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Neural oscillations play an important role in normal brain activity, but also manifest during
Parkinson’s disease, epilepsy, and other pathological conditions. The contribution of these
aberrant oscillations to the function of the surviving brain remains unclear. In recording
from retina in a mouse model of retinal degeneration (RD), we found that the incidence of
oscillatory activity varied across different cell classes, evidence that some retinal networks
are more affected by functional changes than others. This aberrant activity was driven by
an independent inhibitory amacrine cell oscillator. By stimulating the surviving circuitry at
different stages of the neurodegenerative process, we found that this dystrophic oscillator
further compromises the function of the retina. These data reveal that retinal remodeling
can exacerbate the visual deficit, and that aberrant synaptic activity could be targeted for
RD treatment.
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INTRODUCTION
In the CNS, neuronal cell death triggers a compensatory response
within surviving tissue (Schnitzler and Gross, 2005). In the visual
system, retinal degeneration (RD) results in photoreceptor cell
death, which is followed by structural remodeling of surviving
retinal tissue (Marc et al., 2003), including changes in synaptic con-
nectivity (Strettoi et al., 2004) and receptor expression (Peng et al.,
2000; Chua et al., 2009), leading to aberrant oscillatory activity
(Margolis et al., 2008; Stasheff, 2008). Though significant progress
has been made in characterizing these changes and identifying the
source of this activity, it remains unclear (i) how different retinal
pathways are affected by remodeling, (ii) what mechanism initi-
ates this oscillatory activity, and (iii) what functional implications
this noise has on the surviving retinal circuitry.

Multiple retinal pathways encode different aspects of the sen-
sory signal. At the level of retinal output, this segregation is
reflected by numerous types of retinal ganglion cells (GCs; Wassle,
2004). Unlike other retinal cells, GCs remain structurally (Mazzoni
et al., 2008) and functionally (Margolis et al., 2008) stable during
RD, which allows the physiological effects of structural remodel-
ing in presynaptic cells to be observed by monitoring GC activity.
Given the diversity of GCs, previous physiological characteriza-
tions of RD GCs, which considered only three cell classes (Margolis
et al., 2008; Borowska et al., 2011), may not fully describe pathway-
specific differences in retinal remodeling. We took physiological
recordings from a large population of GCs from rd1 mouse reti-
nas, which were classified into 11 groups based on morphological
measurements. The occurrence and properties of aberrant oscilla-
tions varied largely with cell class, suggesting differences between
visual pathways in their susceptibility to RD-induced functional
changes.

Various cell types are known to produce oscillations in healthy
retina. However, the cells responsible for oscillations in RD retina
remain unclear. The source of the aberrant activity has been attrib-
uted to dystrophic bipolar cells (BCs; Menzler and Zeck, 2011)
or, in contrast, to a circuit of dystrophic AII amacrine and cone
BCs (Borowska et al., 2011). We combined single-cell recordings
with pharmacological analysis to show that an amacrine cell (AC)
oscillator is necessary and sufficient to drive aberrant activity in
rd1 retina. BC oscillations are present in both wt and rd1 retina,
but are unaffected by RD and are unnecessary for aberrant activity
in rd1.

Sensory loss due to photoreceptor death due to photoreceptor
death has been well characterized (Strettoi et al., 2002; Gargini
et al., 2007; Stasheff, 2008; Stasheff et al., 2011), but the functional
impact of aberrant activity within surviving retinal tissue has not.
By stimulating the inner retina with electrical pulses, we demon-
strate that the efficiency of signal transmission is greatly reduced
by synaptic noise, which increases as degeneration progresses.

Together, these data provide potential targets for treatment
of RD, demonstrating variability in pathway-specific resilience to
remodeling, identifying an independent source of aberrant oscil-
lations in retina, and showing that eliminating oscillatory noise
could be a treatment in itself.

MATERIALS AND METHODS
In all experimental procedures, the animals were treated according
to the regulations in the ARVO Statement for the Use of Animals in
Ophthalmic andVision Research and in compliance with protocols
approved by Weill Cornell Medical College. Wild type (C57BL/6J)
and rd1 (C3H/HeJ) mice of either sex were purchased from the
Jackson Laboratory (Bar Harbor, ME, USA).
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PREPARATION OF RETINAL WHOLEMOUNTS
Experimental procedures were similar to those in earlier work
(Sagdullaev et al., 2011). All mice (P21–75) were euthanized in
the morning on the day of the experiment. The eyes were enu-
cleated and placed in oxygenated standard HEPES-buffered extra-
cellular solution. The cornea, iris and lens were removed with
small scissors. The retina was dissected into four equal quadrants,
which were attached photoreceptor surface down to a modified
translucent Millicell filter ring (Millipore, Bedford, MA, USA).
Individual rings were transferred to a recording chamber on the
stage of an upright Nikon FN1 microscope. To reduce discrep-
ancy between preparations and reduce contribution of photore-
ceptors to maintained activity, both wt and rd1 retinas were
maintained in light-adapting conditions. The recording chamber
was constantly superfused (1 mL/min) with bicarbonate-buffered
Ringer’s extracellular solution, bubbled with 95% O2 and 5%
CO2. Reagents including 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX), 1,2,5,6-tetrahydropyridine-4yl) methyphosphinic acid
(TPMPA), strychnine hydrochloride, nifedipine, mibefradil dihy-
drochloride hydrate, bicuculline methbromide, Lidocaine N -ethyl
bromide (QX-314) were obtained from Sigma (St. Louis, MO,
USA); d(-)-2-amino-5-phosphonopentanoic acid (D-AP5), and
SR95531 hydrobromide (gabazine) were obtained from Tocris
(Ballwin, MO, USA).

RETINAL STIMULATION AND RECORDING PROCEDURES
Ganglion cell spiking activity was recorded in a cell-attached
mode. Whole-cell recordings were made using patch pipettes
filled with intracellular solution containing (in mM) 120
Cs-gluconate, 10 tetraethylammonium chloride (TEA-Cl), 1.0
CaCl2, 1.0 MgCl2, 11 ethylene glycol-bis-(beta-aminoethyl
ether)-N,N,N ′,N ′-tetraacetic acid (EGTA), and 10 sodium N -
2-hydroxyethylpiperazine-N ′-2-ethanesulfonic acid (Na-HEPES),
adjusted to pH 7.2 with CsOH. The calculated ECl for this
solution was −58 mV. The intracellular solution was supple-
mented with 0.05% sulforhodamine B. Electrodes were pulled
from borosilicate glass (1B150F-4; WPI, Sarasota, FL, USA) with
a P-97 Flaming/Brown puller (Sutter Instruments, Novato, CA,
USA) and had a measured resistance of ∼4–7 MΩ. Cell-attached
and voltage-clamp recordings were made with MultiClamp 700B
patch-clamp amplifiers (Molecular Devices, Sunnyvale, CA, USA).
All stimulation and recording routines were controlled by Signal
software (CED, UK). Data were filtered at 5 kHz with a four-
pole Bessel filter and were sampled at 15 kHz. Resting excitatory
and inhibitory postsynaptic currents, EPSCs (V h = −60 mV) and
IPSCs (V h = 0 mV), respectively, were recorded for all cells. For the
experiments involving the light stimulation, the microscope’s illu-
minator was used to deliver a ∼300 μm in diameter spot of light
was centered on the GC receptive field. The tissue was adapted at
30 cd/m2, and stimulus was 270 cd/m2 within visible light range.
An aperture, a series of neutral density filters and FN-C LWD con-
denser (Nikon) were used to control size, intensity and focal plane
of the stimulus. Duration of the light stimulus (0.5 s) was con-
trolled by a Uniblitz shutter (Vincent Associates, Rochester, NY,
USA). For electrical (zap) stimulation, a positive current pulse
(0.1–1 ms; 3–15 μA, Grass Technologies, West Warwick, RI, USA)
was applied to the BCs using a patch pipette filled with extracellular

solution (Sagdullaev et al., 2011). For cross-cell comparisons, the
stimulus intensity was adjusted at the level yielding a half-maximal
response, experimentally determined by intensity–response curves
obtained for each cell, following the procedures described previ-
ously (Sagdullaev et al., 2006, 2011). GCs were clamped at +40 mV.
This paradigm allowed us to (a) account for both excitatory and
inhibitory inputs that are known to contribute to spiking out-
put via both excitation and disinhibition, (b) sample the integral
current without bias toward cell-specific excitatory and inhibitory
inputs, and (c) relieve NMDARs from Mg2+-block seen at neg-
ative potentials. Temperature of the solution and the recording
chamber was maintained at near physiological range of 32–35˚C.

MORPHOLOGICAL CHARACTERIZATION
Each GC was filled with sulforhodamine B, included in patch
pipette solution. At the end of each recording session, contrast
and fluorescent images of the cell were documented with a modi-
fied Nikon D5000 DSLR attached to a Nikon FN1 microscope. The
preparation was immediately placed in glass bottom culture dish
(Matek, Ashland, MA, USA) and transferred to a stage of a Nikon
C1 confocal microscope. A z-stack of 160 images was acquired at
0.5 μm steps at a resolution of 1024 × 1024 pixels. A nuclear stain
stock solution, 2 μL of an equal mixture of 12 mM ethidium bro-
mide and 100 μM To-Pro-3 (Invitrogen, Carlsbad, CA, USA) was
added for determining the borders of the inner plexiform layer
(IPL, Figure 1). GCs were distinguished from displaced ACs by
the presence of an axon. As previously described (Sun et al., 2002),
for dendritic field (DF) size, a polygon was drawn by linking the
tips of dendrites, and the area calculated. The area was converted
back to diameter by assuming a circular DF. Cell body size was
measured similarly. The level at which the GC dendritic processes
stratified in the IPL was measured as the distance of its processes
from the proximal (0%) to distal margin (100%) of the IPL. In
general, ON GCs were defined as those whose dendrites stratified
<60% of the IPL depth, and OFF GCs stratified >60% of the
IPL depth. Measurement of cell properties was performed with
ImageJ and Nikon EZ-C1 software. Cells were classified under two
different methods. First, cell body size, DF diameter, and depth
of dendritic stratification were used to classify cells in adherence
to the groups described by Sun et al. (2002). This was done to
verify a broad sampling of previously identified classes in both
wild type (Sun et al., 2002) and RD (Mazzoni et al., 2008) GCs,
and to establish a baseline for cluster analysis (Kong et al., 2005).
Second, a cluster analysis was performed using SPSS (SPSS Inc.,
Chicago, IL, USA), with stratification depth and DF diameter as
parameters (Badea and Nathans, 2004; Kong et al., 2005). This fol-
lowed the method described by Badea and Nathans: Ward’s joining
method was used to determine the number of clusters by a sep-
aration threshold of 25% of the greatest distance between nodes,
followed by a k-means analysis to determine cluster membership.
Monostratified and bistratified cells were analyzed separately. For
bistratified cells, the dendritic depth and the area were obtained
for both branches.

ANALYSIS
Currents were analyzed using Signal. The term “bursting” refers
to periodic spiking activity measured with extracellular GC
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FIGURE 1 | Recording procedures and identification of GCs in RD

retinal wholemount. Top. The view at the retinal ganglion cell (GC) layer in
wholemount retinal preparation. The outlines of individual cell bodies are
visible across the field. The recording pipette is targeting one of the GCs
(asterisk). Fluorescent image of the same GC with attached recording
pipette filled with sulforhodamine B (monochrome image). GCs were
distinguished from displaced amacrine cells by the presence of an axon
(arrowhead). Following the characterization of excitatory (EPSCs) and
inhibitory (IPSCs) inputs and spiking output, the pipette was detached and
the detailed dendritic structure was reconstructed using confocal
microscopy. A z -stack of 161 images was acquired at 0.5 μm steps at
1024 × 1024 pixel resolution. A nuclear stain (Ethidium Bromide with
To-Pro-3, blue) was subsequently added to aid in determining the thickness
of the inner plexiform layer (IPL). Scale bar – 20 μm. Bottom. (Left) Spikes
and currents recorded from the same cell. (Middle) Arbor area and (Right)
depth of the dendritic arbors (AD) were measured as illustrated.

recordings, while “oscillations” refer to periodic current activity
measured in voltage-clamp mode. To quantify the strength of
synaptic oscillations, the power spectra of traces were obtained
using a Hanning window, with 0.076 Hz bins. Frequency of oscil-
lations was determined by finding the peak power within the range
of 0.1 and 30 Hz. Cells with a peak greater than 2 SD above the
mean of this range were considered to be oscillating at that fre-
quency. Otherwise, cells were considered to be non-oscillating.
Changes in oscillatory activity across a given experiment were
illustrated in heat maps, where a series of power spectra for a
given cell was obtained (using 20 s segments) and plotted on a time
scale. Excitatory-to-inhibitory ratios were calculated by dividing
the oscillatory power measured from EPSC traces by that measured
from IPSC traces (Margolis et al., 2008). To measure efficiency of
synaptic transmission of evoked response, signal-to-noise ratio
(SNR) was calculated from DC-adjusted traces by dividing the
charge transfer of the response (signal) by the charge transfer
of unstimulated activity (noise) over equivalent epoch (250 ms).
Spectrograms were generated for consecutive recording frames
using custom scripts written for Matlab (Mathworks, Natick, MA,
USA). Statistical analyses were performed using SigmaPlot (Systat
Software Inc. Richmond, CA, USA) and SPSS. All data are reported
as means ± SEM. Student’s t -test or paired t -tests were used for
group comparisons or ANOVA for multiple comparisons. Two-
way ANOVA was used where multiple factors were considered;

one-way ANOVA was used unless otherwise specified. Multivari-
ate pair-wise comparisons across treatment conditions were made
with repeated-measures MANOVA.

RESULTS
The following experiments analyze the effect of RD-induced oscil-
lations on different retinal pathways, the mechanism of these
oscillations, and the functional implications on retinal transmis-
sion. Our work is presented in three sections: (i) morphological
classification of a large population of rd1 GCs and identification
of class-specific variations in aberrant activity, (ii) isolation of two
distinct oscillators and evaluation of their relative contribution to
activity in both rd1 and wt retinas, and (iii) characterization of
the efficiency of signal transmission through the surviving inner
retinal network in rd1.

THE INCIDENCE AND NATURE OF OSCILLATORY INPUTS VARIES
ACROSS IDENTIFIED rd 1 GC CLASSES
Morphological differences between GCs reflect distinct visual
pathways that process unique features of the visual signal (Wassle,
2004), and numerous classes of GCs have been identified in wt
and RD mouse retina (Sun et al., 2002; Badea and Nathans, 2004;
Kong et al., 2005; Mazzoni et al., 2008). Here, we use a classification
scheme based on cluster analysis of morphological measurements
(Badea and Nathans, 2004; Kong et al., 2005), to better reflect GC
diversity and to quantify class-specific physiological effects of RD
(see Materials and Methods).

Bursting activity was recorded in ∼70% of rd1 GCs (n = 181),
across six monostratified and five bistratified cell clusters (Table 1;
Figure 2), which were compared to an earlier classification
scheme (Sun et al., 2002) to verify a representative sample of
previously identified GCs (Kong et al., 2005; Mazzoni et al.,
2008). Monostratified cells varied in bursting probability. Clus-
ters with larger DFs (≥199 μm) were more likely to burst
(∼80%) within any given stratum, while those with smaller DFs
(<199 μm) were less likely to burst (∼36%) within proximal
strata but more likely (approaching 80%) distally (Figure 3B).
Overall, cells with larger DFs were more likely to burst (81.8
versus 60.3%).

Oscillatory activity was present in both excitatory and
inhibitory postsynaptic currents (EPSCs and IPSCs). The balance
of these inputs was calculated as an excitatory-to-inhibitory ratio
(E:I ratio) of oscillatory power (see Materials and Methods). For
monostratified GCs, regression analysis showed that the relation-
ship of E:I ratio to stratification depth is a continuum, rather than
a strict division of ON and OFF sublaminae; GCs that stratified
deeper into the IPL had relatively larger inhibitory oscillations
(Pearson’s r = −0.57, p < 0.001, n = 113). When comparing clus-
ters,E:I ratio differed significantly (p < 0.001,ANOVA; Figure 3A),
with effects of both stratification and DF size (p < 0.001 and
p = 0.008, respectively, two-way ANOVA; Figure 3C). Specifi-
cally, clusters that stratified at similar IPL depths differed in E:I
ratio; cells with larger DFs received more inhibitory input than
those with smaller DFs. The tendency toward greater inhibitory
input in GCs with larger DFs may be related to the greater like-
lihood of bursting in these cells (Figure 3B). Bistratified GCs, as
a population, had significantly stronger inhibitory than excitatory
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Table 1 | Morphological classes of physiologically characterized ganglion cells in rd1 retina.

Cluster Dendritic field diameter Stratification Count %Total Ganglion cell class (Sun et al., 2002) % Bursting

MONOSTRATIFIED (M)

M1 245 ± 42 29 ± 7 23 20.4 A1, A2 inner, C1, C2 inner, C3 78.3

M2 154 ± 19 30 ± 7 19 16.8 B3 inner 36.8

M3 298 ± 17 75 ± 7 5 4.4 A2 outer, C2 outer 80.0

M4 199 ± 28 53 ± 6 27 23.9 B1, C4, C5 85.2

M5 169 ± 32 73 ± 5 29 25.7 B3 outer, C6 72.4

M6 121 ± 14 53 ± 4 10 8.8 B2, B4 70.0

Subtotal 113 70.8

BISTRATIFIED (B)*

B1 209 ± 32 27 ± 5 17 32.1 D1, D2 58.8

195 ± 25 59 ± 4

B2 157 ± 26 41 ± 3 7 13.2 D1, D2 57.1

180 ± 19 73 ± 5

B3 137 ± 29 33 ± 4 16 30.2 D1, D2 75.0

139 ± 27 65 ± 5

B4 168 ± 15 24 ± 3 5 9.4 D1, D2 60.0

155 ± 16 50 ± 1

B5 234 ± 31 38 ± 6 8 15.1 D2 87.5

223 ± 44 72 ± 5

Subtotal 53 69.8

UNCLASSIFIED (UC)

Subtotal 15 73.3

Total 181 70.2

*For bistratified cells, top numbers are for sublamina b, lower numbers are for sublamina a.

oscillations (316 ± 10%, t -test, p < 0.001, n = 53), and clusters
did not differ significantly in E:I ratio (p = 0.56, n = 53, ANOVA;
Figure 3D).

The varying incidence of bursting between cell types suggests
that some retinal pathways are more susceptible to dystrophic
remodeling than others. The higher incidence of bursting in
larger-DF GCs, which have larger inhibitory oscillations, and the
predominance of IPSC oscillations in previously unexplored bis-
tratified RD GCs suggest that inhibitory inputs have a primary
role in generating aberrant activity.

OSCILLATIONS PERSIST IN THE ABSENCE OF BIPOLAR CELL INPUT
It has been shown that oscillations in RD originate presynaptically
to GCs (Margolis et al., 2008; Stasheff, 2008; Menzler and Zeck,
2011), but the source of these oscillations is unclear. Recent stud-
ies have proposed a role for BCs (Borowska et al., 2010; Menzler
and Zeck, 2011). To examine this, we monitored EPSCs and IPSCs
in rd1 GCs before and after application of CNQX (5 μM) and
D-AP5 (50 μM), selective antagonists of non-NMDA and NMDA
iGluRs.

CNQX and D-AP5 eliminated EPSCs in all rd1 GCs. Oscilla-
tory IPSCs, in contrast, persisted in a large subset of GCs and
were abolished after the addition of strychnine (3 μM), gabazine
(5 μM) and TPMPA (100 μM), antagonists of glycine-, GABAA-,
and GABACRs, respectively (Figure 4A). As evident from FFT heat
maps (right panel), oscillations not only persisted, but were refined

in a subset of GCs, showing less inter-wave variation in ampli-
tude and frequency, reflected as an increase in power (p = 0.02,
n = 11,paired t -test; Figure 4D). Notably,OFF cells all increased in
power, while ON cells varied, though most maintained oscillations
at reduced power (r2 = 0.67, p < 0.001, n = 26, linear regression;
Figure 4C). The persistence of fast aberrant activity in a diver-
sity of GCs suggests that BCs are not the source. An alternate
pathway for these oscillations may be gap junction-mediated path-
way between BCs and AII cells, which have been suggested to
be required for their generation (Borowska et al., 2011) and/or
propagation across the retina (Menzler and Zeck, 2011). For rd1
GCs with IPSC oscillations resistant to CNQX and DAP-5, the
subsequent addition of the gap junction blocker carbenoxolone
(100 μM, CBX) did not abolish oscillations (p = 0.46, n = 7, paired
t -test; Figures 4B,D). Carbenoxolone alone had a variable effect
on the size of oscillations, but they persisted in six out of nine GCs
(Figures 5C,D).

Oscillations in non-electrically coupled rd1 ACs could also rely
on excitatory BC input. However, CNQX and DAP-5 did not
diminish aberrant oscillations in 5 out of 7 ACs (p = 0.19, n = 5,
paired t -test; Figures 5A,B), suggesting a serial inhibitory source
instead. Together, our findings suggest that aberrant oscillations do
not require BC input, and are generated by dystrophic amacrine
cells (dACs), which provide inhibitory oscillatory input to BCs,
GCs, and other ACs. These data also indicate that gap junctions
may not be necessary to generate them, but rather to be involved
in their spread across the retinal network.
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FIGURE 2 | Diverse classes of rd1 GCs exhibit aberrant activity.

(A) Representative rd1 GCs from multiple classes, shown with physiological
activity. Here and in the following figures, reverse-contrast confocal images
are shown, with scale bars adjusted to 40 μm. Cells are labeled by cluster
membership, Sun et al. (2002) cell class, and physiological type above each
set of images. GCs were distinguished from displaced ACs by the presence

of an axon (arrowheads). Whole-cell inhibitory and excitatory currents (IPSCs,
EPSCs) and spiking activity are shown for each cell. Scale bars: time 0.5 s,
current amplitude 100 pA. (B,C) Dendrograms (left ) and scatter plots (right ) of
the clustering of monostratified and bistratified rd1 GCs, based on dendritic
arbor size and depth of arbor stratification. For bistratified cells, both inner and
outer arbors were measured.

INHIBITORY TRANSMISSION IS NECESSARY FOR DYSTROPHIC
AMACRINE CELL OSCILLATIONS BUT SUPPRESSES INTRINSIC BIPOLAR
CELL OSCILLATIONS: IDENTIFICATION OF TWO OSCILLATORS IN rd 1
Oscillations putatively generated by dACs must be reconciled with
intrinsic oscillations that occur in the retina. It has been shown

that BCs in healthy mature retina can spontaneously oscillate
(Burrone and Lagnado, 1997; Ma and Pan, 2003), and it has been
suggested that aberrant RD oscillations reflect an exacerbation of
this intrinsic BC activity (Borowska et al., 2011), rather than dACs.
ACs use inhibitory transmission to shape the excitatory output of
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FIGURE 3 | Oscillatory activity varies between distinct classes of rd1

GCs. (A) Monostratified clusters significantly differed in their E:I ratios
(ANOVA, p < 0.001). As a population, there was a significant correlation
between stratification and E:I ratio (Pearson’s r = −0.57, p < 0.001, n = 113).
(B) Monostratified clusters with larger dendritic fields had a larger
percentage of bursting cells than clusters with smaller dendritic fields (data
also inTable 1). This difference was greatest in cells that stratified
proximally to the GC layer (∼30%). (C) Monostratified clusters with larger
dendritic fields had lower E:I ratios compared to clusters with smaller
dendritic fields that stratified similarly (Two-way ANOVA, p = 0.008). Above
each group, stratification depths are indicated as IPL percentiles. (D)

Bistratified clusters did not differ in their E:I ratio (p = 0.56), but inhibitory
oscillations had 316 ± 10% the power of excitatory oscillations (t -test,
p < 0.001, n = 53). Data are reported as means ± SEM, except in (B), where
percentages within groups are reported.

BCs. Accordingly, intrinsic BC oscillations have been shown to be
silenced by inhibitory neurotransmitters (Zenisek and Matthews,
1998), suggesting that these oscillations are normally suppressed
by ACs. Thus, we tested whether intrinsic BC oscillations differ
between wt and rd1 retinas, by blocking inhibitory transmission.

We monitored BC output by measuring EPSCs in GCs prior
to and following application of inhibitory receptor blockers. In

rd1, high-frequency (fast) oscillations (6.8 ± 2.0 Hz, range 4.5–
12.0 Hz) were abolished, and replaced by larger-amplitude EPSCs
of significantly lower frequency (0.7 ± 0.5 Hz, range 0.2–2.0 Hz;
p < 0.001, n = 32, paired t -test) and increased power (p < 0.001,
n = 32, paired t -test; Figure 6A). These low-frequency (slow)
oscillations were sufficient to drive GC spiking, and were abol-
ished by iGluR blockers. Similarly, inhibitory receptor blockers
also induced slow oscillations in wt GCs (Figure 6B). To com-
pare oscillations between wt and rd1 GCs, a cluster analysis was
performed, with oscillatory frequency and power as input para-
meters. In control conditions, wt (n = 25) and rd1 (n = 32) GCs
formed two separate clusters (Figure 6C, circles), reflecting spon-
taneous fast oscillations in rd1 GCs and no oscillatory activity
in wt GCs. After blocking inhibitory transmission, all GCs in
both groups formed a single cluster, indicating no difference
in the slow oscillations between wt and rd1 GCs (Figure 6C,
triangles). A repeated-measures multivariate ANOVA confirmed
this (effects of genotype and treatment, with interaction, all
p < 0.001). Post hoc t -tests showed that wt and rd1 cells dif-
fered in frequency (p < 0.001) and power (p < 0.01) prior to
blocking inhibitory transmission, but were no different after-
ward (p = 0.95, 0.28). Furthermore, if driven by the same source,
properties of fast and slow oscillations should correlate. How-
ever, across rd1 GCs, they did not; the power of fast oscillations
were not predictive of the power of slow oscillations (r2 = 0.018,
p = 0.47, n = 32, linear regression; Figure 6D), suggesting separate
sources.

Together, these data show that the slow oscillations observed in
rd1 following block of inhibition are no different from those seen
in wt, and suggest that the fast oscillations seen only in rd1 mice
are generated by dACs, independent of BC oscillations. To further
confirm this, we determined whether these two oscillators could
be isolated pharmacologically from one another.

NECESSITY OF L-TYPE Ca2+-CHANNELS DISTINGUISHES INTRINSIC
FROM DYSTROPHIC OSCILLATORS
We have shown that abolishing dAC oscillations with inhibitory
receptor antagonists simultaneously unveils intrinsic BC oscilla-
tions, which are normally suppressed by ACs via inhibitory trans-
mission. This effectively silences dAC oscillations while preserving
BC oscillations. Next, we determine whether BC oscillations can
be silenced while preserving dAC oscillations.

Glutamate release from BCs is triggered by the activation of
voltage-gated Ca2+ channels (Kaneko et al., 1989; Pan et al., 2001;
Berntson et al., 2003), and slow intrinsic BC activity has been
shown to be Ca2+-dependent (Burrone and Lagnado, 1997; Ma
and Pan, 2003). To confirm this in mice, we first applied inhibitory
receptor blockers to unveil slow BC oscillations, then applied
CdCl2 (200 μM), a non-specific calcium channel antagonist.
This abolished slow oscillations in wt and rd1 GCs (1.8 ± 1.0%,
p < 0.001, n = 10 for both wt and rd1, paired t -test; Figures 7B
and 8A). We next evaluated specific Ca2+-channel types.

Though previously untested in mouse retina, spontaneous
oscillatory activity in goldfish Mb1 BCs relies on Ca2+-influx
via L-type Ca2+-channels (Burrone and Lagnado, 1997; Zenisek
and Matthews, 1998; Protti et al., 2000), while isolated rat BCs
rely on T-type Ca2+-channels (Pan et al., 2001; Ma and Pan,
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FIGURE 4 | Oscillations persist in rd1 GCs after blockade of iGluRs.

Oscillatory activity was evident in both EPSCs and IPSCs. (A) Following
application of iGluR antagonists (CNQX, D-AP5), inhibitory oscillations
persisted in a majority of GCs. All remaining synaptic activity was
eliminated after block of inhibitory receptors. Spectrograms (right panels)
are FFT power spectra, plotted over time, demonstrating changes in
frequency components of EPSC oscillatory activity across different
experimental conditions. In this and subsequent figures, colored bars
along the left side of the spectrograms indicate the presence of
antagonists. Refinement of oscillations is reflected by narrower frequency

bands. (B) Cells that continued to oscillate in the presence of iGluR
antagonists were not affected by subsequent addition of carbenoxolone
(CBX), a gap junction blocker (p = 0.46, n = 7, paired t -test). All remaining
synaptic activity was eliminated after block of inhibitory receptors. (C)

Scatterplot of percent change (log units) of inhibitory oscillations in
monostratified rd1 GCs from control conditions (horizontal dashed line)
following application of iGluR blockers. There was a significant correlation
with the depth of GC dendritic ramification in the inner plexiform layer (IPL,
r 2 = 0.67, p < 0.001, n = 26). (D) Summary bar chart for rd1 GCs under
various pharmacological conditions. All data are reported as means ± SEM.

2003). Nifedipine (50 μM), a selective antagonist of L-type Ca2+-
channels, dramatically reduced the power of slow oscillatory
EPSCs in wt and rd1 GCs (to 5.5 ± 2.1 and 4.3 ± 1.8%, respec-
tively; p < 0.001, n = 10, for both, paired t -test; Figures 7A,B).
Furthermore, if the intrinsic BC oscillator requires L-type Ca2+-
channel activation, nifedipine should prevent slow oscillations.
Indeed, blocking inhibition in the presence of nifedipine failed
to elicit slow oscillations (p < 0.001, n = 10, for both wt and rd1,
paired t -test; Figure 7C, right traces, and Figure 7D). In contrast,
mibefradil (5 μM) a selective antagonist of T-type Ca2+-channels,
had a variable effect on BC-mediated slow oscillations (reduc-
ing power to 67.0 ± 63.8 and 86.8 ± 55.0% in wt and rd1 cells,
respectively; p = 0.08, n = 5 for wt and p = 0.27, n = 10 for rd1,
paired t -test; Figures 7B and 8B). Along with the finding that
Ca2+-evoked Ca2+ release from BC intracellular pools does not
contribute to BC oscillations (Ma and Pan, 2003), our data suggest

that L-type Ca2+-channels are necessary and sufficient to generate
BC-mediated EPSC oscillations in both wt and rd1 retina.

Next, we determined whether fast and slow oscillations rely
on the same source in RD, by first testing whether fast oscil-
latory EPSCs are Ca2+-dependent, and then, whether L-type
Ca2+-channels are necessary to generate them. CdCl2 completely
abolished fast oscillations in rd1 GCs, suggesting the involvement
of voltage-gated Ca2+-channels (Figures 7D and 8C). Nifedip-
ine had a small and variable effect on the power of rd1 oscilla-
tions, reducing them to 82.9 ± 16.3% of control (p = 0.12, n = 10,
paired t -test; Figure 7C), indicating that L-type Ca2+-channels
are not necessary for fast oscillations. Subsequently blocking
inhibition abolished fast oscillations (p < 0.001, n = 10, paired
t -test; Figures 7C,D).

Together, these data indicate that (a) dystrophic fast oscilla-
tions in rd1 are mediated by an autonomous dAC oscillator, and
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FIGURE 5 | Oscillations in rd1 ACs and variable effect of gap junction

blocker on fast oscillations in rd1 GCs. (A) Representative IPSCs from
rd1 narrow- and wide-field amacrine cells. (B) Oscillations that persisted in
amacrine cells following application of iGluR antagonists did not differ from
control conditions (p = 0.19, n = 5, paired t -test). (C,D) Recordings of
oscillatory activity in two representative GCs. Application of the gap

junction blocker carbenoxolone (CBX, 100 μM) diminishes oscillatory
activity in one cell (C), while this activity remained unaffected in another
cell (D). In both cells, all high-frequency oscillatory activity was abolished
following addition of blockers of inhibitory transmission. Large,
low-frequency EPSCs remain [(D), right traces], which are driven by bipolar
cells (as shown in Figures 6–8).

that (b) intrinsic slow oscillations, mediated by a BC-dependent
mechanism, are unaffected in rd1 relative to wt.

SYNAPTIC NOISE COMPROMISES TRANSMISSION OF EVOKED
RESPONSES THROUGH INNER RD RETINA
The task of any sensory system is not to simply measure the
strength of a signal, but to distinguish signals from accompany-
ing noise (Brenner et al., 2000). During RD, photoreceptor cell
loss progressively diminishes the sensory signal, while concurrent
changes within the surviving inner retina lead to increased baseline
activity, contributing to noise (Drager and Hubel, 1978; Margolis
et al., 2008; Stasheff, 2008). Though the effects of signal loss due to
photoreceptor death have been well characterized, the functional
impact of increased noise due to retinal remodeling has not.

In rd1 mice at P20–26, light-induced responses could be
observed (Figure 9A). At this stage, the majority of rods have
died, while cones are still present in large numbers (Strettoi and
Pignatelli, 2000). In light-adapted conditions (see Materials and
Methods), responses are not evident in individual traces, but are
observable in peristimulus time histograms (PSTHs) and averages.
However, using light stimuli does not enable the separation of the
relative contributions of photoreceptor and post-photoreceptor
sites to diminished responses in RD.

Therefore, to directly assess inner retinal function, indepen-
dent of photoreceptors, we employed an electrical stimulation
paradigm, in which cells presynaptic to recorded GCs were stimu-
lated with a brief depolarizing electric pulse (Chen and Diamond,
2002; Sagdullaev et al., 2006). To measure the efficiency of synap-
tic transmission, we calculated SNR, allowing responses to be
weighted against background activity (Dunn and Rieke, 2006). We

stimulated GCs in wt and rd1 retina from 3 age groups correspond-
ing to different stages of RD (Gargini et al., 2007; Figure 9B). To
unmask the contribution of NMDARs and to monitor both excita-
tory and inhibitory currents in GCs (Roska et al., 2006; Manookin
et al., 2010), we held GCs at +40 mV (see Materials and Methods).
As RD progresses, aberrant oscillations (6–12 Hz) emerge that
obscure evoked responses in GCs, resulting in a significant reduc-
tion of SNR compared to wt (main effect of genotype, p < 0.001,
and interaction with age, p = 0.003, two-way ANOVA; Figure 9C).
By P30, SNR is reduced by approximately 50% compared to P20
(7.28 ± 1.41 versus 3.45 ± 0.35; p < 0.001, n = 6 and 11, post hoc
t -tests) and further declined to 25% of its initial value by P50
(1.78 ± 0.25, p < 0.001, n = 4). In contrast, SNR in age-matched
wt controls remained significantly higher (P20: 7.26 ± 1.00, n = 4;
P30: 7.44 ± 0.74, n = 5; >P50: 10.66 ± 1.83, n = 6).

DISCUSSION
Until recently, RD has mainly been considered to be a deficiency
of photoreceptors. We studied a form of “network deficiency” –
maladaptive changes within the surviving tissue – that mani-
fests as aberrant oscillatory activity. Incidence and properties of
these oscillations varied between GC classes, suggesting differences
between visual pathways in susceptibility to retinal remodeling.
Single-cell recordings combined with pharmacological analysis
allowed us to distinguish two independent oscillators in the RD
retina, driven respectively by bipolar and amacrine cells. In con-
trast to earlier studies (Borowska et al., 2011; Menzler and Zeck,
2011), we find that an AC oscillator alone is necessary and suffi-
cient to drive aberrant activity in rd1 retina. A BC oscillator, in both
rd1 and wt, is normally suppressed by inhibition and not required
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FIGURE 6 | Block of inhibition eliminates fast bursting in rd1 retina

and reveals slow intrinsic bipolar cell-mediated oscillations in both

rd1 and wt retinas. Application of inhibitory receptor blockers
(strychnine, gabazine, TPMPA) eliminated fast oscillations in rd1, but
induced large, slow oscillations in both rd1 (A) and wt (B) GCs. These

slow oscillations were eliminated after subsequent block of iGluRs. (C)

Cluster analysis shows that slow oscillations did not differ between wt
and rd1 GCs. (D) Regression analysis shows no relationship between
fast dystrophic oscillations and slow oscillations across rd1 GCs
(r 2 = 0.018).

for aberrant activity (Figure 10). We find that aberrant activity
compromises transmission of evoked responses in surviving inner
retina, exacerbating the visual deficit.

FUNCTIONAL REMODELING VARIES ACROSS PARALLEL RETINAL
CIRCUITS
Unique patterns of retinal interneuron connectivity establish dis-
tinct pathways to extract specific features of visual stimuli (Wassle,
2004). Using an approach to GC classification that accounts for
both anatomical (Sun et al., 2002; Badea and Nathans, 2004;
Kong et al., 2005; Mazzoni et al., 2008) and physiological diver-
sity, we show that aberrant activity varies across GC classes in rd1

(Figures 2 and 3). Balance of excitatory and inhibitory input cor-
relates to the stratification depth of monostratified GCs, rather
than conforming to a strict division of ON and OFF cell types
(Margolis et al., 2008). DF size affected both the incidence and
properties of aberrant activity – GCs with larger DFs were more
likely to burst, and had more inhibitory input. This may reflect
the relatively larger lateral width of inhibitory versus excitatory
inputs (Lukasiewicz and Werblin, 1990), and suggests that oscil-
latory activity originates from inhibitory inputs. Likewise, bistrat-
ified cells, which receive inputs from both sublaminae, showed
a dominance of inhibitory oscillations. This variation suggests
that inhibitory interneurons, which mediate lateral connections
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FIGURE 7 | Block of L-type voltage-gated Ca2+-channels does not

eliminate fast aberrant excitatory oscillations but abolishes slow

intrinsic BC oscillations. Spontaneous EPSCs are shown from GCs in
age-matched adult wt and rd1 wholemount retinas. In control conditions,
fast oscillations were present in rd1, but not wt, GCs (left traces). (A)

Block of inhibition unveiled large, slow oscillations in both rd1 and wt GCs
(middle traces), which are visible as high-power, low-frequency bands
(spectrograms). Application of nifedipine (50 μM), a selective L-type
voltage-gated Ca2+-channel antagonist, abolished slow oscillations (right
traces). (B) Summary bar chart for wt and rd1 GCs (n = 10, 10). The power
of oscillatory EPSCs was normalized to those of rd1 GCs in control

conditions. Slow oscillations were abolished by application of either CdCl2
to block all voltage-gated Ca2+-channels, or of nifedipine, to block L-type
channels. Block of T-type Ca2+-channels with mibefradil reduced the power
of oscillatory EPSCs, but did not abolish them. (C) Application of nifedipine
in both wt and rd1 GCs prevented the generation of slow oscillations with
subsequent block of inhibition. In contrast, in rd1 GCs, nifedipine did not
abolish aberrant fast oscillations, but block of inhibition did (bottom traces).
The spectrogram shows that the high-frequency oscillations are present
both in control conditions and after the addition of nifedipine in rd1
(p = 0.12, paired t -test). (D) Summary bar chart for 10 wt and 10 rd1 GCs.
See also Figure 8. All data are reported as means ± SEM.

between vertical pathways (Roska and Werblin, 2001), may be
less resistant to functional changes than those that involve only
simple direct connections. The balance between the pathways that
segregate and converge via these neurons may be more easily desta-
bilized than in pathways that do not rely on lateral connections.

SEPARATE SOURCES DRIVE DYSTROPHIC AND INTRINSIC
OSCILLATIONS
Several mechanisms have been proposed to account for the gen-
eration of aberrant activity during RD. Persistence of oscillatory
activity following block of inhibitory transmission – albeit at a
lower frequency – led to the hypothesis that the primary source of
aberrant activity in RD are oscillating BCs (Borowska et al., 2010;
Menzler and Zeck, 2011). Borowska et al. (2011) have proposed
that gap junction-coupled cone BCs/AII ACs constitute an intrin-
sic oscillator, which is exacerbated by RD, resulting in aberrant
activity that primarily relies on spontaneous excitatory inputs.
Our findings support a role for dACs (Vaithianathan and Sag-
dullaev, 2010), which provide direct inhibitory oscillatory input
to GCs, and shape BC output to provide excitatory oscillatory
input to GCs. Additionally, our experiments show that intrinsic

BC oscillations are not affected by RD, as they do not differ from
wt (Figure 6C). Several lines of evidence suggest that dystrophic
oscillations are independent of intrinsic BC oscillations. In the
same cells, the powers of fast and slow oscillations did not corre-
late, suggesting different sources (Figure 6D). Slow BC-mediated
oscillations were observable in wt and rd1 retinas only after block-
ing inhibitory transmission,and were abolished by blocking L-type
Ca2+-channels; dAC oscillations were observable only in rd1 reti-
nas, did not require pharmacological block, were insensitive to
blocking L-type Ca2+-channels and gap junctions, but were abol-
ished by blocking inhibitory transmission (Figures 7 and 8). Given
the diversity of retinal cell types and the complexity of their
interactions, multiple mechanisms of aberrant oscillatory activ-
ity cannot be ruled out, especially during different stages of RD
(Marc et al., 2003). However, we find that dACs are necessary and
sufficient for aberrant oscillations in adult rd1. The requirement
for lateral interactions suggests the sparse distribution of oscil-
latory pacemaker cells across the retina; it is unlikely that every
GC or BC would receive a direct input from dAC. In retinal slices
(200 μm), the occurrence of oscillatory GC activity is dramatically
lower than in retinal wholemount (15 versus 70%, unpublished
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FIGURE 8 | Calcium signals underlying two distinct oscillators. (A)

Isolated low-frequency EPSC oscillations recorded from identified wt (top)
and rd1 (bottom) GCs were eliminated by a non-selective voltage-gated
Ca2+ channel blocker, CdCl2 (200 μM). (B) Bipolar cell-mediated oscillations
were slightly reduced by mibefradil (5 μM), a selective T-type voltage-gated
Ca2+-channel blocker, and completely abolished by nifedipine (30 μM), a

selective L-type voltage-gated Ca2+-channel blocker, in both wt (top) and
rd1 (bottom) GCs. (C) Ca2+ influx is required for amacrine cell-mediated
high-frequency oscillations in rd1. In representative rd1 GCs, both
oscillatory EPSCs and IPSCs were eliminated by CdCl2 (200 μM).
Summary histograms are shown in Figure 6. In confocal images, scale
bars are adjusted to 40 μm.
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FIGURE 9 | Aberrant activity compromises efficiency of synaptic

transmission within the inner retina during RD. (A) Photoreceptor-
dependent light-evoked spiking responses from GCs in rd1 and
age-matched wt controls (P20–P26). Peristimulus time histograms (PSTHs)
were generated with 0.1 ms bins. The recording paradigm is illustrated in
the insert (PR, photoreceptor; BC, bipolar; AC, amacrine; GC, ganglion
cells). Shaded area – timing of the light stimulus (∼300 μm light spot). (B)

Photoreceptor-independent synaptically evoked activity from
voltage-clamped GCs in rd1 mice at different phases of retinal remodeling
and age-matched wildtype controls. A current pulse was delivered to the
INL, bypassing photoreceptors. Arrowhead indicates stimulus artifact. (C)

Signal-to-noise ratios at different ages in rd1 (black bars, n = 21) and wt
(gray bars, n = 15). As RD progresses, increasing noise levels obscure the
evoked response. All data are reported as means ± SEM; p < 0.001.

observation). This is further supported by a variable effect of gap
junction blockers on oscillatory activity in GCs, suggesting that
oscillatory signals must be spread across the retinal network.

Slow oscillations are mediated by the intrinsic activity of BCs,
and have been reported in mature healthy retina in a number
of species (Burrone and Lagnado, 1997; Zenisek and Matthews,
1998; Ma and Pan, 2003). We demonstrate that this intrinsic oscil-
lator is unchanged in adult rd1 mouse retina, showing a resistance
to remodeling, indicating that it may be established early in life.
Indeed, during development, retinal neurons exhibit coordinated
spontaneous activity known as “retinal waves” (Shatz and Stryker,
1988; Wong et al., 1998), which can be modulated in size and
velocity by influx through L-type Ca2+ channels (Singer et al.,

FIGURE 10 | Dystrophic amacrine cell input drives bursting activity in

RD. Diagrams of the synaptic interactions in rd1 (left ) and wt (right ) retinas.
Bipolar cells (BC) provide excitatory drive to ganglion cells (GC) and
amacrine cells (AC). Amacrine cells, in turn, modulate the GC activity via
presynaptic inhibition of BCs, and direct inhibition of GCs. In both RD and
healthy retina, an intrinsic slow BC oscillator is silent in resting conditions.
In rd1 retina, an additional fast dystrophic AC oscillator is active, and affects
both BC and GC output. Lower panels show GC spiking output at different
conditions. In control conditions, GCs in RD retina show fast bursting
activity driven by the AC oscillator. This fast bursting persists with
nifedipine. In contrast, application of inhibitory blockers
(STR + GZ +TPMPA) unveils the BC oscillator, which is present in both rd1
and wt, but silent in control conditions. Unlike fast oscillations this slow
oscillator is abolished by nifedipine.

2001; Firth et al., 2005). The slow oscillations we observe in both wt
and RD retinas may be driven by these rudimentary BC properties,
which are progressively masked by inhibitory inputs that develop
as the retina matures. The origin of the dystrophic AC oscillator
is less clear. Spiking GABA-ergic ACs can function as a source of
pacemaker activity during early retinal development (Firth and
Feller, 2006). Oscillating ACs in adult retina are less indepen-
dent, however, relying heavily either on presynaptic glutamatergic
inputs (Petit-Jacques et al., 2005) or L-type Ca2+-channels (Vigh
et al., 2003). Oscillations in RD could also arise from an imbalance
in retinal circuitry following photoreceptor death, unmasking res-
onant oscillatory properties of ACs (Steffen et al., 2003; Margolis
and Detwiler, 2011).

NETWORK DEFICIENCY COMPROMISES SIGNAL TRANSMISSION IN RD
Neurodegenerative diseases are widely considered to result in the
loss of specific function. Both experimental and computational
modeling data (Marc et al., 2003) suggest that degeneration can
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also entail a gain of aberrant activity, through remodeling, that
can hinder the function of surviving inner retina. Indeed, our data
demonstrate a significant decline in the ability of inner retina to
transmit evoked responses, showing a decrease in the efficiency
of both photoreceptor cell-dependent (light-evoked) and pho-
toreceptor cell-independent (electrically evoked) activity in rd1
GCs (Figure 9). As expected, light-evoked responses from rd1
GCs at P20–26 were markedly affected by aberrant activity. These
responses were likely driven by cone photoreceptors, since rods
are absent by 3 weeks of age, while cones persist at P60–66 (LaVail
et al., 1997). Rod BC dendrites show visible retraction by P10
(Strettoi et al., 2003), and the reliability of ERG responses decreases
after P15 (Strettoi et al., 2002). Our light-evoked responses were
similarly unreliable in individual traces, but summation and aver-
aging demonstrated their presence. Remaining responses may also
receive contributions from intrinsically photosensitive retinal GCs
(Berson et al., 2002). More importantly, when bypassing diseased
photoreceptors, to assess the function of surviving inner retina,
we found that the transmission of evoked signals was significantly
compromised (Figure 9C). These findings directly demonstrate
that synaptic noise, which increases as inner retinal remodeling
progresses in RD, can exacerbate the visual deficit by reducing the
ability of surviving retina to transmit evoked signals. This noise
is likely to compromise responses not only from surviving pho-
toreceptors, but also those of ipRGCs, which receive inputs from
second-order neurons (Wong et al., 2007) that are affected by RD.
This suggests that eliminating aberrant synaptic noise could be a
potential treatment in itself.

In conclusion, we use several methods to examine the vari-
ety, source, and effects of aberrant activity in RD. Our data

reveal that (i) the presence and properties of aberrant activity
vary between morphological GC classes according to stratifica-
tion and DF size; (ii) aberrant oscillations in RD retina orig-
inate in dACs, while intrinsic BC oscillations are largely unaf-
fected by RD; and (iii) aberrant oscillations compromise sig-
nal transmission through surviving retinal tissue. The question
remains whether the dystrophic changes observed in rd1 mice
are related to the overlap of RD onset with retinal develop-
ment. Recent recordings from GCs in rd10 mice, which have a
much later onset of RD, have shown a similar degree of hyper-
activity between rd1 and rd10 within the corresponding age
groups, indicating that the overlap with development is not a
crucial factor (Stasheff et al., 2011). Characterization of aberrant
activity in rd10 is currently underway in our laboratory, which
will address common and dissimilar features between models of
RD, to further define the mechanisms that lead to physiological
dysfunction.
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