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Abstract: As a member of the fatty acids transporter family, the heart fatty acid binding proteins
(HFABPs) are responsible for many important biological activities. The binding mechanism of fatty
acid with FABP is critical to the understanding of FABP functions. The uncovering of binding-relevant
intermediate states and interactions would greatly increase our knowledge of the binding process.
In this work, all-atom molecular dynamics (MD) simulations were performed to characterize the
structural properties of nativelike intermediate states. Based on multiple 6 µs MD simulations and
Markov state model (MSM) analysis, several “open” intermediate states were observed. The transition
rates between these states and the native closed state are in good agreement with the experimental
measurements, which indicates that these intermediate states are binding relevant. As a common
property in the open states, the partially unfolded α2 helix generates a larger portal and provides the
driving force to facilitate ligand binding. On the other side, there are two kinds of open states for the
ligand-binding HFABP: one has the partially unfolded α2 helix, and the other has the looser β-barrel
with disjointing βD-βE strands. Our results provide atomic-level descriptions of the binding-relevant
intermediate states and could improve our understanding of the binding mechanism.

Keywords: fatty acid binding protein; invisible intermediate states; transition time; binding
mechanism; molecular dynamics simulation

1. Introduction

Intracellular lipid binding proteins (iLBPs) are critical to the transportation of lipid ligands between
tissues and within cells [1–3]. As a member of the iLBP super-family, heart-type fatty acid binding
protein (HFABP) is abundant in the heart and other tissues like skeletal muscle and brain, and it mainly
serves as the transporter of fatty acids from the cell membrane to the mitochondria [4]. The binding
and transporting of fatty acids with HFABP play important roles in the metabolism signaling pathway,
and abnormal function of HFABP can induce many serious diseases, such as coronary heart disease,
myocardial injury, and various neurodegenerative diseases [5].

Similar to the other FABPs, the fatty acid binding pocket of HFABP has an innerβ-barrel, composed
of ten antiparallel β-strands (βA-βJ), capped with two short α-helices (α1 and α2) (Figure 1) [6].
The structures of ligand-binding HFABP (holo-HFABP) obtained in both crystal and solution states are
nearly identical to those of the ligand-free HFABP (apo-HFABP). It is believed that the α1 helix and α2
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helix, along with the βC-βD and βE-βF loops, comprise the dynamic portal which allows the entrance
and existence of fatty acids in the inner binding pocket of FABP [7–9]. However, the detailed ligand
binding mechanisms of FABP remain poorly understood.
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3WXQ). The stearic acid is shown in ball-and-stick form. (C) The overlap of the experimental 
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Two hypothetic models have been proposed to describe the binding process. The “open-and-
close” model supposes that the helical domain and the C-D and E-F loops form a ligand access gate 
[10–12]. When the helices keep away from the loops, the binding gate is open and allows ligands to 
enter or escape. Nevertheless, the “open-and-close” model has been challenged by the lack of 
observation of an open state, with only the “closed” structures characterized by experiments [13,14]. 
In addition, by introducing a disulfide bond formed by two mutated cysteines which were located in 
the α2 (K27C) and E-F β turn (D74C) of human intestinal FABP, Yang et al. studied the FA binding 
ability of gate-blocked FABP. Although the binding affinity was decreased by 10 times, the FABP 
variant still displayed uptake of fatty acids [15]. Based on this observation, as well as the unfolding 
of the α2 helix revealed by hydrogen–deuterium (H–D) exchange experiments, they proposed the 
“local unfolding” model, in which the α2 helix on the FABP would partially unfold and form an open 
gate for ligand uptake and release [15,16]. 

The characterization of the intermediates is therefore important to understanding the binding 
mechanism of ligands to FABP. Relaxation NMR studies have indicated that there are nativelike 
minor states which play a critical role in the process of ligand binding and unbinding [15]. The time 
scale of ligand-binding-relevant conformational exchanges in the portal region of human liver FABP 
is microseconds or even sub-microseconds at room temperature [17,18]. The binding-relevant 
intermediates, which are functionally important in the ligand binding process and are defined by the 
experimentally determined ligand association rate in the native closed state [15], are “invisible” and 
difficult to determine by experimental technologies. For instance, although several minor states of 
human intestinal fatty acid binding protein were observed by combining 15N relaxation dispersion 
(RD) and chemical exchange saturation transfer (CEST) experiments, Yu and Yang found that these 
states are irrelevant to the function of fatty acid transport due to the slow conversion rates from the 
“closed” state to these intermediate states [16]. 

Molecular dynamics (MD) simulation has been widely used to study the structure dynamics of 
FABP and the interactions between these proteins and their ligands [12,19–23]. Tsfadia and coworkers 
successfully observed the entering of a palmitate molecule into toad liver FABP from solution by MD 
simulation, and they concluded that lipid binding is a rapid process once the FABP is open and the 
lipid is in the correct orientation [21]. Yang’s group revealed multiple possible dissociation paths by 
utilizing random expulsion molecular dynamics simulation. The proposed portals were further 
studied by some short MD simulations at 300 K; the outside palmitic acids (PLM) went through the 
portal and entered the FABPs in the several-nanosecond simulations [12]. Matsuoka et al. compared 
the water clusters and H-bond networks inside the binding cavity in apo- and holo-FABP3, and they 
found that ligand binding induced ordered water clusters and stabilized the H-bond network [22]. Li 
et al. studied conversions between the open and closed states of FABP4 and found that the ligand-

Figure 1. Structure of heart fatty acid binding protein (HFABP): (A) The 3D structure of ligand-free
HFABP (apo-HFABP, PDB ID: 3RSW). The dynamic portal region is colored in yellow, and the βD and
βE are colored in blue. (B) The 3D structure of ligand-binding HFABP (holo-HFABP, PDB ID: 3WXQ).
The stearic acid is shown in ball-and-stick form. (C) The overlap of the experimental structures of apo-
and holo-HFABP.

Two hypothetic models have been proposed to describe the binding process. The “open-and-close”
model supposes that the helical domain and the C-D and E-F loops form a ligand access gate [10–12].
When the helices keep away from the loops, the binding gate is open and allows ligands to enter or
escape. Nevertheless, the “open-and-close” model has been challenged by the lack of observation of
an open state, with only the “closed” structures characterized by experiments [13,14]. In addition,
by introducing a disulfide bond formed by two mutated cysteines which were located in the α2
(K27C) and E-F β turn (D74C) of human intestinal FABP, Yang et al. studied the FA binding ability of
gate-blocked FABP. Although the binding affinity was decreased by 10 times, the FABP variant still
displayed uptake of fatty acids [15]. Based on this observation, as well as the unfolding of the α2 helix
revealed by hydrogen–deuterium (H–D) exchange experiments, they proposed the “local unfolding”
model, in which the α2 helix on the FABP would partially unfold and form an open gate for ligand
uptake and release [15,16].

The characterization of the intermediates is therefore important to understanding the binding
mechanism of ligands to FABP. Relaxation NMR studies have indicated that there are nativelike
minor states which play a critical role in the process of ligand binding and unbinding [15]. The time
scale of ligand-binding-relevant conformational exchanges in the portal region of human liver
FABP is microseconds or even sub-microseconds at room temperature [17,18]. The binding-relevant
intermediates, which are functionally important in the ligand binding process and are defined by the
experimentally determined ligand association rate in the native closed state [15], are “invisible” and
difficult to determine by experimental technologies. For instance, although several minor states of
human intestinal fatty acid binding protein were observed by combining 15N relaxation dispersion
(RD) and chemical exchange saturation transfer (CEST) experiments, Yu and Yang found that these
states are irrelevant to the function of fatty acid transport due to the slow conversion rates from the
“closed” state to these intermediate states [16].

Molecular dynamics (MD) simulation has been widely used to study the structure dynamics of
FABP and the interactions between these proteins and their ligands [12,19–23]. Tsfadia and coworkers
successfully observed the entering of a palmitate molecule into toad liver FABP from solution by MD
simulation, and they concluded that lipid binding is a rapid process once the FABP is open and the lipid
is in the correct orientation [21]. Yang’s group revealed multiple possible dissociation paths by utilizing
random expulsion molecular dynamics simulation. The proposed portals were further studied by some
short MD simulations at 300 K; the outside palmitic acids (PLM) went through the portal and entered
the FABPs in the several-nanosecond simulations [12]. Matsuoka et al. compared the water clusters and
H-bond networks inside the binding cavity in apo- and holo-FABP3, and they found that ligand binding
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induced ordered water clusters and stabilized the H-bond network [22]. Li et al. studied conversions
between the open and closed states of FABP4 and found that the ligand-free FABP4 prefers the closed
state [23]. Despite the above progress, we still lack full descriptions of the structural properties of the
binding-relevant states of FABPs. Furthermore, the conformational transition between the open and
closed forms, which is directly related to the ligand binding mechanism, has not been investigated.

In this study, long unbiased molecular dynamics simulations and a Markov state model (MSM)
were employed to study the binding-related intermediate states and kinetic properties of HFABP.
Several open intermediate states were characterized. The transition time from these states to the closed
native state ranged from a few microseconds to hundreds of microseconds, which is consistent with the
experiment estimated transition time. Compared with apo-HFABP, holo-FABP has a larger population
of “closed” native conformations, suggesting that ligand binding stabilizes FABP to the closed state.
Further, the main structural feature of the intermediate of apo-FABP is the partial unfolding of α2,
while the holo-FABP has both α2 unfolding and the separation of βC-βD and βE-βF.

2. Results and Discussion

2.1. Structural Properties

The secondary structures including the α1 helix and all β-strands were well preserved in the
simulations of both apo-HFABP and holo-HFABP (Figure S1). However, the α2 helix, located in the
ligand binding portal, is relatively flexible in both systems. The helicity is lower than 50% for the
C-terminal residues on α2 and is about 65% for the overall α2 helix in apo-FABP. Low helicity in
the C-terminus of the α2 helix was observed in all the simulated trajectories rather than in a single
trajectory, indicating that unfolding of the α2 helix does not appear only occasionally. Ligand binding
would increase the stability of the α2 helix. The helicity of residues on the C-terminus of the α2 helix is
about 60% and the average helicity is 79% for the overall α2 helix of holo-HFABP (Figure 2A). In fact,
the stabilization of secondary structures by ligand binding, especially of the portal region helix, has
been observed in experiments on many members of the iLBD super-family [24].
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Figure 2. Structural properties of hFABP: (A) The helicity of the α1 and α2 helices; the error bars
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The residues colored in red have large conformational entropies, and blue colors correspond to small
entropies. The residues with entropy equal to 0 are colored in gray.

The fraction of native contacts (Q) has been commonly used as a reaction coordinate to describe
the process of folding [25]. We analyzed the distribution of Q for the conformations sampled in our
simulations. For both the apo- and holo-FABP systems, the Q values are distributed in the range of
0.85 to 0.95 (Figure S2), which indicates that the sampling in our simulation is close to the native state,
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instead of the unfolding states. The fraction of residue native contacts (Qi) [26] was calculated to
monitor the nativeness of each residue (Figure 2B). The low Qi values are basically located on the loop
regions, such as the βC-βD loop, βE-βF loop, βH-βI loop, and βI-βJ loop, which indicates that these
loops are much more flexible than others. Besides this, upon the binding of fatty acid, the Qi values for
the residues on the C-terminal α2 helix increase by about 0.2, demonstrating a population shift of the
conformational space toward the folded state induced by ligand binding.

The backbone conformational entropy of each residue is given in Figure 2C. The conformational
entropy is related to the change in mechanical nature of the more rigid and more flexible states
which describe protein stability and function. Except for the terminal residues, most of the residues
with large conformational entropies are located in the ligand entrance portal for both apo- and
holo-HFABP. The residues with entropy greater than 2 cal/mol*K are crowded on the C-terminus of
the α2 helix and the βC-βD loop, indicating large conformational exchanges in the corresponding
regions. The conformational entropies of the residues on the α2 helix of holo-HFABP are smaller than
those on apo-HFABP, which further demonstrates the structure stabilization ability of ligand binding.
Nevertheless, the entropies of residues on βA in holo-HFABP are larger, which might be induced
by the interactions between these residues and the ligand. The low conformational entropies of the
residues on the bottom FABP indicate the structural rigidity of this region. It is unlikely to form an
entrance to enable ligand binding or unbinding in the timescale of our simulation.

2.2. Intermediate States of Apo-FABP

The Markov state model (MSM) method was employed to determine the “invisible” intermediate
states. Five intermediate states were characterized based on clustering on the tICA embedding
space (Figure 3). The occupancies of the five intermediates were 32.8%, 19.4%, 18.7%, 15.5%, and
13.7%, respectively. The representative structures of these states overlapped with the experimental
crystal structure (gray colored) are given in Figure 3. State A3 has the most stabilized secondary
structures and the smallest RMSD from the experimental structure of apo-HFABP; therefore, A3 was
treated as the “closed” state. It should be noted that the C-terminus of α2 in A2 is partially unfolded,
but the Cα chemical shift values of conformations in A2 and A3 are almost identical to each other
(Figure S3). The structural diversities between these intermediates are mainly located in the binding
portal, including the α2 helix, the βC-βD loop, βE-βF loop, and βI-βJ loop, and the most flexible
region was the α2 helix and the loop after it.

The convergence of the slowest relaxation time scales was tested to validate the Markovian
assumption of transitions between the intermediates. The slowest relaxation time scale starts to level
off at about 160 ns; therefore, a lag time was selected to calculate the net effective flux (Figure 4). The
apparent free energy barriers between state pairs were calculated to estimate the transition kinetics.
The apparent free energy barrier is related to the total net flow between two states, which is the number
of transitions from the source to the sink per unit time. The lower the apparent free energy barrier
between two states, the easier transitions occur between these states. The transition barriers between
the “closed” state (A3) and other states are very low (Figure 3), e.g., a free energy barrier of only
2.5 kcal·mol−1 needs to be overcome from state A2 to state A3. Based on the apparent free energy
barriers, the five intermediates can be further divided into two basins: one includes states A1 and A5,
and the other includes A2, A3, and A4. The major structural difference between the conformations in
the two basins is the unstructured level of the α2 helix. In the states A1 and A5, the α2 helix is more
unstructured and results in a larger entrance portal, which indicates that the system needs to overcome
a higher energy barrier to get more open structures for FABP.
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Figure 3. Kinetic network of the intermediates of apo-FABP. The size of each node is proportional to
the population of the corresponding intermediate state. The width of each edge is proportional to
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between the representative structure (yellow) of the states and the crystal structure (gray) are given,
and the regions with large structural differences are shown in red.
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The unfolding of the α2 helix was proposed as the critical step for the ligand binding of FABP.
Although the intermediate states with unfolded α2 have not been directly observed in experiments,
Yang’s group found via H–D exchange experiments that two or three states exist on the α2 region,
and these states might play important roles in the ligand binding process. Based on stopped-flow
experiments and NMR relaxation dispersion experiments, they proposed that the transition rate
between the native “closed” state and the opened state is about 75,000 s−1 (transition time is about
13 µs). To investigate the kinetic transitions between the intermediate observed in this study and
to find out whether the intermediates are related to the ligand binding process, we calculated the
mean first-passage times (MFPT) between the intermediates of apo-HFABP (Table 1). The MFPT is
the average first arrival time from a given source state to the given sink state and has been widely
used in the study of the kinetics of protein folding and conformation exchanges. The MFPTs among
the intermediates of apo-FABP range from several µs to more than 100 µs, which means that fast
conformation exchanges happen between these states. Moreover, the transition times from the closed
state (A3) to the other open states are in the order of dozens of µs, which is consistent with the time
scale of the opening of apo-HFABP observed in experiments. Therefore, the intermediates found in
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our simulations might correspond to the states proposed by Xiao et al. [15], which are relevant to the
binding process and are “invisible” to experiment technologies.

Table 1. The mean first-passage times (MFPTs) between the intermediate states of apo-HFABP (unit: µs).

A1 A2 A3 A4 A5

A1 0 124.87 63.66 124.81 25.84
A2 36.11 0 13.54 76.22 60.47
A3 22.58 61.22 0 62.91 46.94
A4 24.82 64.98 4.0 0 49.08
A5 2.51 125.91 64.69 125.75 0

The unstructured α2 helix would form an entrance to allow the FA ligand to enter and therefore
form an open gate for ligand binding (Figure S4). The side-chain solvent-accessible surface areas
(SASAs) were calculated to characterize the contact probability of residues with outside ligands in
different intermediates. Many residues are more exposed in the “open” states than in the native closed
state, and most of them are located in the portal region (Figure S5). Interestingly, residue R31 interacts
with residue D18 on α1 and is buried in the “closed” conformations; however, the residue stretched
out to the solvent in the “open” states (Figure 5A). This result is consistent with the work by Young
et al., in which they proposed that the positive charge residues on the portal region would attract
the negatively charged terminus of FA and would be the driving force for binding [27]. In addition,
the SASA values of A34 and F58 in the open states are larger than those in the “closed” state A3
(Figure 5B). In the native “closed” state, the hydrophobic residues V33 and A34 on the α2 helix and
F58 on the βC-βD loop are in contact with each other, preventing outside ligands from entering the
binding pocket (Figure 5C). On the other side, the unfolding of α2 in the open states would undermine
the hydrophobic interactions and facilitate ligand binding (Figure 5D).
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Figure 5. The solvent-accessible surface area (SASA) and contact analysis of apo-HFABP: (A) SASA of
Arg31 in different intermediates of apo-HFABP; (B) SASA of Phe58 in different intermediate states;
(C) The hydrophobic interactions between residue F58 and V33/A34 in the “closed” state A3; (D) The
interactions between F58 and V33/A34 were broken in the open intermediate states. The SASAs were
calculated by the gmx-sasa module implemented in Gromacs.

2.3. Intermediate States of Ligand-Binding HFABP

Six intermediate states of ligand-bound HFABP were characterized by MSM analysis (Figure 6).
The largest state, H1, was characterized as the “closed” state since it adopts stable secondary structures
and a similar overall structure to the experimental structure of holo-FABP (the Ca RMSD average over
all conformations in H1 and the experimental structure is 1.62 Å). The population of the “closed” state
of holo-FABP is larger than that of apo-FABP, which is consistent with the hypothesis of ligand binding
shifting the conformational space of FABP to the closed form. Other than the native “closed” state,
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two kinds of intermediates were characterized based on the secondary and tertiary structural features.
Like in apo-HFABP, the α2 helices in the first kind of states of holo-HFABP were partially unfolded
(states H3 and H5). The other kind of state is related to the overall structure distortion (H2, H4, and
H6), especially gap opening between the β-strands βD and βE.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  7 of 13 
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as those in Figure 3.

The six intermediates of holo-FABP can be divided into two basins based on the apparent free
energy barriers (Figure 6). The intermediates H3 and H5, with the unstructured α2 helix, are in the
same basin with the native “closed” state H1. The states H2, H4, and H6, which have the incompact
β-barrel structure, have larger free energy barriers than the “closed” state. The results indicate that
unfolding of the α2 helix is much easier than the gap opening–closing transitions between the β-strands
in the β-barrel.

There are many common structural properties in the apo-form and holo-form of HFABP. For
example, flexible and unstructured α2 regions were observed in both states A1 and H3. The pairwise
RMSDs between the representative structures of intermediates of apo- and holo-form HFABP are given
in Table S1. The low RMSD values between the representative structures (e.g., A1 and H3, A3 and
H1) imply the similarity of these states. The clustering results of all conformations including apo- and
holo-HFABP structures further demonstrate the overlap of the conformational spaces of the apo- and
holo-HFABP (Table S2). In the largest cluster, almost half of the conformations come from apo-HFABP
(48%) and the other half come from holo-HFABP (52%). However, it is hard to make direct connections
between the apo-states and holo-states based on the simulation data in this work. In simulations of the
holo-system, the ligand basically stayed in the binding pocket; therefore, we do not have enough data
to integrate the A states and H states due to the lack of transitions between these states.

The MFPTs between the intermediates of holo-FABP were calculated (Table 2). The transitions
from the “closed” state H1 to the “open” states of holo-FABP are much slower than those for apo-FABP.
The fastest transition leaving state H1 of holo-FABP is to the state H3, but the MFPT is about 7 times
larger than the fastest transition in apo-FABP (i.e., from A3 to A1). This result indicates that ligand
binding would not only shift the conformation population of the “closed” state but would also affect
the free energy barriers between intermediates and the kinetic properties. There are two time scales
from the “closed” H1 state to other states: The first one is from H1 to an α2 partially unfolded state, H3
or H5, and the MFPTs are less than 200 µs. The other is from H1 to H2, H4, or H6, whose βD and βE
are separated, and the MFPTs are more than 600 µs.
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Table 2. The MFPTs between the intermediate states of holo-HFABP (unit: µs).

H1 H2 H3 H4 H5 H6

H1 0 639.15 144.61 616.00 199.05 671.48
H2 74.08 0 41.95 48.47 92.98 103.68
H3 32.12 494.54 0 471.39 54.44 526.87
H4 73.52 71.07 41.40 0 92.07 55.67
H5 33.48 492.49 1.36 468.98 0 524.47
H6 74.54 71.81 42.42 1.20 93.10 0

Allosteric regulation, which happens at the allosteric sites, induces conformational and functional
transitions of proteins [28]. The identification of allosteric sites would greatly promote the discovery
of novel drugs [29,30]. However, the so-called hidden allosteric sites are invisible in experimental
structures and are difficult to detect [31]. It is proposed that the hidden allosteric sites correspond
to the ligand binding sites that emerged in the intermediates but are absent in the native structure.
By analyzing the ligand–protein contact differences between the open intermediates and the crystal
structure, many residues around the binding portal region have high contact probability with ligands
in the open intermediates of HFABP, including L11 (13%), T119 (76%), H120 (31%), A123 (19%), and
V124 (17%). These residues would contribute to the search for allosteric molecules to regulate the
function of FABP.

2.4. Ligand Binding Model

By introducing a disulfide bond linking the α2 helix and the βE-βF loop, Yang et al. built
a cap-closed FABP system. The cap-closed FABP still could bind oleic acids. Stopped-flow experiments
indicated that there are at least two steps in the ligand binding process. The conformational
exchanges between the “closed” and open states of FABP, which happen on a microsecond time
scale, might be the rate-limiting step in ligand binding. Further NMR relaxation dispersion and
hydrogen–deuterium experiments demonstrated the existence of many “invisible” minor intermediates,
and the ligand-binding-relevant open state has structures with local unfolding of the α2 helix [15]

The intermediates revealed by our extended-time simulations are in good agreement with the
experimental data. For ligand-unbound FABP, the α2 helices of the intermediates other than the native
“closed” state are partially unfolded, which is consistent with the H/D exchange experiment data.
On the other hand, gap-open states were not observed in our simulations. Besides this, the transition
times between the “closed” state and the open states with partially unfolded α2 helices revealed in
our study meet with experimental estimations. Ligand binding would slow down the transitions
between the native “closed” state and the open intermediates; however, the MFPTs of these states are
still on a microsecond time scale. Despite the lack of direct evidence, Yang et al. assumed that the
open-to-closed transitions of ligand-bound human intestine FABP are related to the slow step of the
ligand association process, which is in the millisecond time scale. The inconsistency might be caused
by the different types of FABPs studied in the experiment and simulations. The HFABP used in our
simulation has 10-fold higher affinity than the IFABP used in the experiments, which indicates that
HFABP has low free energy barriers in the ligand binding process and faster transition rates between
the intermediates.

Our simulations provided atomic-level structures of the open intermediate states in the ligand
binding process. A hypothetical model was proposed to describe the accessing and releasing process
of fatty acid with HFABP (Figure 7). Based on our results, the transitions from the native “closed”
state of apo-HFABP to the open state are very quick (less than 100 µs), and the open conformations
with unstructured α2 helices have a larger binding cavity which facilitates the binding of fatty
acids. The positively charged residues on the portal region (especially the residue R31) prefer to
stretch out to the solvent, which provides the driving force to bind the negative terminus of the
ligands (Step B). Therefore, the binding of ligands to HFABP might obey the conformational selection
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mechanism. Ligand binding would stabilize the native “closed” structure, which would allow the
transportation of the ligand. There are two kinds of ligand-bound “open” structures, which indicates
that there are two ligand releasing pathways, i.e., the α2 helix partially unfolded pathway (D1 and
D2 steps) and the βD-βE gate open pathway (E1 and E2 steps). It should be noted that our model
only gives possible structure dynamics of FABP in the FA binding and unbinding process; further
elaborate experiments and exhaustive computation studies are still required to uncover the detailed
binding/unbinding mechanisms.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  9 of 13 
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3. Materials and Methods

3.1. Molecular Dynamics (MD) Simulation

All-atom molecular dynamics (MD) simulations were performed on apo-HFABP and holo-HFABP,
respectively. The X-ray experiment structures were used as the initial structure for the MD simulations
of apo-HFABP and holo-HFABP (Figure 1). The experimental X-ray structures of apo-HFABP
and holo-HFABP are almost the same; the root-mean-square deviation (RMSD) between the two
experimental structures is 0.84 Å. The crystallographic water molecules in the initial structures were
removed. The TIP3P water box was built to solvate the protein, and the solute atoms were at least
12.5 Å away from the boundary of the rectangular box. Sodium ions were added as the counter ions
to neutralize the net charge of each system. The AMBER99SB-ILDN force field [32] and the general
amber force field (gaff) [33] were used for the protein and the ligand. The whole system was composed
of protein, ligand, counter ions, and water including 28,613 atoms with a box of 72 × 66 × 75 Å3

and 27,499 atoms with a box of 70 × 66 × 75 Å3 for the simulations of the apo-FABP and holo-FABP,
respectively. The systems were minimized by a 2000-step steepest decent method and a 2000-step
conjugate gradient method, whereas the protein and ligand were constrained with a harmonic force of
100 kcal mol−1 Å−2. Then, the systems were heated up from 0 K to 300 K gradually and equilibrated
without restraint with the volume held constant over 100 ps. Finally, the systems were equilibrated
without restraint for 110 ps with a Langevin thermostat in an NPT (P = 1 atm and T = 300 K) ensemble.
During MD simulations, the particle mesh Ewald (PME) method [34] was adopted to calculate the
long-range electrostatic interactions. The non-bonded cutoff was set to 9 Å, and all bonds involving
hydrogen atoms were fixed to their equilibrium values using the SHAKE algorithm [35]. Finally,
ten MD simulation production runs with a cumulative simulation time of 60 µs were collected by
cuda-version Amber 14 [36]: four 6 µs trajectories for apo-FABP and six 6 µs trajectories for holo-FABP.

3.2. Markov State Model Analysis

To investigate the thermodynamic and kinetic properties of apo-FABP and holo-FABP,
a Markov state model (MSM) was built using the program MSMBuilder3.6 [37] as follows: Firstly,
the conformations of the MD trajectories were transformed into the dihedral angle matrix. Then, using
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time-lagged independent component analysis (tICA) [38], the conformational space was projected
to a four-dimensional space. Based on the tICA embedding, the conformations were clustered into
500 states (microstates) by using the k-means clustering algorithm. The conformations in the same
cluster are geometrically similar and interconvert rapidly. The transition matrix between the microstates
was then constructed using maximum likelihood and Bayesian estimation at a proper lag time (40 ns for
apo-HFABP and 30 ns for holo-HFABP). The implied time scales converged and the transitions between
the microstates become the Markovian process at the lag time we chose (Figure S6). The microstates
were lumped into macrostates by Perron cluster cluster analysis (PCCA+) [39] based on the kinetic
similarities of the microstates. MSMs with five macrostates (intermediate states) and six macrostates
were built for apo-HFABP and holo-HFABP, respectively.

3.3. Apparent Free Energy Barrier

The apparent free energy barriers between the intermediates were calculated by following the
method used in Ref [40]. First of all, the net flux (fij+) between microstate i in a given source macrostate
s and microstate j in a given sink microstate t were calculated as follows:

fi j = πiq−i Ti jq+j (1)

where i and j are nodes (or microstates); Tij is the transition probability between i and j; q+j and q−i are
the forward committor probability and the backward committor probability, respectively; and πi is the
Boltzmann distribution of the microstates. The total net flow leaving the source (S) and entering the
sink (T) was then calculated by summing for all microstates i in S and j in the sink T:

FST =
∑

i∈s, j<s

f+i j (2)

The physical meaning of FST is the effective transitions from the source (reactant) to the sink
(product) during the lag time τ. The apparent free energy barrier between the source and sink (FST

*) is
related to FST by

F∗ST(TPT) = −kBT ln
(

Fst

τ
h

kBT
Ntotal

)
(3)

where h is Planck’s constant, T = 300 K, and the lag time τ is 120 ns for apo-HFABP and 160 ns for
holo-HFABP. Ntotal is the total number of conformations. Then, the pairwise free energy barriers were
used as the edge weights to build the transition networks between the macrostates.

3.4. Mean First Passage Time

The mean first passage time (MFPT) is defined as the averaged first arrival time from the source
state to the sink state [41]. MFPTs can therefore describe the kinetics information of the system. The
MFPT from the microstate i in the source macrostate S to the final sink state T can be calculated as

MFPTiT =
∑
k∈S

T(τ)ik(τ+ MFPTkT) (4)

where T(τ) is the transition probability matrix and τ is the transition lag time of the system; here, τ is
160 ns for apo-HFABP and 120 ns for holo-HFABP. The MFPT between the source state S and the sink
state T can be calculated by

MFPTST =
∑
i∈S

pi ∗MFPTiT (5)

where pi is the normalized population of the microstate i in the source state S.
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4. Conclusions

Atomic MD simulations covering a total of 60 µs were performed on ligand-free HFABP and
ligand-bound HFABP to characterize the “invisible” intermediates near the native structures. All
secondary structure elements except the α2 helix were well preserved in the simulations of both apo-
and holo-HFABP. The transition rates between these intermediate states and the native “closed” state
are in good agreement with the experimental measurements, which indicates that the intermediate
states are binding-relevant states. The orientation change of R31 on the α2 helix might provide the
driving force to attack the ligand to bind with FABP. Ligand binding would stabilize the “closed”
structure of FABP, which would facilitate the transportation of the fatty acids. There are two kinds of
ligand-bound “open” structures, which might relate to different ligand releasing pathways, i.e., the α2
helix partially unfolded pathway and the βD-βE gate open pathway.

Supplementary Materials: It can be found at http://www.mdpi.com/1422-0067/20/14/3476/s1.
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