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Abstract

Antibodies are essential to functional immunity, yet the epitopes targeted by antibody reper-

toires remain largely uncharacterized. To aid in characterization, we developed a generaliz-

able strategy to predict antibody-binding epitopes within individual proteins and entire

proteomes. Specifically, we selected antibody-binding peptides for 273 distinct sera out of a

random library and identified the peptides using next-generation sequencing. To predict

antibody-binding epitopes and the antigens from which these epitopes were derived, we

tiled the sequences of candidate antigens into short overlapping subsequences of length k

(k-mers). We used the enrichment over background of these k-mers in the antibody-binding

peptide dataset to predict antibody-binding epitopes. As a positive control, we used this

approach, termed K-mer Tiling of Protein Epitopes (K-TOPE), to predict epitopes targeted

by monoclonal and polyclonal antibodies of well-characterized specificity, accurately recov-

ering their known epitopes. K-TOPE characterized a commonly targeted antigen from

Rhinovirus A, predicting four epitopes recognized by antibodies present in 87% of sera (n =

250). An analysis of 2,908 proteins from 400 viral taxa that infect humans predicted seven

enterovirus epitopes and five Epstein-Barr virus epitopes recognized by >30% of speci-

mens. Analysis of Staphylococcus and Streptococcus proteomes similarly predicted 22 epi-

topes recognized by >30% of specimens. Twelve of these common viral and bacterial

epitopes agreed with previously mapped epitopes with p-values < 0.05. Additionally, we pre-

dicted 30 HSV2-specific epitopes that were 100% specific against HSV1 in novel and previ-

ously reported antigens. Experimentally validating these candidate epitopes could help

identify diagnostic biomarkers, vaccine components, and therapeutic targets. The K-TOPE

approach thus provides a powerful new tool to elucidate the organisms, antigens, and epi-

topes targeted by human antibody repertoires.

Introduction

Immunological memory allows for rapid antibody responses towards diverse antigens long

after initial exposure. For example, the adaptive immune response to many vaccinations is

often sustained throughout an individual’s lifetime [1]. This immunological information is
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archived within the genes encoding B-cell and T-cell receptors along with the corresponding

receptor structures, but has proven difficult to characterize in a comprehensive manner. The

ability to more fully interrogate immunological memory could reveal exposures to pathogens,

commensal organisms, and allergens. Such information has proven useful for correlating anti-

body responses with disease outcomes to design more effective vaccines [2]. A detailed record

of immune exposures can also facilitate the identification of biomarkers to diagnose infectious

[3], autoimmune [4], and allergic conditions [5]. Furthermore, the capability to broadly char-

acterize antibody repertoires at the epitope level could be used to identify conserved pathogen

epitopes [6] and tumor specific antigen epitopes [7] to aid in therapeutic discovery.

A disease with prominent antibody responses is the common viral infection HSV, which

causes human infections in the orofacial region (“cold sores”) and the genital region (“genital

ulcers”) [8]. In 2012, the global prevalence of HSV1 was 3.7 billion people ages 0–49 [9] and

the global prevalence of HSV2 was 417 million people ages 15–49 [10]. Diagnostic discovery

generally focuses on diagnosing HSV2, since HSV2 infections can exacerbate HIV infections

[10]. However, HSV1 and HSV2 contain the same genes [11] and the protein-coding regions

of the HSV1 and HSV2 genomes share 83% sequence homology [12]. Therefore, researchers

have often analyzed HSV glycoprotein G, since it differs substantially between the two HSV

species [13]. In general, efforts have been limited to analyses of the surface-exposed envelope

glycoproteins [14–17], using approaches such as microarrays [18]. Therefore, it would be

novel to probe immunological memory using the entire proteomes of HSV1 and HSV2.

Immunological memory has been investigated extensively through sequencing the variable

regions of B- and T-cell receptor encoding genes amplified from circulating cells [19]. These

methods have proven useful for identifying receptor-encoding genes that associate with vacci-

nation [20]. Nevertheless, such genetic information has not generally provided insight into the

specific environmental antigens and epitopes targeted, unless they are known a priori. Further-

more, these methods require large specimen volumes (>10 mL) to obtain a sufficient quantity

of cells [20]. Thus, there remains a need for methods that identify the diverse antigen targets of

adaptive immunity.

Several methods have been developed to profile the protein epitopes of the secreted anti-

body repertoire [21]. Approaches have often focused on linear epitopes since 85% of epitopes

contain at least one contiguous stretch of five amino acids [22]. By analyzing linear epitopes,

researchers have identified sensitive and specific diagnostic epitopes for numerous diseases

[21]. One common approach to epitope mapping is to generate short overlapping peptides by

tiling candidate antigens. These peptides are then assayed for serum antibody reactivity in pep-

tide microarray [23] or bacteriophage display library [24] formats. However, because these

methods are biased towards specific organisms, they do not enable comprehensive or hypothe-

sis-free immune evaluation. One strategy to overcome the limitations of tiling experiments is

to use fully random peptide libraries [5,25,26]. Here, experiments are less biased and methods

can analyze epitopes corresponding to a variety of organisms and antigens. A disadvantage of

microarrays is that they are typically several orders of magnitude less diverse than peptide dis-

play libraries (e.g. 105 [25] versus 1010 [5]), limiting the effectiveness with which current meth-

ods can achieve epitope discovery for low titer antibodies. In random library experiments,

epitopes are typically discovered using de novo motif discovery by unsupervised clustering

[27]. The most widely used algorithm for this purpose, MEME, scales approximately quadrati-

cally with the number of input sequences, making it less useful for analyzing large datasets

resulting from next generation sequencing (NGS). While full-length antibody-binding pep-

tides can be analyzed, the majority of the binding energy is typically derived from just 5–6

amino acids [28], thus other amino acids within the peptide will contribute noise. To rectify
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this problem researchers developed the IMUNE algorithm to reduce peptide datasets into sta-

tistically enriched patterns and cluster these patterns to build motifs [29].

A significant challenge for epitope mapping approaches is the association of epitopes and

motifs with their corresponding antigens. Neither MEME nor IMUNE have the integrated

capability to connect motifs to plausible antigens. Also, motifs identified through these meth-

ods often fail to reach the seven amino acids requirement for unambiguous identification of

antigens within the full database of protein sequences [30]. Fundamentally, linear stretches in

epitopes are typically less than seven amino acids in length [22], therefore, protein database

searches of individual epitopes (such as through BLAST [31]) often fail to achieve statistical

significance. Using multiple epitope matches within a single candidate antigen can increase

the confidence of antigen prediction [26,32]. However, this method is insufficient for antigens

with a single important epitope. Additionally, protein database searches are conducted using

short amino acid sequences, therefore these searches do not fully leverage large quantitative

binding datasets. To address these challenges, we present a general approach for associating

epitopes with antigens using large peptide datasets. The K-mer Tiling of Protein Epitopes

(K-TOPE) algorithm identifies epitopes by computationally tiling candidate antigens into k-

mers, which are then evaluated within large datasets of antibody-binding peptides. Here, we

demonstrate the utility of this approach by predicting linear epitopes within the proteomes of

several prevalent infectious pathogens.

Results

To enable the prediction of protein epitopes bound by serum antibodies, we developed a

method that uses a database of antibody-binding peptides to predict epitopes in known protein

sequences (Fig 1). First, we selected peptides binding to an individual antibody repertoire

within a specimen (serum or plasma) from a bacterial display peptide library with 1010 random

12-mer members. Then, we identified antibody-binding peptide sequences using NGS. To

allow for the manipulation of 205 (3.2 million) k-mers rather than full-length peptides, we pro-

cessed peptides into subsequences and evaluated the enrichments of all k-mers of length 5

[29]. We chose 5-mers because virtually all 5-mers were found in the peptide library at least

once (S1 Text). Next, K-TOPE tiled candidate antigen sequences, such as from a proteome,

into overlapping k-mers. K-TOPE used the enrichment values for these k-mers to construct an

enrichment histogram across the length of each protein sequence. The frequency value at each

sequence position in the histogram was proportional to the enrichment of k-mers that

included that position. Specifically, for all k-mers overlapping a position, we summed the log

base 2 of the k-mer enrichment. Thus, higher frequency values at a position in a protein

sequence corresponded to a greater probability that a position was included in an epitope. All

subsequences between two minima in the histogram with non-zero frequency values were con-

sidered “potential epitopes”. These potential epitopes were scored based on the area under the

curve (AUC). Next, potential epitopes were assigned an “epitope percentile” based on the rank

of the epitope’s AUC score in a list of AUC scores generated by analyzing random proteins.

Finally, a threshold was set on the epitope percentile to determine whether an individual epi-

tope was considered bound or simply noise. For this study an epitope percentile threshold of

95% was used, which corresponds to a p-value of 0.05. The prevalence of each epitope was cal-

culated as the proportion of specimens that bound the epitope.

To assess the utility of K-TOPE, we first determined epitopes for monoclonal and polyclonal

antibodies that bind specific, well-defined epitopes in cMyc, V5, and amyloid beta. We spiked

these antibodies into serum at a final concentration of 25 nM and then selected and identified

binding peptides. K-TOPE predicted epitopes that had greater than 60% overlap with the
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Fig 1. K-TOPE determines epitopes by tiling proteins into k-mers. (A) The input to the algorithm is a dataset of

approximately 106 peptides that were bound by serum antibodies. (B) All 5-mers are evaluated for their enrichment in

the list of peptides. (C) A portion of a protein sequence is tiled into 5-mers which are weighted by their enrichment.

This determines a “frequency” value for each position in the sequence. (D) The frequency value for each position in a

protein sequence is plotted as a histogram. Possible epitopes are highlighted in pink on the graph. Epitope sequences,

area under the curve (AUC) scores, and significance percentiles are displayed.

https://doi.org/10.1371/journal.pone.0217668.g001
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previously reported epitopes of these antibodies (Fig 2). Importantly, the enrichment histo-

grams generated by antibodies spiked into background serum or buffer were nearly identical

(S1 Fig), suggesting that the noisy serum environment minimally affected epitope

identification.

To predict “public epitopes” conserved across many individuals, epitopes were predicted

for each specimen individually and then clustered. Although many private epitopes were pre-

dicted for each specimen in this process, we focused on the far smaller set of public epitopes to

facilitate comparison with previous literature. Given the ubiquity of exposure to the upper

respiratory pathogen Rhinovirus A, we validated the approach by predicting epitopes within its

genome polyprotein. The true epitope percentile indicative of antibody binding and the true

prevalence suggesting clinical relevance vary by antibody and the determination of the optimal

values of these parameters would require additional experimental validation. However, for the

purposes of this study, the epitope percentile threshold (S2 Fig) and prevalence (S3 Fig) were

varied and an epitope percentile threshold of 95% and a prevalence of 30% were chosen. These

values were chosen to ensure that the total number of epitopes predicted was of order one with

the goal of decreasing the inclusion of false positives. Using a unique set of 250 serum speci-

mens, we predicted four epitopes within Rhinovirus A that were targeted by 30% or more of

the specimens (Fig 3A). Of the 250 specimens, 87% exhibited binding to at least one of these

consensus epitopes (Fig 3B). Three of these epitopes were located within positions 570–620

(Fig 3C), in the antigenic attachment region of VP1. A fourth epitope within the VP2 region of

the Rhinovirus A genome polyprotein was targeted by 43% of the population.

To assess trends in the population, each specimen was assigned into one of 16 groups based

on which of the four Rhinovirus A epitopes were bound (Fig 3D). Notably, epitope binding

was not independent, since 5 of the 16 groups of specimens were at least 50% larger than

expected and the group targeting epitopes ‘1+3’ was 60% smaller than expected (S1 Table).

The average age of the subset of specimens of known age (n = 138) was 35 years. However, the

specimens targeting 3 or more epitopes had an average age of 17, which was approximately

50% lower than the average age of 35 and the epitope group targeting none of the epitopes had

an average age of 52, which was approximately 50% higher than average age of the population

(S2 Table). Thus, people who targeted fewer Rhinovirus A epitopes tended to be older.

Fig 2. K-TOPE found epitopes for antibodies with known specificity spiked into serum. Histograms for antibodies with known specificity against amyloid beta

(P05067), cMyc (P01106), and V5 (P11207) had prominent epitopes with epitope percentiles> 99.9% (in pink). (A) K-TOPE analysis of amyloid beta determined the

epitope VKMDAEFRHD (668–678). This antibody was raised to whole protein and is known from literature to have a conformation-specific discontinuous epitope

that maps to segments EFRHDSGY (673–680) and ED (692–693). (B) K-TOPE analysis of cMyc determined the epitope EEQKLISEEDLLRKR (408–422). This

antibody was raised to AEEQKLISEEDLLRKRRE (407–424). (C) K-TOPE analysis of V5 determined the epitope PIPNPLLGLDS (96–106). The antibody was raised to

GKPIPNPLLGLDST (94–107).

https://doi.org/10.1371/journal.pone.0217668.g002
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To establish whether these Rhinovirus A epitopes were strain-specific, we predicted epitopes

using KTOPE for 43 different Enterovirus strains (S3 Table). The epitopes predicted for these

Enterovirus strains were similar to the 4 epitopes predicted in Fig 3, as illustrated by bands in

the heat map showing the positions of each epitope (S4 Fig) Epitopes 1, 2, and 4 from Fig 3

were only found in Rhinovirus, whereas epitope 3 from Fig 3 was found in many Enterovirus
strains. These results suggest that the epitopes predicted for Rhinovirus A may be relevant to

multiple other Enterovirus strains.

Next, we investigated the utility of using K-TOPE to predict epitopes within a set of 2,908

proteins from 400 viral taxa with human tropism. This approach yielded 29 epitopes that were

bound by at least 30% of all specimens (Table 1). Some of these epitopes have been reported

previously [6,33–35]. Thus, a modest number of prominent linear viral epitopes were bound

by>30% of the specimens analyzed. A common antigen identified from this analysis was

Epstein-Barr nuclear antigen 1 (EBNA1) from Epstein-Barr virus (EBV), which is expressed in

EBV-infected cells [36]. Additionally, the epitopes predicted for the enterovirus genus were

Fig 3. K-TOPE predicted four epitopes in the Rhinovirus A genome polyprotein. (A) K-TOPE was applied to the Rhinovirus A genome polyprotein (P07210) for

250 specimens. Histograms for all specimens are shown as rows in a heat map. The specimens have been clustered such that specimens that bind the same epitopes are

adjacent. Regions that contain epitopes are outlined by dotted lines. (B) A table of the percentage of the population that bound each epitope. (C) The region from

positions 570–620 is divided into 3 sections that correspond to distinct epitopes. These epitopes are consensus epitopes which were present in>30% of the 250

specimens. (D) Bar graph showing membership in different epitope groups. For example, a specimen that binds epitopes 2 and 3 will belong to epitope group “2+3”. In

this population, 87% of the specimens bound at least one of the consensus epitopes. The sequences of the epitopes were 1: QNPVENYI, 2: DSVLEVLVVPN, 3:

APALDAAETGHT, and 4: NHTHPGEQG.

https://doi.org/10.1371/journal.pone.0217668.g003

Predicting protein epitopes targeted by antibody repertoires using whole proteomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217668 September 6, 2019 6 / 24

https://doi.org/10.1371/journal.pone.0217668.g003
https://doi.org/10.1371/journal.pone.0217668


consistent with the epitopes predicted for Rhinovirus A, which is a species in that genus

(Fig 3). Several of the epitopes were likely due to false discovery (e.g., Mayaro virus and Lyssa-

virus), since these viruses are uncommon in a general population. There is an intrinsic lower

limit on false positives since antibodies only bind 5–6 amino acids, which is not enough infor-

mation to uniquely specify a protein subsequence. This limitation is especially pronounced

among evolutionarily related proteins in closely related species. To decrease the incidence of

false positives, K-TOPE should only be used to analyze biologically relevant proteins. Ulti-

mately, the epitopes predicted by K-TOPE require experimental validation to eliminate spuri-

ous results.

We performed a similar analysis for the proteomes of the genera Streptococcus and Staphy-
lococcus, which are common bacterial human pathogens with 2,976 and 3,071 proteins in their

respective proteomes. K-TOPE was used with each of these proteomes to determine epitopes

bound by >30% of a population of 250 specimens, yielding 9 epitopes for Streptococcus and 13

epitopes for Staphylococcus (Table 2). The epitope LIPEFIG(R) in ATP-dependent Clp

Table 1. A collection of 29 viral epitopes to which>30% of 250 specimens bound.

Epitope Protein Taxon Accession Prevalence

DSVLNEVLVVPN Genome polyprotein Enterovirus P07210 0.668

PALTAAETG Genome polyprotein Enterovirus Q66575 0.588

GRRPFFHPV Epstein-Barr nuclear antigen 1 Epstein-Barr virus (strain GD1) Q1HVF7 0.524

AGAGGGAGA Epstein-Barr nuclear antigen 1 Epstein-Barr virus (strain GD1) Q1HVF7 0.516

KYTHPGEA Genome polyprotein Enterovirus Q82122 0.492

VRRPFFSD Protein UL84 Human cytomegalovirus P16727 0.452

NPVERYVDE Genome polyprotein Enterovirus Q82122 0.428

MVVPEFK DNA-binding protein Human mastadenovirus C P03265 0.428

EVKLPHWTPT Glycoprotein 42 Epstein-Barr virus (strain GD1) P03205 0.42

KPQPEKPK Structural polyprotein Mayaro virus Q8QZ72 0.416

GGAGAGGAGAGGG Epstein-Barr nuclear antigen 1 Epstein-Barr virus (strain GD1) P03211 0.412

ININRPLE Large structural protein Lyssavirus Q9QSP0 0.412

RPSCIGCKG Epstein-Barr nuclear antigen 1 Epstein-Barr virus (strain GD1) P03211 0.404

GAGAGAGGG Packaging protein UL32 Simplexvirus P89455 0.376

LEEVIVEKTK Genome polyprotein Enterovirus Q82081 0.352

KHTHPGI Replication origin-binding protein Human herpesvirus 3 P09299 0.352

AETGHTNKI Genome polyprotein Enterovirus Q82122 0.344

YVFPHWITK Envelope glycoprotein gp63 Primate T-lymphotropic virus 3 Q0R5Q9 0.34

KTTNTTTNT Immediate-early protein 2 Roseolovirus Q9QJ16 0.34

MAADKPTL Genome polyprotein Murray Valley encephalitis virus P05769 0.34

SFIVPEFA Virion membrane protein A16 Orthopoxvirus P16710 0.332

LVLPHWYMA Cytoplasmic envelopment protein 1 Simplexvirus P89430 0.328

YVDDMLNDI Large tegument protein deneddylase Human herpesvirus 6A (strain Uganda-1102) P52340 0.328

SSGPKHTQKV Genome polyprotein Enterovirus P03303 0.324

PVPEFQA Non-structural polyprotein Semliki forest virus P08411 0.316

VPVTPNIAI Genome polyprotein Hepatitis C virus Q68749 0.304

LHRPALTA Minor capsid protein L2 Human papillomavirus type 34 P36758 0.304

EHILNRPTG RNA-directed RNA polymerase L Crimean-Congo hemorrhagic fever orthonairovirus Q6TQR6 0.304

GEFIGSE Shutoff alkaline exonuclease Human herpesvirus 8 Q2HR95 0.3

K-TOPE was used to analyze 2,908 proteins from viruses with human tropism. This search demonstrated that only a few prominent linear viral epitopes were bound by

a large proportion of the population.

https://doi.org/10.1371/journal.pone.0217668.t001
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protease ATP-binding subunit ClpX was the most prevalent Streptococcus epitope and second

most prevalent Staphylococcus epitope. Therefore, K-TOPE could not determine which genus

generated this epitope. The most prevalent Staphylococcus epitope was PTHYVPEFKGS from

extracellular matrix protein-binding protein emp, which is a known virulence factor [37]. For

Streptococcus, the second most prevalent epitope was GQKMDDMLNS from the highly anti-

genic Streptolysin O protein [38]. This epitope falls within a 70 amino acid range in Streptoly-

sin O that is known to bind antibodies [39]. The sequence “DKP” was present in 5/9

Streptococcus epitopes and the sequence “PEFXG” was present in 6/13 Staphylococcus epitopes

(Table 2). Therefore, there are multiple candidate antigens that may correspond to these highly

enriched sequences.

We searched IEDB ([40]) to determine which of the 51 viral and bacterial epitopes pre-

dicted by KTOPE were previously identified (S4 Table). Twelve of the 51 epitopes were similar

to epitopes found in prior studies ([6,23,33,35,39,41–45]). However, 30 of the epitopes were in

proteins with no reported epitopes, and 3 epitopes were in organisms with no reported epi-

topes. Only 6 of the epitopes were in well-characterized proteins but were not found in the lit-

erature, suggesting that these epitopes were false positives or novel epitopes. Additionally, only

two bacterial epitopes were in previously described proteins, suggesting that the remainder of

the bacterial proteins were false positives or novel antigens. Literature validation is shown in

Fig 4 for the viral proteins EBNA1 from EBV and the Poliovirus 1 genome polyprotein, as well

as the bacterial protein Extracellular matrix protein-binding protein emp from Staphylococcus.

Table 2. Epitopes in the proteomes of the genera Staphylococcus and Streptococcus which were bound by>30% of 250 specimens.

Epitope Protein Accession Prevalence

Streptococcus
LIPEFIGR ATP-dependent Clp protease ATP-binding subunit ClpX P63793 0.512

GQKMDDMLNS Streptolysin O Q5XE40 0.436

QIPALDKPL FMN-dependent NADH-azoreductase A4W2Z7 0.416

IADKPILD UPF0154 protein SSU05_1707 A4VX34 0.392

TVADKPVA Phenylalanine- -tRNA ligase beta subunit Q5XCX3 0.360

RTPDKPT Agglutinin receptor P16952 0.324

VVPNIWR Putative 2-dehydropantoate 2-reductase P65666 0.320

LLNRPIHD CCA-adding enzyme Q5M153 0.320

TLADKPEF Autolysin P06653 0.308

Staphylococcus
PTHYVPEFKGS Extracellular matrix protein-binding protein emp Q2FIK4 0.572

LIPEFIG ATP-dependent Clp protease ATP-binding subunit ClpX B9DNC0 0.508

NKPEFSGAT 3-isopropylmalate dehydratase small subunit Q4L7U3 0.436

NKNNKNNKN Translation initiation factor IF-2 Q4L5X1 0.372

KLGNIVPEYK Extracellular matrix protein-binding protein emp P0C6P1 0.360

KLCRICFRE 30S ribosomal protein S14 type Z Q5HM12 0.352

DFLNRPVD Proline- -tRNA ligase Q4L5W5 0.348

EKNNNNNNNNS Alkaline shock protein 23 Q4L860 0.320

GVVPNISR UvrABC system protein A Q5HHQ9 0.312

LIPEFNQV Homoserine kinase Q8CSQ2 0.308

SPEFLGSQ Undecaprenyl-diphosphatase B9DK59 0.308

VGINRPTY Putative glycosyltransferase TagX O05154 0.308

VIPEFNND Peptide chain release factor 2 Q4L4H9 0.300

K-TOPE was used to analyze 2,976 proteins from Streptococcus and 3,071 proteins from Staphylococcus.

https://doi.org/10.1371/journal.pone.0217668.t002
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In these cases, K-TOPE found prominent peaks in the histograms that corresponded to

reported epitopes (Fig 4) [6,33,35,45]. Additionally, K-TOPE identified an immunogenic

region of GA-repeats from positions 100–350 in the analysis of EBNA1 [23]. We used a non-

parametric statistical test to assign significance to the overlap between K-TOPE epitopes and

known epitopes. Using this method, all epitopes evaluated using K-TOPE had P-values below

0.05 (Fig 4C).

Fig 4. Epitopes predicted through proteome searches were validated using literature-reported epitopes. In (A), (B), and (C), histograms are shown for typical

individual specimens (epitopes with percentiles> 99.7% are highlighted in pink). To the right of the histogram is a heat map for 250 specimens. For (A), there is a

region of antigenic GA-repeats from positions 100–350. The table in (D) provides the statistical significance of agreement between literature epitopes and K-TOPE

epitopes for the labeled peaks in (A), (B), and (C). The UniProt accessions used for this analysis were P03211 for EBNA1, Q8NXI8 for extracellular matrix protein-

binding protein emp, and P03300 for Poliovirus 1 Genome Polyprotein. Statistical tests where epitopes with>50% GA content were removed are denoted by an

asterisk “�”. All predicted epitopes had p-values below 0.05.

https://doi.org/10.1371/journal.pone.0217668.g004
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To predict HSV species-specific epitopes, we analyzed 12 HSV2 specimens and 10 HSV1

specimens. Since these viruses share many of the same proteins in their proteomes [11], HSV1

specimens were appropriate controls for HSV2 specimens and vice-versa. To begin, we pre-

dicted species-specific epitopes in glycoprotein G, which is a protein that varies significantly

between the two species (Fig 5) [46]. There was a single HSV1 epitope, PMPSIGLEE, bound by

40% of HSV1 specimens and a single HSV2 epitope, GGPEEFEGAGD, bound by all HSV2

specimens. This HSV2-specific epitope aligned well with previous epitopes found for glycopro-

tein G2 [13,47,48] (Table 3). Also, this epitope has been validated as an HSV2-specific diagnos-

tic [49,50]. The HSV1-specific epitope was also similar to the previously reported epitope

DHTPPMPSIGLE [18]. Interestingly, the two HSV-specific epitopes terminated in an identical

7-mer sequence EGAGDGE (PMPSIGLEEEEEEEGAGDGE and GGPEEFEGAGDGE) [47].

This suggests that the regions containing these epitopes may be evolutionarily or structurally

related targets of the immune system.

To predict candidate HSV species-specific epitopes, we analyzed the HSV1 and HSV2 pro-

teomes. We predicted 30 HSV2-specific epitopes that were 100% specific with

Fig 5. K-TOPE predicted epitopes for glycoprotein G1 using HSV1 specimens and for glycoprotein G2 using HSV2 specimens. For glycoprotein G1, a

representative histogram for a single specimen is shown in (A) and a heat map for all HSV1 specimens is shown in (C). For glycoprotein G2, a representative

histogram for a single specimen is shown in (B) and a heat map for all HSV2 specimens is shown in (D). There was a single epitope predicted for each protein.

Epitopes with percentiles> 97% are highlighted in pink.

https://doi.org/10.1371/journal.pone.0217668.g005

Table 3. Alignment of an HSV2-specific glycoprotein G2 epitope with previously reported epitopes.

Peptides Reference

G G P E E F E G A G D K-TOPE

P E E F E G A G D G E P P E D D D S G [13]

P P P P E H R G G P E E F E G A G D G E P P E [47]

A P P P P E H R G G P E E F E G A G D G [48]

https://doi.org/10.1371/journal.pone.0217668.t003
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prevalence > 30% (Table 4). Notably, 11 of these epitopes were bound by all HSV2 specimens.

K-TOPE predicted a glycoprotein C epitope PRTTPTPPQ with 83% prevalence which was

contained in a previously identified epitope RNASAPRTTPTPPQPRKATK [18]. In contrast

to the numerous HSV2-specific epitopes, only 4 HSV1-specific epitopes were predicted, and

the highest prevalence achieved was only 40% (Table 5). One of these epitopes, RIRLPHI, over-

lapped with the previously identified epitope HRRTRKAPKRIRLPHIR [51] in the well-

described antigen glycoprotein D [17]. One possible explanation for the discovery of fewer

HSV1-specific epitopes is that the HSV2 specimens had high IgM levels, whereas the HSV1

specimens had high IgG levels. Since high IgM levels occur with severe recurrent herpes infec-

tions [52], we would expect the high IgM HSV2 sera to yield more epitopes.

We sought to determine whether the HSV2-specific epitopes were contained in proteins

that differed between the HSV species [46]. We determined 8 HSV2-specific epitopes with

sequences that were contained in both HSV proteomes (S5 Table). Our analysis suggested that

these epitopes were only targeted by HSV2 specimens, despite their presence in the HSV1

Table 4. HSV2-specific epitopes were predicted.

Epitope Protein Accession Prevalence

GGPEEFEGAGD Envelope glycoprotein G P13290 1

PLYARTTPAKF Tegument protein UL47 P89467 1

VDSQRLTPGGSVS Tegument protein UL21 P89444 1

KARKKGTSAL Envelope glycoprotein B P08666 1

TPLRYACVL Tegument protein UL47 P89467 1

ANSPWAPVL mRNA export factor P28276 1

RYSPLHN Envelope glycoprotein B P08666 1

EAMLNDAR Large tegument protein deneddylase P89459 1

QRLTPH Large tegument protein deneddylase P89459 1

LRYTPAGEV Envelope glycoprotein H P89445 1

RTPSMR Major viral transcription factor ICP4 homolog P90493 1

LATNNA Small capsomere-interacting protein P89458 0.917

LRTNNL Ribonucleoside-diphosphate reductase small subunit P69521 0.917

PRTTPTPPQ Envelope glycoprotein C Q89730 0.833

HRLYAVVA Inner tegument protein P89460 0.833

PSTPAMLNLG Ribonucleoside-diphosphate reductase large subunit P89462 0.667

VTKHTALCAR Large tegument protein deneddylase P89459 0.583

TRDYAGL Envelope glycoprotein I P13291 0.583

RLTVAQ Envelope glycoprotein I P13291 0.583

RSLGIA Protein UL20 P89443 0.583

IRDLARTFA Thymidine kinase P89446 0.5

DITAKHRCL Major capsid protein P89442 0.5

ETPAQPPRY Capsid scaffolding protein P89449 0.5

VSGITPTQ Tripartite terminase subunit 1 P89451 0.5

HEELYYGPVS Tegument protein VP22 P89468 0.417

IQDLAYAIV Ribonucleoside-diphosphate reductase large subunit P89462 0.417

GPAQRHTY DNA polymerase catalytic subunit P89453 0.417

YFEEYAYS Envelope glycoprotein B P08666 0.417

LDDFDL Tegument protein VP16 P68336 0.417

AARLIDALYAEFLGG Envelope glycoprotein H P89445 0.333

A total of 30 epitopes were predicted that were 100% specific against HSV1.

https://doi.org/10.1371/journal.pone.0217668.t004
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proteome. Thus, even sequences that are conserved between species could serve as species-spe-

cific targets.

Since HSV1 is common in the general population, we were interested in identifying similar-

ities in the epitopes predicted using the HSV1 specimens (Table 5) and the 250 specimens.

Through this analysis we predicted 30 epitopes that were found in at least 10% of the 250 speci-

mens (S6 Table). Notably, epitope 1 (FVLPHWYM) contains the 3-mer LPH which is also in

the first epitope of the HSV1-specific epitopes, RIRLPHI (Table 5). Additionally, epitope 21

(PMPSLTA) contains the 4-mer PMPS which is also in epitope 2 of the HSV1-specific epi-

topes, PMPSIGLEE. A nearly exact match was found for epitope 18 (AAFVNDYS), which is

highly similar to epitope 3 in the HSV1-specific epitope list, CAAFVNDYSLV. Thus, 3 of the 4

epitopes discovered from an HSV1-infected population had similarities to epitopes found

using a general population. Additionally, 3 of the 4 antigens predicted from analyzing the 250

specimens were also predicted using the HSV1-infected specimens (major capsid protein,

envelope glycoprotein G, and envelope glycoprotein D). Fewer epitopes were identified for the

HSV1-infected specimens than the 250 specimens due to the group size disparity (10 speci-

mens vs 250 specimens) and since the epitopes predicted from the HSV1-infected specimens

used HSV2-infected specimens as controls. Although the prevalence of HSV1 is nearly 50%

[9], we did not find epitopes with a prevalence this high, likely because there are a variety of

HSV1 epitopes that collectively indicate a prevalence of 50%. Hence, individual epitopes may

only have prevalence values of 10–30%.

Discussion

Here, we present a generalizable methodology for predicting epitopes within candidate immu-

nogenic proteins. By tiling proteins into k-mers and evaluating those k-mers in a database of

antibody-binding peptides, we determined epitopes for individuals and a population. Impor-

tantly, we have demonstrated that K-TOPE can predict disease-specific epitopes and antigens.

One of the main features of this approach is that it combines k-mers to determine composite

epitopes that may not explicitly exist in the peptide dataset. Another important element is

using an antigen sequence to predict epitopes, thereby surmounting the 7 amino acid require-

ment for successful antigen identification [30].

The K-TOPE approach to epitope mapping differs from reported methods in several

important ways. While proteome-derived peptide libraries have been used to predict disease-

specific epitopes [33,53], these methods lack the flexibility to examine multiple proteomes. For

instance, separate libraries would be required to analyze both HSV1 and HSV2. Even a library

that contains peptides spanning all viral proteomes cannot easily be extended to much larger

bacterial or parasitic proteomes [24]. A disadvantage of microarrays is that they have far lower

5-mer coverage (~27% [32]), than surface display (~100%) which could limit the application of

k-mer approaches. Other algorithms have been developed that predict binding motifs in

Table 5. HSV1-specific epitopes were predicted.

Epitope Protein Accession Prevalence

RIRLPHI Envelope glycoprotein D Q69091 0.4

PMPSIGLEE Envelope glycoprotein G P06484 0.4

CAAFVNDYSLV Major capsid protein P06491 0.3

EMADTFLDT ICP47 protein P03170 0.3

Only 4 epitopes were predicted that were 100% specific against HSV2.

https://doi.org/10.1371/journal.pone.0217668.t005
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peptide datasets, but they lack the integrated capability to connect motifs to protein antigens

[54,55]. Also, the direct method of aligning peptides to sequences becomes computationally

infeasible with a large number of peptides and candidate antigens [56].

The heterogeneity of experimental approaches complicates the validation of putative epi-

topes and their associated antigens. The Immune Epitope Database (IEDB) has an all-inclusive

representation of information [57], which may not reflect important distinctions in experi-

mental platforms, specimens, and data analysis techniques. For instance, there are likely

numerous false positive epitopes for highly studied organisms and few identified epitopes for

poorly studied organisms. Also, there is a lack of quantitative data reported for epitopes [58],

such as the proportion of a given population that binds an epitope. To address this lack of

information, we first used K-TOPE to analyze specimens for responses to common pathogens

in a general population. This allows newly predicted “public epitopes” to be benchmarked by

nearly any set of serum specimens. We required that a proportion of the population bind an

epitope to reduce false positives. Although analysis of the variation in private epitopes could be

valuable for understanding the variation in immune responses, it would complicate validation.

We determined public epitopes in Rhinovirus A and showed that people who targeted fewer

Rhinovirus A epitopes tended to be older, perhaps due to immunosenescence [59], reduced

pathogen exposure, or a lower incidence of rhinovirus infections [60]. With a diverse group of

specimens, it was possible to confirm that the RRPFF epitope in EBV’s protein EBNA1 is a

very commonly targeted epitope [33]. Since the specimens used to determine public epitopes

were not assayed for responses to pathogens, acute and chronic infections could not be readily

distinguished from prior infections. These public epitopes could be further validated using

specimens with acute infections or using longitudinal studies to determine if these epitopes

appear upon vaccination [61]. We did not find epitopes corresponding to measles or rubella

vaccination, which is consistent with a recent study that comprehensively predicted viral epi-

topes [62]. This implies that for these viruses, high titer antibodies targeting linear epitopes

may not be present. For HSV1 and HSV2, we determined whether an epitope was specific by

analyzing specimens infected by both virus species. Unexpectedly, we demonstrated that even

epitopes present in the conserved regions of both species’ proteomes could be species-specific.

The difference in binding was likely due to differences in the structure and post-translational

modifications of the proteins. For the HSV analysis, we validated epitopes using previous stud-

ies, however, it was difficult to know a priori whether a non-validated epitope was novel or

spurious. In general, since studies use different specimens, experiments, and computational

analyses, it is unlikely for the epitopes of two studies to completely coincide.

K-TOPE provides a new tool for identifying diagnostic biomarkers, vaccine components,

and candidate therapeutic targets. This approach could be used in the iterative process of

designing a vaccine, since it would be useful to know which epitopes are elicited in a popula-

tion by vaccination. Vaccine formulation could be altered to maximize the percentage of the

population that targets epitopes associated with a positive disease outcome [2]. K-TOPE could

also enable the development of diagnostics that assign disease based on the presence of epi-

topes. Since this method only involves a single experimental screen, in principle multiple dis-

eases could be simultaneously diagnosed [63]. By searching for consensus epitopes in a disease

group that are absent in a control group, K-TOPE can discover disease-specific epitopes. For

an autoimmune disease, the entire human proteome could be analyzed to determine autoanti-

gen epitopes [33]. Similarly, using clinical histories of viral infection, K-TOPE can analyze the

proteomes of suspected pathogens to link epitopes to infections [24]. With specimens that

have HLA information, it could be possible to detect a correlation between HLA type and

bound epitopes [64]. This could have implications for how we determine genetic predisposi-

tion to immunological disease.
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There are important limitations to the conditions in which this approach could be success-

ful. First, this approach is currently limited to the prediction of linear epitopes. However, since

85% of epitopes have at least one linear stretch of five amino acids [22], conformational epi-

topes with linear segments may be represented in the datasets. We chose to focus on linear epi-

topes since methods that predict conformational epitopes often require 3D protein structures,

which are scarce relative to the number of protein sequences. This report focuses on epitopes

from common pathogens which are high-titer, but it could be difficult to detect rare antibody

epitopes. Methods that selectively deplete out high-titer antibodies could prove effective for

probing rare antibodies [65]. Another limitation is that protein sequences tend to have a large

degree of conservation and redundancy [66], as demonstrated by the false positives found in

the viral epitope search. Thus, even for analyses of non-immunogenic proteomes, false posi-

tives will occur due to evolutionary or coincidental sequence overlap with immunogenic prote-

omes. The issue of false positives can be partially allayed by deliberately choosing the set of

investigated proteins, such that all proteins are plausible candidate antigens. Sequence conser-

vation was demonstrated with the Enterovirus epitope PALTAVETGATNPL [35], as well as

with the Human herpesvirus 6A epitope YVDDMLNDI (Table 1) which shares the k-mer

“DDMLN” with the Streptococcus epitope GQKMDDMLNS (Table 2). Generally, if an epitope

sequence is present identically in multiple antigens, all candidate antigens should be consid-

ered equally plausible without further biological, epidemiological, or experimental informa-

tion. It is important to note that one of the purposes of K-TOPE is to reduce thousands of

candidate proteins to a small set of proteins that can be experimentally validated.

In summary, the present approach enables the discovery of epitopes within the proteomes

of any organism whose sequence is deposited into the protein database. The challenge of asso-

ciating epitopes with antigens can be surmounted by transforming sets of antibody-binding

peptides to k-mers and tiling proteins of interest. Advancements upon this paradigm may

enable comprehensive immunological evaluations from serum and other biological tissues.

Materials and methods

Strains and reagents

E. coli strain MC1061 was used with surface display vector pB33eCPX for all library screening

experiments. Protein A/G magnetic beads were from Thermo Scientific Pierce. Antibodies

with known specificity included C3956 rabbit anti-c-Myc polyclonal antibody (Sigma), anti-

beta amyloid 1–42 antibody [mOC31]—conformation-specific (ab201059) (Abcam), and rab-

bit V8137 Anti-V5 polyclonal antibody (Sigma). Antibodies were spiked into healthy donor

serum at a concentration of 25 nM. All sera (n = 273) were obtained as deidentified specimens

from biobanks according to institutional guidelines (Table 6), (Biosafety authorization num-

bers #201417, #201713), and handled according to CDC-recommended BSL2 guidelines.

Bacterial peptide display and sequencing

The bacterial peptide display screening protocol was carried out as previously described

[29,67]. Briefly, an E. coli library displaying approximately 8 billion different 12-mer peptides

was combined with 1:100 diluted serum. We used magnetic selection with Protein A/G beads

to isolate bacterial cells with bound antibodies. Then, we confirmed that this isolated fraction

of bacteria bound antibodies using flow cytometry. Amplicons were prepared from the isolated

fraction for sequencing using the Illumina NextSeq.
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Protein databases

Protein sequences were obtained from UniProt or by using the Biopython module [68].

Accessions for proteins are noted in figures and figure captions. For the epitope validation in

Fig 4, accessions were chosen that reference the most highly annotated version of the proteins

identified in Tables 1 and 2. The list of random proteins used for statistical analysis was

obtained through a UniProt search of “reviewed:yes”. The list of Enterovirus strains was

obtained from a UniProt search of “enterovirus NOT organism:"homo sapiens" AND

reviewed:yes”. The viral proteome search used a Uniref search of “uniprot:(host:"homo sapi-

ens" reviewed:yes fragment:no) AND identity:0.9” and yielded 2,908 proteins. The Staphylo-
coccus proteome search used a Uniref search of “uniprot:(taxonomy:"Staphylococcus [1279]"

fragment:no reviewed:yes) AND identity:0.9” and yielded 3,071 proteins. The Streptococcus
proteome search used a Uniref search of “uniprot:(taxonomy:"Streptococcus [1301]" frag-

ment:no reviewed:yes) AND identity:0.9” and yielded 2,976 proteins. HSV analysis used a

UniProt search of “reviewed:yes AND organism:"Human herpesvirus 1 (strain 17) (HHV-1)

(Human herpes simplex virus 1) [10299]" AND proteome:up000009294” for HSV1, yielding

73 proteins and a Uniprot search of “reviewed:yes AND organism:"Human herpesvirus 2

(strain HG52) (HHV-2) (Human herpes simplex virus 2) [10315]" AND proteome:

up000001874” for HSV2, yielding 72 proteins.

Literature epitopes

For EBNA1, it was noted that RRPFF antibodies were found in the serum of healthy individu-

als [33]. KRPSCIGCK was noted as an EBNA1 epitope that was preferentially targeted by pre-

eclamptic women, but was also targeted by healthy controls [6]. The motif XPEFXGSXX was

discovered and inferred to correspond to VPEFKGSLP in Staphylococcus aureus using protein

database searches [45]. For Poliovirus 1, the epitope PALTAVETGATNPL was found to be a

cross-reactive epitope in many enteroviruses [35]. The remainder of the literature epitopes

were obtained directly from IEDB.

Table 6. Serum sources.

Received From # Specimens Ages

UCLA 26 67 ± 10.5

UCSF 32 62 ± 7.2

Mayo Clinic 9 N/A

National Institute for Health and Welfare (Helsinki, Finland) 90 10 ± 5

NIH 40 N/A

Santa Barbara Cottage Hospital 12 N/A

Johns Hopkins University 15 30 ± 11.8

Max Delbrück Center for Molecular Medicine 26 N/A

BioreclamationIVT (HSV2) 12 N/A

Discovery Life Sciences (HSV1) 10 N/A

UCSB (mAb study) 1 N/A

Specimens that were provided without age information are noted by “N/A” under “Ages”. Of the 90 specimens from

the National Institute for Health and Welfare (Helsinki, Finland), 25 specimens were provided without age

information. The average age is given with the standard deviation.

https://doi.org/10.1371/journal.pone.0217668.t006
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Sequence processing

All software files are posted on GitHub (https://github.com/mlpaull/KTOPE) and all 278 anti-

body-binding peptide files are available from the Dryad Digital Repository (https://doi.org/10.

5061/dryad.v7d0350). The imune-processor.jar file is available for research, non-profit, and

non-commercial use, but requires a license for commercial use. All other software is available

under the MIT license. The algorithms for generating nonredundant sequence lists from

FASTQ files, outputting enrichment values for subsequences, and exhaustively calculating k-

mer statistics were adapted from IMUNE (imune-processor.jar and calculate-patterns.jar)

[29]. We added the capability to start with lists of peptides rather than NGS data. The enrich-

ment of a k-mer is defined as the ratio of the number of observations of the k-mer to the

“expected” number of observations. The “expected” value is calculated as the product of the

total number of sequences, the number of frames the k-mer could fit in the sequences, and the

probability of the k-mer appearing based on amino acid usage. If a k-mer’s enrichment is

above the “enrichment minimum”, it is used in K-TOPE. The enrichment minimum was cho-

sen as 2.0 for this study to reduce the dataset to only k-mers observed at least twice as often as

expected. K-mers need to be calculated only once per specimen. All interaction with IMUNE-

derived code is through a Python module which sets up a folder hierarchy and acts as a wrap-

per for IMUNE-derived code (imuneprocessor.py). These programs are memory and hard-

drive intensive and it is recommended to have at least 16 GB of free RAM and 100 GB of hard-

drive space. Analysis was carried out on a Dell Optiplex 9020 with an Intel1 Core™ i7-4790

CPU @ 3.60 GHz, 64-bit operating system, and 32.0 GB of RAM. Processing FASTQ files into

subsequences from 12 specimens, each containing approximately 1.5 million unique

sequences, required 2.3 hours and calculating k-mer enrichment required 7.7 minutes. The

duration of these calculations scales approximately linearly with the number of specimens and

sequences.

K-TOPE algorithm

The K-TOPE algorithm (S1 Code) is written in Python 3.6 (KTOPE.py). A usage guide for

KTOPE is available (S2 Text). First, there is a RAM-intensive step of loading k-mer enrich-

ment data into memory as a dictionary. The enrichment dictionary for 250 specimens required

approximately 4 GB of RAM. Then, a protein of interest is chosen for analysis and its sequence

is loaded. This protein is tiled into k-mers of a set length. For this study, 5-mers were used.

Each position in the protein sequence is assigned a frequency counter that starts at 0. The fre-

quency counter of each sequence position contained in an enriched k-mer is incremented by

the logarithm base 2 of the k-mer’s enrichment. For instance, if 3 k-mers that overlapped at a

position had enrichments of 2, 4, and 8, the frequency for that position would be log2 2 + log2

4 + log2 8 = 6. The frequency counters are compiled into a histogram which is smoothed using

a moving window. For this analysis, to provide adequate smoothing, the window had width 7

and used linear weighting with 1 in the center and 0.1 at the edges. Minima and maxima are

identified in the smoothed histogram. All intervals between 2 minima that contain a maximum

are used to define epitopes. Epitopes were limited to a minimum length of 6 and a maximum

length of 15 to roughly approximate the size of actual linear epitopes [22]. Epitopes are scored

using the area under the curve of the un-smoothed histogram. To assign statistical significance

to each epitope, the epitope’s score is ranked in a list of scores for epitopes of the same length

generated through an analysis of 10,000 random proteins. This rank is reported as a percentile

in the distribution of random protein epitope scores. For this study, an epitope percentile

threshold of 95% was used. For 12 specimens, analysis of 10,000 random proteins required

10.0 minutes.
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After determining epitopes for individual specimens, K-TOPE can determine consensus

epitopes for a population. Each epitope is characterized by a “centroid” which is the weighted

central position of the epitope, indexed as a position in the protein sequence. Centroids for all

epitopes that meet the epitope percentile threshold are compiled. They are then clustered

using k-means to associate close centroids with the KMeans function from scitkit-learn [69]. A

representative epitope is made for each cluster and kept if it meets a minimum prevalence in

the population. Closely overlapping epitopes are removed and the final list is sorted by preva-

lence. Consensus epitopes can be determined for each protein in a proteome, generating a list

of epitopes prevalent in a population. Determination of consensus epitopes for the Rhinovirus
A genome polyprotein (P07210) for 250 specimens required 24.4 seconds. The proteome

searches for viruses with human tropism, Staphylococcus, and Streptococcus for 250 specimens

required 3.1, 2.3, and 1.9 hours, respectively.

We calculated expected membership of epitope groups by multiplying the proportions

of the population that bound each epitope. For example, if epitope 1 was bound by 32% of

the population and epitope 2 was bound by 67%, then the expected membership of epitope

group ‘1+2’ would be 21%. We ranked the overlaps between K-TOPE derived epitopes and lit-

erature epitopes in a list of 10,000 randomly generated epitope overlaps to determine a p-

value. To remove redundant epitopes found in the proteome searches, we used the PAM30

similarity matrix to align two epitopes and compare each position to calculate a similarity

score. Epitopes that had similarity scores>10, were in the same protein, and were from differ-

ent organisms were considered redundant. We removed the less prevalent of the two redun-

dant epitopes.

The HSV analysis used “disease” group specimens to predict epitopes and “control” group

specimens to subtract epitopes. Epitopes were predicted in the disease group that met the epi-

tope percentile threshold (95%) and the minimum prevalence (30%). Then, all disease epitopes

were evaluated in the control group. For an epitope to be considered disease-specific, its score

had to be below the epitope percentile threshold (80%) in all control specimens. To predict

HSV2-specific epitopes that were also in the HSV1 proteome, we identified epitopes that

exactly matched a subsequence in an HSV1 protein.

Data visualization

Fig 1 was created using Inkscape. Histograms and heat maps were generated using the Matplo-

tlib python module [70]. Bar graphs were generated using GraphPad Prism 7.

Supporting information

S1 Fig. A comparison of histograms generated by K-TOPE when antibodies were added to

serum or buffer. Histograms were generated for antibodies against cMyc (P01106), V5

(P11207), and amyloid beta (P05067). The most prominent peaks were present regardless

of whether antibodies were added to serum or buffer. This suggests that the binding signature

of a single antibody was not obscured by the many other antibody specificities present in

serum.

(TIF)

S2 Fig. The number of epitopes generated as a function of varying the epitope percentile

threshold. Epitopes were generated for 250 specimens using the Rhinovirus A genome poly-

protein (P07210) with the prevalence fixed at 30%. The base 10 logarithm of the number of

epitopes appeared to decrease linearly with increasing epitope percentile threshold. The value

95% was chosen for analysis because it corresponds to a p-value of 0.05 and ensures that the
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total number of epitopes predicted was of order one. By predicting a total number of epitopes

of order one, fewer false positives should to be included in this analysis.

(TIF)

S3 Fig. The number of epitopes generated as a function of varying the prevalence. Epitopes

were generated for 250 specimens using the Rhinovirus A genome polyprotein (P07210) with

the epitope percentile threshold fixed at 95%. The base 10 logarithm of the number of epitopes

appeared to decrease exponentially with increasing prevalence. There were 123 epitopes

bound by at least one member of the group. The value 30% was chosen arbitrarily from the

prevalence values that predicted a total number of epitopes of order one. By predicting a total

number of epitopes of order one, fewer false positives should to be included in this analysis.

(TIF)

S4 Fig. Heat map of epitopes predicted for 43 Enterovirus strains. Analyzing multiple

strains of Enterovirus revealed that the epitopes found for the Rhinovirus A strain analyzed in

Fig 3 were found in multiple enteroviruses. The 4 epitopes in Fig 3 were similar to epitopes in

other Enterovirus strains, as demonstrated by the bands at approximately positions 212–221,

569–578, 577–590, and 602–613 (respectively corresponding to epitopes 1, 2, 3, and 4). Epi-

topes 1, 2, and 4 were only found in Rhinovirus, whereas epitope 3 was found in many Entero-
virus strains. The heat map was restricted to positions 0–700 to show relevant epitopes. A

binary decision was made for each position in each protein to determine whether it was in an

epitope.

(TIF)

S1 Table. The expected and actual membership of different epitope groups. The expected

membership of epitope groups was calculated by multiplying the proportions of the population

that bound each epitope. For example, if epitope 1 was bound by 32% of the population and

epitope 2 was bound by 67%, then the expected membership of epitope group ‘1+2’ would be

21%. Note that specimens in groups only bound the epitopes in the groups e.g. specimens in

group ‘1’ did not bind ‘2’ or ‘3’. Most of the actual and expected membership values agreed

except for the ‘1+2+3’, ‘3+4’, ‘1+2+4’, ‘1+2+3+4’, and the ‘None’ groups which had higher

membership than expected and the ‘1+3’ group which had lower membership than expected.

Additionally, the group targeting only epitope 4 was 40% smaller than expected suggesting

that it was generally bound along with other epitopes. All groups that had percent differences

equal to or greater than 50% are in bold.

(DOCX)

S2 Table. The average age for each epitope group. The average age for the 138 specimens for

which there was age data was 35. The ‘None’ group had an average age of 52 which was

approximately 50% higher than the average age of 35 (in bold). Additionally, specimens target-

ing 3 or more epitopes had an average age of 17 (in bold), which was approximately 50% lower

than the average age of 35. This discrepancy suggests that older people targeted fewer Rhinovi-
rus A epitopes. The average age is given with the standard deviation.

(DOCX)

S3 Table. Epitopes predicted for 43 Enterovirus strains. Analyzing multiple strains of Entero-
virus revealed that the epitopes found for the Rhinovirus A strain analyzed in Fig 3 were found

in multiple enteroviruses. Particularly, there were 31 strains with epitopes similar to epitope 3

in Fig 3 (APALDAAETGHT). Additionally, there were 3, 3, and 5 strains with epitopes similar

to epitopes 1 (QNPVENYI), 2 (DSVLEVLVVPN), and 4 (NHTHPGEQG) from Fig 3, respec-

tively. Epitopes 1, 2, and 4 were found in multiple rhinovirus strains suggesting that these
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epitopes were Rhinovirus-specific, but not Enterovirus-specific. Similarity comparisons used

the PAM30 similarity matrix with similarity defined as a similarity score > 10.

(DOCX)

S4 Table. Validating K-TOPE epitopes with prior studies. Twelve of the epitopes (in bold)

were similar to epitopes found in prior studies with p-values of < 0.05. However, 30 of the

epitopes were in proteins with no reported epitopes, and 3 epitopes were in organisms with

no reported epitopes. Only 6 of the epitopes were in well-characterized proteins but were not

found in the literature, suggesting that these epitopes were false positives or novel epitopes.

Additionally, only two bacterial epitopes were in previously described proteins, suggesting

that the remainder of the bacterial proteins were false positives or novel antigens. Epitopes 2,

3, and 4 differ slightly from those in Fig 4 because Fig 4 shows analysis for the most annotated

accessions of these antigens, rather than the accessions used in K-TOPE analysis. Epitopes 4

and 11 were noted as part of the "GAGA" repeat region of EBNA1 and due to their frequency

in the sequence, were not tested for significance. For epitopes 7, 17, and 31, the literature pro-

tein sequence did not match the protein sequence used for KTOPE searches. Instead, for

these epitopes, the following accessions were used, respectively, P07210, A0A455KI32, and

P0DF97 generating new epitopes DSVLNEVLVVPN, PALTAVETGHT, and

KTDDMLNSND. Epitopes 1 and 7 matched the same literature epitope (NPVENYIDSVL-

NEVLVVPNIQ) and epitopes 2 and 17 matched similar literature epitopes (PALTAVET-

GATNPL and EAIPALTAVETGHTSQV). This suggests that the epitopes within each pair

may be highly similar or identical. IEDB had 13 overlapping epitopes recorded for the protein

streptolysin O, although for this analysis we chose the first of these epitopes (epitope 31). Sur-

prisingly, epitope 20 in Murray Valley encephalitis had a corresponding literature epitope,

but given the rarity of this virus, this was likely a coincidence. Each epitope was searched in

IEDB by specifying the sequence with 70% BLAST similarity, the organism, the antigen name,

positive assays only, and B Cell assays.

(DOCX)

S5 Table. Eight HSV2-specific epitopes were also in the HSV1 proteome.

(DOCX)

S6 Table. Analysis of the HSV1 proteome predicted 30 epitopes that were bound by at

least 10% of the 250 specimens. Notably, epitope 1 (FVLPHWYM) contains the 3-mer LPH

which is also in the first epitope of the HSV1 specific epitopes, RIRLPHI (Table 5). Addition-

ally, epitope 21 (PMPSLTA) contains the 4-mer PMPS which is also in epitope 2 of the

HSV1-specific epitopes, PMPSIGLEE. A nearly exact match was found for epitope 18

(AAFVNDYS), which is highly similar to epitope 3 in the HSV1-specific epitope list,

CAAFVNDYSLV. Thus, 3 of the 4 epitopes discovered from an HSV1-infected population

had similarities to epitopes found using a general population. Additionally, 3 of the 4 anti-

gens predicted from analyzing the 250 specimens were also predicted using the

HSV1-infected specimens (major capsid protein, envelope glycoprotein G, and envelope

glycoprotein D). Fewer epitopes were identified for the HSV1-infected specimens than

the 250 specimens due to the group size disparity (10 specimens vs 250 specimens) and

since the epitopes predicted from the HSV1-infected specimens used HSV2-infected speci-

mens as controls. It is likely that the epitopes predicted for the HSV1 specimens and the

250 specimens did not match exactly because epitopes predicted from people with active

HSV1 infections may not be identical to those predicted from people with latent HSV1

infections. Although the prevalence of HSV1 is nearly 50%, we did not find epitopes with a

prevalence this high, likely because there are a variety of HSV1 epitopes that collectively
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indicate a prevalence of 50%. Hence, individual epitopes may only have prevalence values of

10–30%.

(DOCX)

S1 Code. KTOPE software, written in Python 3.6.

(TXT)

S1 Text. Justification of conducting analysis with 5-mers.

(DOCX)

S2 Text. KTOPE usage guide.

(DOCX)
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