will make the process more rigorous
and standard; finally, identified key biomarkers are strongly
associated with AD. Then the CIBERSORT algorithm was
applied to calculate the immune infiltration of AD samples.
Moreover, the relationship between 22 immune cells and
hub genes was analyzed. The logistic regression model was
investigated by ROC and further validated by an external
dataset. This is of great significance and the first utilization of a
combination of LASSO and SVM-RFE method to reveal the key
biomarkers in AD.

MATERIALS AND METHODS

Gene Expression Data Acquisition
The GSE63061 data file was downloaded from the NCBI Gene
Expression Omnibus public database (GEO1) annotated by
GPL10558 as a Series Matrix File. The file contains data related to
273 groups of patients’ expression profiles, including 134 normal
groups and 139 AD patients. Meantime, the GSE85426 Series
Matrix File was obtained from the GEO public database. The
annotation file is GPL14550, which consists of 180 groups of
patients’ expression profile data involving 90 cases of normal
group and 90 cases of AD patients.

Analysis of Immune Cell Infiltration
The CIBERSORT is widely used in evaluating the type of
immune cell in the microenvironment. The tool is based
on the principle of linear support vector regression to
perform deconvolution analysis on the expression matrix of
immune cell subtypes. It contains 547 biomarkers, and 22
phenotypes of human immune cell, covering plasma cells,
B cells, T cells, and myeloid cell subsets, have also been
defined. Using the CIBERSORT algorithm, this study analyzed
the AD patients’ data and quantified the relative proportion
of 22 infiltrating immune cells. Furthermore, this study
performed Spearman correlation analysis on immune cells and
gene expression.

1http://www.ncbi.nlm.nih.gov/geo/
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Construction of LASSO Model and
SVM-RFE Feature Selection Process
The LASSO logistic regression and the SVM algorithm were used
to classify the diagnostic markers of AD. The LASSO analysis was
undertaken using the “glmnet” package, the response type was set
as binomial, and the alpha was set as 1. Besides, as a surveillant
machine learning method to support vectors, the Support Vector
Machine (SVM) finds the best variables by deleting the feature
vectors generated by the SVM. The SVM classifier from R package
e1071 was adopted for classification analysis of the selected
biomarkers in the diagnosis of AD; k = 5 was the setting for the
k-fold cross validation, and the parameter of halving above was
identified as 100.

Gene Set Enrichment Analysis (GSEA)
Patients are differentiated into two groups (the high expression
group and the low expression group) based on the expression
level of seven pivot genes. The GSEA analysis of the two groups
was achieved by applying signal pathway differences. Molecular
Signature Database v7.0 provided the background gene set data
required for this study (MSigDB)2. Annotated gene sets were used
to distinguish subtypes by the identified differentially expressed
genes. We computed the consistency P-value for each gene
set, and P-values less than 0.05 were considered significantly
enriched. Subsequently, significantly enriched gene sets were
ranked. The association between disease type and biological
processes was analyzed by using GSEA.

Semantic Similarity GO Annotations
In this paper, we incorporated GO-based semantic similarity
and ranked the proteins by the functional similarity of
protein–protein interactions. The relationship between semantic
similarity in the GO annotation and the correlation of the gene
expression profile was verified (Sevilla et al., 2005). It provides
a basis for the functional comparison of gene products, so it
has been widely used in bioinformatics, such as protein–protein
interaction analysis (Jain and Bader, 2010), pathway analysis
(Guo et al., 2005), and gene function prediction (Tedder et al.,
2010). Here, we measured the functional similarity between
proteins. The functional similarity is defined as the geometric
mean of the semantic similarity of GO in terms of the molecular
function (MF) and the biological process (BP). To quantify the
correlations between proteins, the biological function and the
pathway were included. The semantic similarity of interacting
proteins in MF and BP is performed by using the GO SemSim
software package of Wang’s method (Yu et al., 2010). It was
carried out in a more accurate method that involved GO topology
(Wang et al., 2007). The geometric average of semantic similarity
in MF and BP algorithms was used to further estimate the
functional similarity.

Co-expression Analysis of the Hub
Genes
Correlation analysis was performed using the corrplot and
circlize package in R software. Pearson correlation on the hub

2http://www.brADd.mit.edu/GSEA/msigdb/

gene expression was carried out using the package corrplot
(version 0.84) in R. The circos plot was generated through the
circlize package. The correlation coeÿcient was depicted by the
colors “red” and “green.” Red denotes a positive correlation,
whereas green indicates a negative correlation. The darker the
color and the thicker the string, the stronger the correlation.

Differential Expression Analysis
To explore the relationship between hub genes and the
development of AD, we performed the differential expression
analysis for hub genes in different types of brain tissues using
the AlzData. AlzData3 is a comprehensive AD high-throughput
omics database (Xu et al., 2018). AlzData can be used as an in-
depth integration system, integrating different levels of data for
disease characterization. It is comprised of genomics (GWAS
and whole exome sequencing), transcriptome, proteomics, and
functional genomics data. In addition, the study also further
calculated the CFG (convergent functional genomic) score
(Supplementary Table 1) of key genes.

RT-PCR Validation of the Hub Genes
The serum samples of six patients without AD and six patients
with AD were acquired for RT-PCR verification in order to
verify the predictive analysis results. The Ethics Committees
or institutional review board of the Sixth Medical Center of
Chinese PLA General Hospital approved this protocol. Based
on the manufacturer’s instructions, this study used a TRIzol
reagent to extract total RNA (Invitrogen, 10296028). RNA quality
(RNA integrity number, RIN) was determined by Agilent 2100
Bioanalyzer analysis (Agilent Technologies, CA, United States),
and RIN ≥ 8 for subsequent experiments. RNA samples from
total RNA were reverse-transcribed to cDNA, and RT-PCR
was performed using the SuperScript III RT (ABI-Invitrogen,
11752050). β-Actin was used as an internal normalization
standard. Relative mRNA expression was calculated using the
11CT method. Primers were as described in the Table 1.

Statistical Analysis
T-test was used for measurement data (expressed as a
mean ± SEM), while chi-squared test was used for categorical
data (presented as percentages). The logistic regression algorithm
was used to build the predictive model. All statistical analyses
were performed by R (version 3.6), and GraphPad Prism 8. All
experiments were done in triplicate. Significance was defined as
P < 0.05 for two-sided tests.

RESULTS

Identification of Hub Genes
We downloaded the GSE63061 dataset from the NCBI GEO
public database. The total number of patients was 273 (AD group,
139; control group, 134). To explore the biomarkers of AD,
we performed feature screening through LASSO regression. The
results from the LASSO regression showed that 18 genes were
identified as signature genes in AD. On the other hand, we use the

3http://www.alzdata.org/
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TABLE 1 | Primer information.

Target name Primer

β-Actin F GACAGGATGCAGAAGGAGATTACT

R TGATCCACATCTGCTGGAAGGT

ABCA2 F CATCGCCATCTTCATCATCC

R TTGAGCATGTCCCACTCGAA

CREBRF F GGAACAAACTCTGATGC

R CATTTAGTTGGCTGTTCAC

CD72 F CATCTCCAGCAGGTTAGGACA

R CGGGCACTTGAACATTCTC

CETN2 F AAAGAATGAGACCTAAGCC

R CTTTAACATCTATAGTGCGAG

KCNG1 F CCGAGTTCACCTGCATCCC

R CCATAGCCCACCGTCCTC

NDUFA2 F TCTCATCCACTTATGTC

R CTTCACATCGGAGCCT

RPL36AL F CCTACCTAAAACCCGAAT

R TTCTTTGTGGTCTTAGCGTT

SVM-RFE algorithm to evaluate the characteristic genes in AD.
The data illustrated that a total of 7 differentially expressed genes
were acquired from the intersection of the top 100 scoring genes
and the characteristic genes selected by the LASSO regression

algorithm. The intersection genes were used as the core genes for
subsequent research (Figure 1).

Immune Infiltration Analyses
The microenvironment is composed of immune cells,
inflammatory factors, extracellular matrix, and various growths,
and it has an important impact on clinical treatment sensitivity
and disease diagnosis. Through studying the relationship
between immune infiltration and the hub gene in the AD dataset,
the potential molecular mechanisms of core genes influencing
the AD progression have been further explored. The results
indicated that the fractions for monocytes, M0 macrophages,
and dendritic cells in the AD group were remarkably higher
compared with those of the normal patients, while the fractions
of many cells are lower than those of the normal patients, such
as T-cell CD4 memory activation, T-cell CD4 naive, eosinophils,
and NK cell resting. The interaction between the immune cells is
shown in Figure 2.

Analysis of Hub Genes and Immune
Infiltration
To explore further the relationship between core genes and
immune cells, the results indicated that ABCA2 was positively
correlated with B cells naive. Besides, CREBRF was positively
correlated with neutrophils, dendritic cells activated, and mast

FIGURE 1 | Selection of diagnostic biomarkers and identification of hub genes. (A) LASSO coefficient profiles of the 11 genes that met the prognostic criteria initially.
(B) The misclassification error in the jackknife rates analysis. (C) Venn diagram of genes extracted from LASSO and SVM-RFE methods. LASSO, least absolute
shrinkage and selection operator; SVM, support vector machine; RFE, recursive feature elimination.
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FIGURE 2 | The landscape of immune infiltration between AD and normal controls. (A,B) The box-plot diagram indicating the relative percentage of different types of
immune cells and the heat map summarizing the score of immune infiltration between AD patients and non-AD patients. (C) The heat map shows the correlation in
infiltration of innate immune cells by CIBERSORT. (D) The difference of immune infiltration between AD (red) and normal (blue) controls. (P-values < 0.05 indicated
statistical significance).

FIGURE 3 | The association between the hub genes and immune cell infiltration. (A–G) Correlations between hub genes and the infiltration level. (H–K) Correlation
between hub genes and chemokines, immunosuppressive factors, immunostimulatory factors, and immune receptors. (L) Protein–protein interaction plot of hub
genes and immune-related molecules.
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FIGURE 4 | Enrichment analysis of pathway and gene ontology (GO) involved hub genes. (A–G) Gene Set Enrichment Analysis of ABCA2, CREBRF, CD72, CETN2,
KCNG1, NDUFA2, and RPL36AL.

cells resting. The CD72 was positively correlated with T
regulatory cells (Tregs), T-cell CD4 naïve, and plasma cells but
negatively correlated with dendritic cells activated, neutrophils,
and mast cells resting. CETN2 had a positive relationship with
T cells, eosinophils, and CD4 memory activation. KCNG1 was
positively correlated with mast cells resting and neutrophils,
while it was negatively correlated with T-cell CD8. There was
a positive correlation between NDUFA2 and T-cell CD4 naive,
and it was negatively associated with dendritic cells activated,
neutrophils, and mast cells resting (Figures 3A–G). We next
obtained the correlations between these seven key genes and
different immune factors including immunosuppressive factors,
immunostimulatory factors, chemokines, and receptors from the
TISIDB database. The graphs of the correlational relationships
between immune factors and AD core genes were constructed
(Figures 3H–K). We selected immune factors related to the hub
gene (the average correlation coeÿcient greater than 0.2) and

used STRING and Cytoscape to construct an interaction network
(Figure 3L). These analyses confirmed that key genes were closely
related to the level of immune cell infiltration and played a crucial
role in the immune microenvironment.

Analyses of Biological Processes and
Core Pathways Enriched for Genes in AD
We further explored the specific signaling pathways involved
in the seven core genes, and explore the potential molecular
mechanisms of them that affect the progression of AD. GSEA
results showed that the pathway involved in the high expression
of ABCA2 is cholesterol metabolism. Meanwhile, the pathway
involved in the high expression of KCNG1 is the adipocytokine
signaling pathway. The pathways involved in the high expression
of CETN2 are oxidative phosphorylation and thermogenesis, all
related to energy metabolism. It suggested that these three core
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FIGURE 5 | Molecular regulatory mechanism of core gene-related pathway and GO functional enrichment analyses. (A–G) GSEA-related ccgraph plot of ABCA2,
CREBRF, CD72, CETN2, KCNG1, NDUFA2, and RPL36AL.

genes may participate in the progression of AD by influencing the
body’s metabolism. Concurrently, high expressions of NDUFA2
and RPL36AL are related to the ribosome pathway. It suggested
that both of them can affect the progression of AD by
regulating the function of the ribosome (Figure 4). The molecular
interaction network between each pathway is shown in Figure 5.
Also, to further identify the core genes that play a key role
in AD, we ranked the core genes according to the average
functional similarity relationship between the proteins. The
results demonstrated that RPL36AL, CETN2, and ABCA2 are
the top 3 molecules based on the GO similarity score in
AD; their median scores were around 0.35, 0.35, and 0.30,
respectively. Besides, the rest of them were under 0.3 remarkably
(Figures 6A,B). Correlation analysis of seven hub genes was
indicated using the circle diagram in Figure 6C. Furthermore,

RPL36AL, CETN2, KCNG1, and NDUFA2 displayed closely
positive relationships, but the remaining three genes mainly
revealed negative associations with each other. The mechanism
remains to be further explored.

Logistic Regression Is Potential to Build
a Core Gene Correlation Model
The predictive model was constructed by using the logistic
regression algorithm. The results showed that the predictive
model constructed by seven genes had better diagnostic
performance, and the area value under the receiver operating
characteristic curve (AUC) was 0.845. We further downloaded
the dataset GSE85426, of which 90 people had AD and 90
were normal patients. Fivefold cross-validation was performed
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FIGURE 6 | Closeness score of semantic similarities between GO terms and coexpression analysis of hub genes. (A) GO semantic similarity box plot of core genes.
(B) Raincloud plot of relatedness of the GO terms. (C) The circos diagram depicts Pearson correlations between hub genes.

FIGURE 7 | ROC curves for evaluating the accuracy of logistic regression analysis of training set [(A), GSE63061] and validation [(B), GSE85426].
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FIGURE 8 | RT-PCR validation of the hub gene between AD and normal controls. (A-G) All experiments were carried out three times, and the data were expressed
as mean ± SEM (*p < 0.05, **p < 0.01, ns, no significance).

to further verify the diagnosis model, as external validation data.
The results showed that the model had strong stability, and the
AUC value was 0.839 (Figure 7).

The Experiment of Seven Hub Genes
We next conducted RT-PCR experiments to detect the hub genes’
relative expression level in AD and normal control groups. The
research data demonstrated that the mRNA expression level of
ABCA2 and NDUFA2 in AD decreases compared with that
of the controls (p < 0.05). Conversely, the opposite results
were observed for CREBRF and CD72 (p < 0.05, CREBRF;
p < 0.01, CD72). Besides, there was no significant difference
in the levels of CETN2, KCNG1, and RPL36AL between the
AD group and the control group (Figure 8). These identified
seven genes might function as the potential diagnostic and
prognostic biomarkers.

DISCUSSION

The most common cause of degenerative dementia is Alzheimer’s
disease (AD). So far, amyloid plaques and neurofibrillary tangles
are its main pathological diagnostic features (DeTure and
Dickson, 2019). Nevertheless, detection of AD brain lesions using

histopathology is suboptimal, and treatments were currently
in a limited pharmacotherapy phase. A growing number of
researchers realize that immune infiltration is related to the
diagnosis in cancer and other diseases (Barnes and Amir, 2018;
Varn et al., 2018; Cai et al., 2020). In this context, the immune
system plays an essential role in the etiology of AD. Additionally,
immune infiltrates were linked to the target and clearance
of amyloid beta-peptide plaques in the brain (Monsonego
et al., 2006). The central immune system compositions such
as microglia and complements, as well as peripheral immune-
related components including monocytes and lymphocytes, can
influence the pathology of AD (Jevtic et al., 2017). The previous
research demonstrated that C1q is highly correlated with Aβ

deposition and activates microglia phagocytosis, which, in turn,
leads to synapse loss (Hong et al., 2016). In addition to C1q,
elevated Aβ burden can be mediated through C3, also associated
with NF-κB in AD (Ascolani et al., 2012; Shi et al., 2017). Besides,
CD33 as pivotal genes of microglia reduces phagocytosis, but
TREM2 has a reverse effect (Jiang et al., 2008; Griciuc et al.,
2013). Equally, the peripheral immune cells such as monocytes,
neutrophils, and lymphocytes can promote neuroinflammation
in the progress of AD (Erny et al., 2015). When the monocytes
were deleted in a mice model, it will worsen the AD pathology (El
Khoury et al., 2007). Except for monocyte, neutrophil was proven
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FIGURE 9 | The workflow of analysis.

that its neutrophil extravasation ability and amyloid pathology
were ameliorated by the inhibition of LFA-1 (Zenaro et al., 2015).
In absence of certain lymphocytes (functional B and T cells), Rag2
knockout can decrease Aβ levels in PSAPP AD mice brain (Späni
et al., 2015). Yet, few studies have systematically screened the
biomarkers related to AD immune infiltration and their value in
assessing AD immune infiltration.

In the present study, we used LASSO regression analysis
and the SVM-RFE method to screen out seven potential genes
(ABCA2, CREBRF, CD72, CETN2, KCNG1, NDUFA2, and
RPL36AL). Subsequently, the CIBERSORT algorithm performed
deconvolution analysis on the immune microenvironment to
assess the proportion of the immune cells in AD. What is more,
previous research confirmed the effectiveness of the CIBERSORT
technique (Dai et al., 2018; Mao et al., 2018; Chang et al.,
2020). Besides, the immune cell infiltration scoring model was
built by LASSO regression based on 22 immune cells. GO
semantic similarity and GSEA analysis annotated the profiles
of the seven hub genes. GSEA analysis suggested that there
were considerably abundant genes in diverse immune-related
biological processes and pathways. The RNA characteristics

as indicators of immune cell infiltration in AD patients were
identified through adopting this calculation framework to AD
patient datasets and immune cell lines. Our research combined
with the results of bioinformatics analysis and RT-PCR and
showed that there were significant differences in the samples of
AD patients containing four genes. We found that ABCA2 and
NDUFA2 in the AD group were significantly lower than those in
the control group; CREBRF and CD72 mRNA in the AD patients
had significantly higher mRNA expression level compared to
the control group (Figure 9). Likewise, differential expression
analysis of hub genes in various brain cell types was revealed
(Supplementary Figure 1 and Supplementary Table 1). ABCA2
is rich in the frontal and temporal areas of the AD brain, involving
resistance to reactive oxygen species in the ABCA2 transfected
cell line (Chen et al., 2004). In agreement, it is ranked in the top
3 for both GO similarity analyses. Previous reports have pointed
out that ABCA2 is a key regulator of endogenous APP expression
and AD truncation. In research, CREBRF was proposed as a
novel biomarker using weighted gene co-expression network
analysis (WGCNA) based on a total of 329 samples (Soleimani
Zakeri et al., 2020). Moreover, it has been documented to block
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autophagy through the CREB3/ATG5 pathway in brain tumor
(Xue et al., 2016). Studies showed that CETN2 modulates male
mice infertility or dysosmia and affects embryonic development,
which is regulated by the FGF/FGFR gene expression (Shi
et al., 2015; Ying et al., 2019). CD72 plays a negative role in
the regulation of B-cell activation (Davis, 2010). It is reported
that the combined effects between Sema4D and CD72 induce
immune activation in the central nervous system (Tsubata,
2019). However, the study for CD72 in AD remains poorly
understood. Therefore, we call for further research to better
elucidate this aspect.

Due to the limited number of samples, there is still
a need to confirm these preclinic observations in future
clinic studies for novel biomarkers. Moreover, most AD cases
have other neurodegenerative comorbidities. Similarly, this
phenomenon was also observed in the profile of 1,153 AD
pathologically diagnosed patients acquired from Mayo Clinic
Brain Bank data (DeTure and Dickson, 2019). Compared to
other neurodegenerative diseases, many pathological changes are
highly supportive but not specific to AD. Besides, there are similar
pathological features between various diseases. For example,
Down’s syndrome patients with chromosome 21 trisomy where
APP is located can have Alzheimer-like pathology (Kang et al.,
1987). APOE4, as a common risk factor of AD, also carries certain
morbidity risk for vascular dementia, Down’s syndrome, and
brain injury (Verghese et al., 2011). These will need further study.

CONCLUSION

In this study, the overlap of the LASSO model and the SVM-
RFE algorithm was obtained, and eventually, seven hub genes
were recognized. RT-PCR detected these hub genes’ expression
levels. To understand AD development, the GSEA and GO
analysis of the selected genes supplied a more specific molecular
mechanism. Through carrying out the deconvolution algorithms
on the patient data in the GEO database, this study revealed that
there was distinctness in immune infiltration between the two
groups. So far, the relationship between key genes and immune
infiltration has been little reported. The mechanism of key genes
and immune infiltration-related factors in the diagnosis of AD
remains to be explored.
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