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Quantitative Structure-activity Relationship (QSAR) Models
for Docking Score Correction
Yoshifumi Fukunishi,*[a] Satoshi Yamasaki,[b] Isao Yasumatsu,[b, c] Koh Takeuchi,[a] Takashi Kurosawa,[b, d] and
Haruki Nakamura[e]

1 Introduction

De novo drug design is a key factor in lead optimizations
and the selective optimization of side activities, and the
quantitative structure-activity relationship (QSAR) approach
is a useful tool for predicting target/off-target activities.
QSAR-based affinity predictions are useful for the drug re-
positioning (drug repurposing) of known approved drugs,
poly-pharmacology and the prediction of drug@drug inter-
actions.[1–22] hERG-inhibition and cytochrome P450 (CYP)-in-
hibition predictions represent classical achievements in off-
target predictions, and this kind of target/off-target predic-
tion is known as counter screening. The recent accumula-
tion of protein-compound affinity data in public reposito-
ries, such as the PubChem and ChEMBL projects, has ena-
bled us to carry out proteome-wide target/off-target pre-
dictions.[23,24] These predictions are based on structure-activ-
ity relationship models for multiple proteins, just as in the
conventional computer-aided drug design and virtual
screening.

In a previous study, we attempted affinity and target pre-
dictions of a compound by using docking studies against
multiple proteins. These trials worked well in virtual screen-
ings. However, these methods provided only binary, active/
inactive information and could not provide quantitative af-
finities.[6,9,10] Target/off-target predictions based on QSAR
and counter screening have succeeded in many studies, in-
cluding ours.[4,5,7,8,11–22] However, the somewhat primitive ap-
proach of a similarity search relying on the QSAR model is
not sufficiently versatile. To broaden its applicability, the
similarity search has been improved by considering the
similarity that is shared among different groups of com-

pounds rather than the similarity between two com-
pounds.11 Most QSAR models rely on descriptors with sets
of two-dimensional (2D) substructures ; the most popular
such descriptors are the MDL’s MACCS key and Dragon-X
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(Talete srl, Milano, Italy). Moreover, there have been many
regression models. In our previous studies, we used a pro-
tein-compound affinity matrix as the set of descriptors and
successfully predicted CYP inhibitors and substrates.[7,12]

As an extension of our previous work,[6,7] in the present
study we developed and examined some principal compo-
nent regression-type prediction methods based on the ma-
chine-learning score modification (MSM) method and the
docking score index (DSI: protein-compound affinity
matrix) using public repository data. In the MSM method,
the docking score against a target protein could be correct-
ed by a linear combination of docking scores against multi-
ple nontarget proteins. The DSI of a compound is a set of
docking scores of the compound against multiple target
and nontarget proteins. Here, the nontarget proteins are
used as “probes” to check the three-dimensional (3D)
shape and distribution of the atomic charge of the com-
pound. We applied our methods to kinases of the ChEMBL
database, because kinases form a major protein family that
is key to understanding and controlling cellular signal
transduction, and because their structures have been stud-
ied thoroughly.[25–27]

2 Methods

2.1 Prediction Models

The present method predicts the binding energy (affinity)
of given protein-compound pairs based on the protein-
compound docking scores obtained by a docking program;
this method is a descriptor-based machine-learning or re-
gression method.[6,7,28,29] The present method requires
a learning set of 3D structures of compounds, the binding
energy data between those compounds, and target pro-
teins. Let si

b, Rb
a, and b be the docking score of the i-th

compound, that of the b-th protein, and parameters, re-
spectively. The set of {b} can include the target protein (the
a-th protein). We proposed a score modification method as
follows.[6]

DGa
i ¼

X
b¼1

sb
i ?Ra

b þ b ð1Þ

Here, DGi
a is the binding free energy between the i-th

compound and the a-th protein. Proteins that are similar to
the target protein could bind the ligands of the target pro-
tein. Docking scores correspond to the binding free energy,
and the ensemble average should improve the accuracy.
Thus eq. 1 should work, and indeed, this approximation
was successfully applied to several targets.[6,7,28,29] The score
modification method increased the area under the curve
(AUC) values of the database enrichment curves by 50 %.
Namely, the AUC values of 60–70 % were improved to 80–
90 % in these previous reports. In addition, there is one ad-
vantage to the other conventional QSAR models with ordi-
nary molecular descriptors. One of the most serious prob-

lems of QSAR models is the limited range of applicable do-
mains, since QSAR models cannot work for unexpected
input data.[30] If the docking score is precisely proportional
to the binding free energy without computational error,
DGi

a = si
a. Thus, eq. 1 can work without any experimental af-

finity data and the problem of identifying an applicable
domain is avoided.

In eq. 1, the number of parameters is equal to the
number of proteins. The number of parameters can be re-
duced by principal component regression (PCR). Docking
scores should be a form of some kinds of similarity scores
(see APPENDIX A). Thus, the docking scores could be used
as the descriptors for compounds. If we allow docking
scores as descriptors, the docking score for a target protein
is not needed in eq. 1.

In the present model, the protein-compound binding
energy DGi

a is approximated by the PCR method based on
the protein-compound docking scores si

b. As shown in
Figure 1, we tried six PCR models (Models 1–6) as follows.
In each model, the optimal principal component analysis
(PCA) axis was selected to maximize the q value by the
leave-one-out (LOO) cross-validation test. The selection of
the PCA axis corresponds to the factor rotation.[29]

(Model 1) Linear PCR model

DGa
i ¼

XN

j¼1

ca
j ?pj

i þ b ð2Þ

pj
i ¼
XNp

b¼1

dj
b ? ðsb

i@ < sb >Þ ð3Þ

Here, cj
a, b, p, and db

j are the parameter, offset parameter,
principal component vector, and loading vector, respective-
ly. The h i represents an average. The PCA of the protein-
compound docking score matrix s gives the loading vector
d and the principal component vector (axis) p. The parame-
ters c and b are determined by a multilinear regression
(MLR). Np is the total number of docked proteins and N
(N<Np) is determined to maximize the q-value obtained by
the LOO cross-validations. The parameters are determined
based on the learning set and then are used for prediction.

The protein-compound docking scores si
b were obtained

by the program Sievgene,[31] which is a protein-ligand flexi-
ble docking program for in silico drug screening. Sievgene
is a part of the myPresto system, which is available online
(http://presto.protein.osaka-u.ac.jp/myPresto4/) and is free
for academic use.

(Model 2) Polynomial PCR model

DGa
i ¼

XN

j¼1

ca
j ?pj

i þ
XN

k¼1

XN

j 6¼k

c2a
j ?pj

i ? pk
i þ b ð4Þ
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pj
i ¼
XNp

b¼1

dj
b ? ðsb

i @ < sb >Þ ð5Þ

Here, c2j
a represents the parameter for the second-order

term. We tried only the second-order and did not try the
higher-order polynomials. The other terms and parameters
are defined exactly as in Model 1.

(Model 3) Weighted learning PCR model.

S ¼
XNp

b¼1

ðsb
i @ sb

j Þ2 ð6Þ

S is the distance between the i-th and j-th compounds.
Let Smax(i) = max{S; for all j}. The data of compounds that
satisfy S<x · Smax are replicated M times. In the present
study, x = 0.1, 0.2, 0.3, and 0.5 were examined and M was
set to 1, 2, 4, and 8.

(Model 4) Classified PCR model
In the classified PCR model, the experimental data are

classified into IC50, Ki, and %inhibition data, and the simple
PCR method is applied to each classified data set.

(Model 5) Combined PCR model
This model is a linear combination of the regression

models made by the classified PCR model.

DGa
i ¼

XNtype

m¼1

Cm ? Dga
m þ c0 ð7Þ

Here, Dg, Cm and c0 are the binding free energy obtained
from the m-th data set and the fitting parameters, respec-
tively. The Dg is given by eq. 1, and the coefficient Cm is de-
termined to minimize the root-mean-square difference be-
tween the coefficients of {c} of Dg. In the present study,
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Figure 1. Schematic representation of each principal component regression (PCR) model.
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the experimental data were classified into IC50, Ki, and %in-
hibition data (m = Ki, IC50 and %inhibition). We based this
classification on the individual source of the experimental
data.

(Model 6) Replica and partial-replica PCR models
Cortes-Ciriano et al. suggested that the use of multiple

replica data sets permutated by random noise could im-
prove the QSAR accuracy.[32] In the replica PCR method, the
experimental data and docking scores are replicated by the
permutation of 5 % noise. Also, Steinmetz et al. suggested
that the QSAR result could be improved by considering the
importance of data due to reliability.[33] In the partial-replica
PCR method, experimental DG values <@10 kcal/mol are
replicated by permutation of 2 % noise, since the strong af-
finities of lead-level compounds are observed by multiple
experiments in many cases and should be more reliable
than the weak affinities of hit-level compounds.

2.2 Generation of the Docking Score Index by Protein-
compound Docking

The protein-compound docking scores si
b in all models

were calculated by the protein-compound docking pro-
gram Sievgene.[31] Sievgene generates multiple possible
conformers for each compound and keeps the structures of
target proteins more or less rigid, with the exception that
soft interaction forces can change the structures slightly.
This docking program reconstructed about 50 % of the re-
ceptor-compound complexes in PDB (132 in total) with an
accuracy of less than 2 a root mean square deviation
(RMSD),[31] which is mostly equivalent to the predictions by
other docking programs. In the present study, the Sievgene
program generated up to 100 conformers for each com-
pound, and 200 V 200 V 200 grid potentials were adapted
for all proteins. The pocket regions were suggested by the
coordinates of the original ligands in the receptor-com-
pound complex structures. The details of the docking score
are summarized in Appendix B (Supporting Information). It
takes 3 seconds to dock one compound against one pro-
tein on a single core of the Xeon 5570 CPU (2.98 GHz).

2.3 Data-conversion Method

The protein-compound binding energy DG is calculated
from the Kd value as follows:

DG ¼ kB ? T ? lnðKdÞ ð8Þ

where kB and T are the Boltzmann constant and tempera-
ture.

The experimental Kd and DG values are difficult to obtain
and quite rare in public databases. On the other hand, the
%inhibition, Ki and IC50 values are relatively easy to obtain
and abundant in public databases such as PubChem and
ChEMBL. In the present study, we assumed that Kd = Ki,
since the binding affinities of the natural ligands have been

reported to be much weaker than those of the reported ar-
tificial ligands in many proteins. For the %inhibition and
IC50 data, the conventional approaches are adopted as fol-
lows. The %inhibition value is converted to the Ki value. Let
E, S, P and I be the enzyme, substrate, product and inhibi-
tor, respectively. The inhibition reaction is described as fol-
lows. Here, “K” represents the reaction rate.

E þ S KsK! K ES K2K! E þ P

E þ I KiK! K EI
ð9Þ

When the enzyme reaction is the rate-determining step,
we have

ES! E þ P: ð10Þ

The value of Ks is then derived from the density of the E,
S and ES complexes as follows.

Ks ¼
½EA½SA
½ESA ð11Þ

Here, the bracket [ ] represents the density of molecules.
The reaction speed v is described as follows.

v ¼ Vmax½SA
ð1þ ½IA=KiÞKs þ ½SA ð12Þ

Here, Vmax is the maximum enzyme reaction speed. Let r
be the residual activity; Ki is then given by

Ki ¼
½IA

½SA=r@½SA
Ks
@ 1

ð13Þ

The parameters in eq. 13 must satisfy

r <
½SA=Ks

1þ ½SA=Ks

, ð14Þ

because Ki>0. Here, the %inhibition value is (1@r)*100.
The IC50 value is converted to the Ki value by the Cheng-

Prusoff equation as follows.[20,34] Here, S and Ks are the sub-
strate and the affinity between the enzyme and the sub-
strate.

Ki ¼
IC50

1þ ½SAKs

ð15Þ

Unfortunately, the exact values of [S] , [I] and Ks are not
explicitly described in the assay data of PubChem or
ChEMBL. Thus, we checked some original experimental arti-
cles for their assay data and adopted arbitrary standard
values for [S] , [I] and Ks based on previous reports.[27,28,35–37]
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3 Data Preparation

3.1 Probe Protein Sets with and without Kinase Structures

To generate {s} in Models 1–6 (the DSI or affinity finger-
print), we performed a protein@compound docking simula-
tion based on the soluble protein structures registered in
the Protein Data Bank (PDB). The probe protein set consist-
ed of 600 arbitrarily selected protein structures. These
structures were all protein-ligand complex structures. Some
of them were kinases. For protein sets, the complexes con-
taining a covalent bond between the protein and ligand
were removed, and all missing hydrogen atoms were
added to form the all-atom models of the proteins. All
water molecules and cofactors were removed from the pro-
tein structures. The atomic charges of the proteins were
the same as those in AMBER parm99.[38] The docking
pocket of each protein was indicated by the coordinates of
the original ligand.

3.2 Validation Test Set: Target Proteins and Compounds

The tested compounds and their assay information (com-
pound structures, affinities against kinases) were download-
ed from KinaseSARfari on the ChEMBL website (https://
www.ebi.ac.uk/chembl/).[24] The biochemical assay data,
namely, Ki, IC50, %residual activity and/or %inhibition values
of human kinase protein-inhibitor systems, were also ex-
tracted from the bioactivity table in KinaseSARfari. Assay
data with inadequate energy units or unclear energy values
were excluded. The assay data for large compounds (mass
weight >500 Da) were also excluded, since Sievgene is de-
signed for the docking of small compounds with mass
weights <500 Da.

As target proteins, 97 kinases with more than 50 assay
data points were selected. The 3D structures of the com-
pounds were energy-optimized by cosgene[39] with the
general AMBER force field (GAFF),[40] and the atomic charg-
es were calculated by the MOPAC AM1 model using the
Hgene program of the myPresto suite. Finally, 38,946 assay
data points of 97 kinases and 18,491 compounds were de-
rived. Most of the assay data were IC50 data, with the
second-most common type being %inhibition data, fol-
lowed by Ki and Kd values. These data were converted to
the DG value by using Eqs. 8, 13 and 15. Equations 13 and
15 required the density of the substrate [S] , the density of
the inhibitor [I] , and the reaction rate of the substrate (Ks).
These [S] , [I] and Ks data were not available in the ChEMBL
database. For Eq. 15, we used the [S] and Ks values reported
by Carna Bioscience Inc. (http://www.carnabio.com/english/),
and we used the standard values ([S] : Ks = 1 : 1) in place of
unknown data. For Eq. 13, we used constant values for
some parameters: [S] = 20 mM, [I] = 50 mM and Ks = 1 mM.
And r values greater than 0.95 and less than 0.05 were ig-
nored, since the error of r should be around 5 % and an r
value >1 gave unreasonable DG values. The parameter set

was determined based on several reports of assays includ-
ed in the ChEMBL database.

4 Results and Discussion

4.1 DG Values Obtained from Ki, IC50 and %Inhibition Values

Appendix C (Supporting Information) provides a list of the
target kinases used in the present study and the number of
ligands for each. The kinase names were the domain
names from the KinaseSARfari database in ChEMBL.

The average and standard deviation values of the experi-
mental DG values of the 97 target proteins are summarized
in Table 1, and the data were classified following the data
type. For some kinases, multiple experimental assay data
(Ki, IC50 and %inhibition) were available for the same ligands
of some proteins. The differences between each classified
data type (the DG value calculated from Ki, IC50 and %inhib-
ition data) and the other types of data are summarized in
Table 1. The difference corresponded to the error of the ex-
perimental data converted in the present study by Eqs. 13
and 15.

We simulated the expected correlation coefficient be-
tween the experimental and calculated DG values based on
the statistics summarized in Table 1. We generated a set of
numbers that mimics the experimental DG values whose
average and standard deviation were @9.6 kcal/mol and
2.5 kcal/mol, respectively. Then a random number was
added as experimental error to each simulated experimen-
tal DG value. Also, we generated a set of numbers that
mimics the calculated DG value by adding a random
number as the computational error. The calculated correla-
tion coefficients are summarized in Table 2. In addition, we
performed a set of virtual screenings based on these simu-
lated data. The compounds with experimental DG<
@11 kcal/mol were selected as the active (hit) compounds,
and the others were treated as decoys. Then the com-
pounds were sorted in the order of the calculated DG and
the receiver operating characteristic (ROC) curves were cal-
culated. The area-under-the-curve (AUC) values of the ROC
curves of the simulated virtual screenings are also summar-
ized in Table 2. A higher AUC value corresponds to better
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Table 1. Statistics of DG values (kcal/mol) converted from ChEMBL
data.

Data type Average DG s [a] DGmin [b] DGmax [c] RMSD [d]

Whole @9.67 2.41 @18.51 @0.55 –
Ki/Kd @9.30 1.69 @16.30 @1.34 1.55
IC50 @9.37 2.18 @18.51 @0.55 1.87
Activity @0.88 5.74 @9.35 @4.11 2.58
%inhibition @2.66 4.14 @9.35 @4.11 2.99

[a] The standard deviation of the whole observed data (kcal/mol).
[b] The minimum DG value of the data set (kcal/mol). [c] The maxi-
mum DG value of the data set (kcal/mol). [d] The root mean
square deviation (RMSD) of the multiply-observed data for the
same protein-ligand pairs (kcal/mol)
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prediction, and the AUC value is always more than zero
and less than 100 %. For the random screening, AUC =
50 %.

These correlation coefficients (0.6–0.7) suggested poor
QSARs; on the other hand, the AUC values (AUC = 80–90 %)
showed good virtual screening results.

4.2 Cross-validation Tests of QSAR Models

Each of the compounds that gave assay data for one or
more of the 97 target proteins was docked to all proteins
of a protein set to generate the protein-compound docking
score matrix s. Then we adopted Models 1–6 and the LOO
cross-validation test to calculate the correlation coefficients
R and Q. Figure 2 shows the schematic description of the
LOO cross-validation procedure for models 1–6. In all
models, we performed the simple linear regressions and
obtained an R value for each principal component axis. The
axes were sorted according to their R values. Then, we per-
formed the multiple linear/polynomial regressions adopting
the top m-axes and calculated the R values. The number of
axes that gave the highest R was adopted to construct the
regression model for calculating the DG of the query com-
pound, and the Q value was calculated.

Figure 3 shows the results of the LOO cross-validation
test of three selected kinases. The correlation coefficients
(R) between the experimental and predicted DG values are
summarized in Tables 1 and 3, respectively. Also, the root
mean square error (RMSE) values between the experimental
and predicted DG values are summarized in Table 3.

The machine-learning DSI and MSM methods were score
modification methods in which the new docking scores
were given by the linear combinations of the protein-com-

pound docking scores. The previous works reported the
AUC values of database enrichment curves obtained by the
machine-learning DSI/MTS methods and the AUC values
were about 98 % (in the original works, the AUC values
were referred to as q values). When the number of active
compounds is much smaller than the number of inactive
compounds, the AUC of the database enrichment curve is
close to the AUC of the ROC curve, and the data sets of the
previous works satisfy the condition (number of actives :
number of in-actives = 1 : 1000). Based on Table 2, an AUC
of 98 % corresponded to an R of 0.8–0.9. The R values were
close to the R values obtained by the weighted PCR
models in Table 3. We must note that the data sets used in
the previous studies consisted of high affinity compounds
(e.g. , commercial drugs) as active compounds and decoy
compounds. In the present study, all compounds were
nearly active, and discriminating between strong and weak
active compounds is more difficult than distinguishing
highly active and inactive compounds as in the previous re-
ports. Thus, the present validation tests were much more
strict than those used in the previous studies. In addition,
the previous methods only realized the active/in-active
binary decision in virtual screening. On the other hand, the
present methods could evaluate the binding energy value,
which is essential in drug design.

The simple PCR model (Model 1) worked well, since the
correlation coefficients between the experimental and cal-
culated DG values were close to those obtained by the
mathematical simulation data. Also, the results obtained by
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Table 2. Correlation coefficient (R) and area under the curve (AUC)
of the receiver operating characteristic (ROC) curve by mathemati-
cal simulation.

Error exp [a] Error calc [b] R AUC (%)

0.58 0.82 0.90 97
0.58 1.29 0.79 94
0.58 1.51 0.74 91
0.58 1.83 0.67 88
0.70 0.91 0.88 97
0.70 1.35 0.78 94
0.70 1.55 0.73 92
0.70 1.87 0.66 88
1.16 1.30 0.79 97
1.16 1.64 0.70 93
1.16 1.81 0.66 92
1.16 2.09 0.59 88
1.39 1.51 0.75 97
1.39 1.81 0.66 94
1.39 1.97 0.62 92
1.39 2.23 0.56 88

[a] Simulated experimental error (kcal/mol). [b] Simulated predic-
tion error (kcal/mol).

Figure 2. Schematic representation of the leave-one-out (LOO)
cross-validation procedure for models 1–6. The similarity calcula-
tion and making copy of assay data (in model 6) were applied only
for the weighted principle component regression (PCR) model
(gray boxes). Nc is the number of compounds. For the replica and
partial-replica PCR models, the initial docking scores and set of DG
were replicated.
*: Regression type was polynomial only for the polynomial PCR
model. Otherwise, the regression was a multilinear regression
(MLR).

T 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2017, 36, 1600013 (6 of 9) 1600013

Full Paper www.molinf.com

www.molinf.com


the simple PCR model were close to the averaged correla-
tion coefficient and RMSE values obtained by the docking
study (R = 0.7 and 2–3 kcal/mol). Considering that the pres-
ent model did not require the target protein structure,
even the simple PCR model should be useful for rough af-
finity estimation in 21 % of cases in which Q>0.7 out of
the 97 target proteins.

For the polynomial PCR model, the polynomial was re-
stricted to the second order, since the high-order polyno-
mials require many parameters in the regression equation.
This trial did not improve the correlation to the experimen-
tal data. This suggests that the linear model was sufficient
in the present study.

Figure 3 shows the results obtained by the weighted
PCR model. In the weighted PCR method, the molecule in
the teaching data that was similar to the input molecule
was copied multiple times. The similarity was calculated by
the docking score in eq. 6, and x = 0.1, 0.2, 0.3 and 0.5 were
examined. The weighted PCR method with x = 0.1 and
single or double copies of similar compounds showed the
best correlation to the experimental data. This method re-
quired the same data as the simple PCR model. In addition
to our method, however, it is expected that many other ap-
proaches could be taken to generate the replica data. The
weighted PCR model should be useful for rough affinity es-
timation among these models, and Q>0.7 in 37 % of cases
in the present study. The simple average of Q over the 97
proteins in Table 3 was about 0.64, and the correlation co-
efficient of the DG value of the whole data was 0.76 (see
Figure 3).

The experimental data were classified into IC50, Ki and
%inhibition data sets, and then the classified PCR method
was applied to each. The correlations were improved com-
pared to the other models with unclassified data. We must
note that the Q values obtained by the classified PCR
model cannot be simply compared to those obtained by
the other models, since there were fewer classified experi-
mental data than unclassified data.

The combined PCR method did not improve the correla-
tion between the experimental and calculated DG values
compared to the simple PCR model. In particular, in some
cases, the combined PCR model generated unrealistic DG
values with extreme computational error (>106 kcal/mol).
In 9 cases (9 %), the RMSE values obtained by the com-
bined PCR model were <1 kcal/mol, while only three RMSE
values obtained by the weighted PCR model were <1 kcal/
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Table 3. Average correlation coefficient (R/Q) between the experi-
mental data and the calculated data obtained by the six regression
models over all 79 proteins.

Model R
[a]

RMSE
[b]

Q [c] RMSE
[d]

Simple PCR model 0.81 1.17 0.63 1.58
Polynomial PCR model 0.69 1.47 0.58 1.66

Replica PCR model

NR [e]
1 0.81 1.17 0.63 1.59
2 0.81 1.17 0.63 1.59
5 0.81 1.17 0.62 1.60
10 0.81 1.17 0.60 1.64

Partial-replica PCR
model

NR [e]
1 0.82 1.19 0.63 1.59
2 0.82 1.16 0.63 1.59
5 0.82 3.26 0.62 1.60
10 0.82 1.19 0.60 1.63

Weighted PCR model

x NR [e]

0.1

1 0.89 0.87 0.66 1.54
2 0.89 0.87 0.66 1.54
4 0.89 0.87 0.66 1.54
8 0.89 0.87 0.65 1.56

0.2

1 0.89 0.87 0.66 1.54
2 0.89 0.87 0.65 1.55
4 0.89 0.87 0.65 1.55
8 0.89 0.87 0.64 1.57

0.3

1 0.89 0.87 0.65 1.54
2 0.89 0.87 0.65 1.55
4 0.89 0.87 0.65 1.56
8 0.89 0.87 0.64 1.58

0.5

1 0.89 0.87 0.65 1.54
2 0.89 0.87 0.65 1.55
4 0.89 0.87 0.64 1.56
8 0.89 0.87 0.63 1.58

Classified PCR 0.92 0.42 0.71 0.98
Combined PCR 0.92 0.42 0.61 [f] ND [f]

[a] Average correlation coefficient between the experimental and
calculated data. [b] Average root mean square deviation (RMSD)
error between the experimental and calculated data (kcal/mol). [c]
Average correlation coefficient between the experimental and cal-
culated data obtained by the leave-one-out (LOO) cross-validation
test. [d] Average RMSD error between the experimental and calcu-
lated data obtained by the LOO cross-validation test (kcal/mol). [e]
Number of replicas. [f] In 12 cases out of 97 proteins, the root
mean square deviation error (RMSE)>106.

Figure 3. Correlation between the experimental and prediction
data for all 97 kinase proteins obtained by the weighted PCR
model with x = 0.1 and the number of replicas = 1. Black dots rep-
resent the least-squares fitting line, and the correlation coefficient
is 0.76. The dotted line represents the fitted result.
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mol (3 %). This result suggested that a deep learning
method that considers the study from which the data was
sourced should work better than the method employed in
the present study, and that the data manipulation should
be performed carefully while considering the applicable
domain of the model.

The replica PCR and partial-replica PCR models did not
work in the present study. The greater the number of repli-
cas, the lower the correlation coefficients became. Since
this study was a single trial with simple random noise, the
results do not contradict those of the previous works.[32,33]

The duplication of data should be treated more carefully
than it is in the simple duplication.

5 Conclusions

In order to achieve docking score correction, we developed
several QSAR models based on combinations of multiple
docking scores by protein-drug docking simulations and
applied heterogeneous public data to these models. The
prediction models employed a descriptor-based PCR, and
the compound descriptor was a set of docking scores
against many nontarget proteins (DSI, protein-compound
affinity matrix or affinity fingerprint). We tried six variations
of the PCR models: simple, polynomial, weighted, classified,
replica PCR and combined PCR models.

Even the simple PCR model worked in some cases, but
when the assay data were classified into IC50, Ki and %inhib-
ition data, the classified PCR model worked better than the
simple PCR model. The linear combination of the QSAR
models (combined PCR model) did not improve the results
compared to the simple PCR. Although the weighted PCR
model was simple, it achieved the same results as the more
complex combined PCR model. In general, the weighted
PCR model should be easier and more accurate than the
other models. In cases in which the original sources of the
assay data are easily accessible, the classified/combined
PCR models could be used for further analysis with careful
data treatment. Although it was difficult to compare the
present results to those obtained by previous studies, in-
cluding studies using the DSI method with a linear combi-
nation of docking scores, the comparison of the R and AUC
values suggested that the prediction of active compounds
by the present models should be comparable to that ach-
ieved in the previous study. However, considering the dif-
ference of the datasets, the method introduced in the pres-
ent study should be superior to the previous method. In
addition, the present method affords DG prediction.

In the present study, the docking scores against target
proteins were omitted. The QSAR models could be im-
proved by the addition of the docking scores that were de-
scriptors of the models. Thus, the present models should
be effective for the correction of docking scores.

Supporting Information

The compound structures in SDF format and experimental
assay data were supplied as described in the supporting in-
formation.

Abbreviations

QSAR quantitative structure-activity relationship
DSI docking score index
MSM machine-learning score modification
MTS multiple target screening
LOO leave-one-out
PCA principal component analysis
PCR principal component regression
MLR multilinear regression
AUC area under the curve
ROC receiver operating characteristic

Appendix A

Suppose f (= {f1, f2, f3,…..}) is a set of all pharmacophores.
Each pharmacophore (fi) is virtual and the total number of
pharmacophores is infinite. Both the protein pocket and
compound can be described by the pharmacophore. Each
protein pocket p and compound c is projected into the
pharmacophore space. The vector product of c1*c2 for
compounds c1 and c2 gives the similarity between the
compounds, and the vector product p1*p2 for pockets p1
and p2 should give the similarity between the pockets.
Since c and p exist in the same space, the vector product
p*c corresponds to the similarity between the compound
c and pocket p, and it could correspond to the docking
score.
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