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Effect of HO‑1‑modified BMMSCs 
on immune function in liver 
transplantation
Peng Li1,5, Yuyi Zhang2*, Qiongxia Li3,5 & Yubo Zhang4*

We examined whether haem oxygenase‑1 (HO‑1) could enhance the immunosuppressive effects of 
bone marrow mesenchymal stem cells (BMMSCs) on the rejection of transplanted liver allografts 
in rats. The animals were divided into three groups: the normal saline (NS) group, BMMSC group 
and HO‑1/BMMSCs group. In vitro, the extraction, culture and HO‑1 transfection of BMMSCs were 
performed. Mixed lymphocyte response (MLR) analysis of HO‑1/BMMSCs efficacy was performed. The 
rejection model of orthotopic liver transplantation in rats was established when BMMSCs and HO‑1/
BMMSCs were transfused via the portal vein. To reduce research bias, we established an isogenic 
Liver transplantation model of (LEW → LEW) and (BN → BN), which can achieve tolerance. Changes 
in histopathology and liver function in the transplanted liver and changes in regulatory T cell (Tregs), 
natural killer (NK) cells and cytokines after transplantation were observed in the different groups. 
The severe acute rejection after liver transplantation on postoperative Day 10 was observed in the NS 
group. The BMMSC group showed strong protective effects against rejection within the first 10 days 
after transplantation, while HO‑1/BMMSCs showed stronger effects on rejection than BMMSCs alone. 
In addition, the activity of natural killer (NK) cells decreased significantly, the levels of regulatory T 
cells (Tregs), interleukin‑10 (IL‑10) and transforming growth factor‑β (TGF‑β) increased significantly 
and the levels of interleukin‑2 (IL‑2), interleukin‑6 (IL‑6), interleukin‑17 (IL‑17), interleukin‑23 (IL‑23), 
tumour necrosis factor‑α (TNF‑α) and interferon‑γ (IFN‑γ) decreased significantly in the HO‑1/BMMSC 
group compared with the BMMSC group. HO‑1/BMMSCs showed better immunosuppressive effects 
after liver transplantation than the other treatments. Our findings reveal that HO‑1 can enhance the 
effects of BMMSCs on inhibiting acute rejection in orthotopic liver transplantation in rats.

Liver transplantation (LT) is an effective treatment for patients with liver failure and end-stage liver disease. 
However, the rejection of liver transplantation is obvious. The existing immunosuppressive treatments are effec-
tive but bring some side effects, such as malignant tumours and infections, which affect the long-term survival 
rates of liver transplant recipients and restrict LT activity.

Immune tolerance is a long-term, nonresponsive state of the recipient’s immune system to the allograft and 
a normal immune response to other foreign antigens. Therefore, how to induce durable and drug-free immune 
tolerance is an urgent problem to be  solved1.

Bone marrow mesenchymal stem cells (BMMSCs) have important application value in organ  transplantation2. 
BMMSC have low immunogenicity and a certain effect on inhibiting T cell-mediated immune rejection after 
organ  transplantation3,4. These cells can secrete some immunosuppressive cytokines, such as interleukin-10 (IL-
10) and transforming growth factor-β (TGF-β), and interfere with helper T lymphocyte differentiation to induce 
immune  tolerance5,6. This is a promising treatment strategy. However, it has also been reported that the effect 
of BMMSC infusion alone on tissues is low, and studies have shown that genetic engineering of BMMSC is a 
more effective  method7. HO-1 is an immunomodulatory factor involved in the regulation of immune tolerance 
after organ  transplantation8. HO-1 can be transfected into BMMSC to enhance their immunomodulatory and 
antioxidant capacity while also prolonging their action  time9.
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BMMSC and HO-1 are immunoprotective in liver transplantation. Therefore, based on the findings of previ-
ous studies, we hypothesized that HO-1 could cooperate with BMMSCs to play a protective role in grafts. In this 
study, the rat HO-1 gene was transfected into BMMSC to form HO-1/BMMSCs in vitro and subsequently study 
its effect on orthotopic rat liver transplantation. We examined whether HO-1 could enhance the regulatory effect 
of BMMSC on transplant immunity and its potential mechanism.

Results
Culture and identification of BN rat BMMSCs. Rat BMMSCs were successfully cultured and expanded 
in vitro. ① The cells adherently grew. The cells after being passaged were long, fusiform and arranged in a vortex 
or chrysanthemum shape with typical BMMSCs morphological features (Fig. 1A). ② The cells could differenti-
ate into adipocytes (oil red O staining showing red lipid droplets in the cytoplasm, Fig.  1B) and osteoblasts 
(von Kossa staining showing black calcium in cells) (Fig. 1C). ③ Analysis of cell surface markers showed the 
expression of  CD29+CD34−,  CD90+CD45− and  RT1A+RT1B− in 99.5%,99.8% and 98.5% of cells, respectively 
(Fig. 1G–I).

Recombinant adenoviral vector‑mediated transfer of the HO‑1 gene to BMMSCs and its effi‑
cacy. BMMSCs were infected with recombinant adenovirus expressing HO-1, and the GFP gene was used as 
a reference. The cells were observed 48 h after infection. GFP expression in the cells was > 80% by fluorescence 
microscopy (Fig. 1D). Ad-HO-1 was identified by immunocytochemical staining. Red-labelled HO-1 expression 
in the HO-1/BMMSC group (Fig. 1F) was significantly higher than that in the BMMSC group (Fig. 1E). The 
expression of the HO-1 gene was upregulated, and the expression level was approximately 5 times that of the 
control group. HO-1/BMMSCs accumulated in the transplanted liver until 24 days after surgery (Fig. 1J). These 
results indicate that adenovirus-mediated HO-1 was successfully expressed in BMMSCs and was the foundation 
for the next experiment.

The mixed lymphocyte reaction (MLR) results. In the MLR experiment, we found that the BMMSC 
group had significantly inhibited lymphocyte proliferation, and the inhibition rate was as high as 49.37%, while 
in the HO-1/BMMSC group, the inhibition rate was as high as 77.22%, showing a stronger inhibitory effect 
(Fig. 2). Compared with the NS group, there was a significant difference (P < 0.05).

A liver transplantation rejection model (BN → LEW) was successfully established. In the NS 
group, during the first two days after surgery, spirit, diet, drinking and activity were normal. From the fifth 
day after surgery, 15 rats began to exhibit reduced intake, weight loss, reduced mental condition, and gradually 
darker urine colour. Alertness to stimulation in the surrounding environment decreased obviously. On the 7th 
day, most rats experienced spiritual malaise, significant weight loss, messy hair, and darker urine. On the 10th 
day, the animals were unwilling to move by themselves. They were insensitive to environmental stimuli and con-
spicuously emasculated. Their urine was dark yellow. Their fur began to fall off, and most of the animals died. In 
the BMMSC group, mental status and appetite remained normal until the 10th day, and body weight gradually 
increased. From the 10th day, 11 rats began to exhibit reduced intake, weight loss, reduced mental conditions, 
and gradually darker urine colour. Alertness to stimuli in the surrounding environment decreased obviously. By 
the 15th day, most of the rats died. In brief, the acute rejection symptoms of the recipients were reduced to some 
extent, and the mental state, activity, survival rate and response to external stimuli were improved, but the overall 
effect was still not very satisfactory. The observations in the HO-1/BMMSC group were very encouraging and 
most of the recipients survived well without typical symptoms of acute rejection. The mental status and appetite 

Figure 1.  Morphology, characteristics, phenotype and HO-1 transfection of BMMSCs. (A) The morphology 
of BMMSCs in the third generation (×100). (B) Adipogenic analysis of BMMSCs. (C) Osteogenic verification 
of BMMSCs (×200). (D) Dark field image of BMMSCs transfected with HO-1 (×100). (E) HO-1 expression in 
BMMSCs without HO-1 transfection. (F) HO-1 expression in BMMSCs transfected with HO-1. The expression 
level was significantly higher than that in the untransfected group (×200).The phenotype of BMMSCs was 
examined. (G) The positive rate of  CD29+CD34+ cells. (H)  CD90+CD45+ cells were 99.8%, (I) The positive rate 
of  RT1A+RT1B− was 98.5% (Red in E). (F) indicates HO-1 protein staining, Blue indicates nuclear staining. (J) 
The black arrow indicates HO-1/BMMSCs in the transplanted liver.
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of rats in the HO/BMMSC group remained normal until 20 days after surgery, and their body weight gradually 
increased. On the 20th day, a few rats began to exhibit reduced intake, weight loss, reduced mental conditions, 
and a darker urine colour. Alertness to stimuli in the surrounding environment decreased obviously. By the 25th 
day, most of the rats died. These results are shown in Table 1. During the entire observation period, the median 
survival time was 10 days in the NS group, 15 days in the BMMSC group and 24 days in the HO-1/BMMSC 
group. HO-1/BMMSC treatment further improved the survival rates of transplanted rats. The difference was 
statistically significant compared with that in the BMMSC group.

Pathological manifestations and liver function of the transplanted livers in each group. Accord-
ing to the Banff criteria, the transplanted liver in the NS Group 10 days after the operation showed severe rejec-
tion with mixed lymphocyte infiltration in the portal vein area, inflammation and destruction in interlobular bile 
duct, inflammatory cell infiltration under the interlobular vein and central vein endothelium, and hepatocyte 
necrosis (Fig. 3A). In the BMMSC group, only mild rejection was observed. Pathological examination showed 
that a small amount of lymphocyte infiltration occurred in the portal area. Bile duct epithelial cell degeneration 
and cholangitis were rarely observed. Interlobular phlebitis was not common (Fig. 3B). Compared with that in 
the other two groups, there was no obvious immune rejection or pathological damage in the HO-1/BMMSC 
group, which was close to normal (Fig. 3C). The liver function of the recipients in the HO-1/BMMSC group 
was significantly better than that in the NS group and BMMSC group. The difference was statistically significant 
(Table 2).

HO‑1 overexpression in BMMSCs induces persistent high levels of splenic Tregs in rats. Flow 
cytometry showed that the HO-1/BMMSC group had significantly increased the levels of  CD4+CD25+Foxp3+ 

Figure 2.  Differences in MLR between recipient treatment groups. The HO-1/BMMSC group compared with 
the BMMSC group (bP < 0.05). The BMMSC group compared with the NS group (aP < 0.05). The HO-1/BMMSC 
group compared with the NS group (abP < 0.05).

Table 1.  Clinical evaluation after LT. N = No rejection, R = Rejection,  R+ = Aggravation of rejection,  N− in the 
NS group = 15 rats showed some signs of rejection.  N− in the BMMSC group = 11 rats showed some signs of 
rejection.

Treatment 0 d 1 d 5 d 7 d 10 d

NS N N N- R R+

BMMSCs N N N N N-

HO-1/BMMSCs N N N N N

Figure 3.  Pathological findings of LT in each group (×100). (A) NS Group. (B) BMMSC group. (C) HO-1/
BMMSC Group.
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Tregs, which peaked at the 7th day and fell at the 10th day (Fig. 4A). The Treg ratios in the BMMSC and NS 
groups are presented in Fig. 4B. The Treg levels in the HO-1/BMMSC group showed a rapid and steady increase 
and remained high on the 10th day. Statistical analysis showed that the HO-1/BMMSC group had further 
increased Treg levels compared with the BMMSC group, especially on the 10th day. The difference was statisti-
cally significant (Fig. 4B).

Overexpression of HO‑1 enhances the production of cytokines in rat serum by BMMSCs 
(Fig. 5). The ELISA results showed that the expression levels of cytokines related to anti-inflammatory effects 
or Treg differentiation, such as IL-10 and TGF-β, were further increased in the HO-1/BMMSC group compared 
with the NS group and BMMSC group. The increases in IL-2, TNF-α and IFN-γ related to proinflammatory or 
Th17 cell differentiation were significantly smaller than those in the BMMSC and NS groups. IL-6, IL-17 and 
IL-23 levels in the HO-1/BMMSC group showed a decrease or small fluctuations but did not decrease first and 
then increase, as they did in the BMMSC group, and the total expression levels of IL-6, IL-17 and IL-23 were 
significantly lower than those in the BMMSC and NS groups. The difference was statistically significant.

Overexpression of HO‑1 enhanced the inhibition of NK cell activity in BMMSCs (Fig. 6). Although 
BMMSC treatment significantly inhibited NK cell activity in the BMMSC group, NK cell activity still showed a 
significant increase at 7 and 10 days. The activity of NK cells in the HO-1/BMMSC group did not significantly 
increase during the observation period but only fluctuated around normal levels. Statistical analysis showed that 
NK cell activity was further reduced to near normal levels in the HO-1/BMMSC group, and the difference was 
statistically significant (Fig. 6).

Liver transplantation rejection in the syngraft model was not established 
(LEW → LEW,BN → BN). To reduce research bias, we established models of (LEW → LEW) and 
(BN → BN) in 20 rats (10 pairs). The mental status, activity, diet and water intake of each group were very good, 
with no weight loss and normal liver function. The average survival times were more than 120 days. These results 
indicated that the syngraft model had no obvious rejection and that immune tolerance was achieved. Therefore, 
the positive effect of HO-1/BMMSCs was reflected in the allogeneic LT from the syngraft model.

Discussion
Liver is the organ of preferential immune caused by its special anatomy and immunological characteristics 
compared with other solid organ transplantation. Clinical liver transplant rejection has been well controlled 
despite the development of new immunosuppressants, but the incidence of rejection is still in existence. The 
1-year, 3-year and 5-year graft survival rates after orthotopic liver transplant are 89.6%, 80.8% and 72.8%, while 

Table 2.  The liver function of the recipients at 10 days after liver transplantation (mean ± SD, n = 5). a BMMSC 
group compared with NS group (P < 0.05). bHO-1/BMMSC group compared with BMMSC group(P < 0.05). 
abHO-1/BMMSC group compared with control group (P < 0.01).

Treatment TBiL (μmol/L) ALT (IU/L) AST (IU/L)

NS 187.6 ± 38.6 393.2 ± 33.9 361.8 ± 59.6

BMMSCs 51.7 ± 6.2a 135.4 ± 8.5a 113.4 ± 11.6a

HO-1/BMMSCs 13.6 ± 4.3ab 28.2 ± 4.5ab 20.3 ± 7.5ab

Figure 4.  The level of Tregs in recipient spleens. (A) Scatter plot showing Tregs in the spleen in the HO-1/
BMMSC group at different time points after the operation. (B) Treg ratios of rats in each group (compared with 
the NS group, P < 0.05; compared with BMMSC group, P < 0.05).
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Figure 5.  Serum levels of various cytokines. aP < 0.05, compared with the NS group. bP < 0.05, compared with 
the BMMSC group. cP < 0.05, compared with the HO-1/BMMSC group.

Figure 6.  NK cells activity. aP < 0.05, compared with the NS group. bP < 0.05, compared with the BMMSC group.
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the 1-year, 3-year and 5-year patient survival rates are 91.8%, 83.8% and 76.1%,  respectively10. The long-term 
use of immunosuppressive agents increases the risk of adverse reactions such as hypertension, nephrotoxicity, 
neurotoxicity, postoperative tumours, and metabolic  diseases11. Surgical factors in LT such as liver perfusion, 
resection or vascular anastomosis affect the postoperative survival rate.We established a standardized surgical 
process through previous continuous training in the model of BN → LEW,LEW → BN,BN → BN,LEW → LE
W. We found that isotransplantation has no rejection but allotransplantation occurred rejection approximately 
1 week after surgery. BN → LEW has more severe rejection and was more suitable model for research. Therefore, 
it is necessary to find a new immunosuppressive strategy with few adverse reactions.

Because of their low immunogenicity, low antigen-presenting ability and unique immunomodulatory effects, 
mesenchymal stem cell(MSC) can affect the immune system, such as T cells, B cells, NK cells, monocytes 
and dendritic cells, in vivo and in vitro12–14, thereby evading immune recognition and suppressing immune 
 responses15. At present, MSC have been used in almost all basic research of organ transplantation, and MSC 
transplanted in vivo have homing characteristics. Under the effect of various factors, exogenous or autologous 
MSC can directly migrate and colonize targeted  tissues16,17. MSC have also been shown to play an important role 
in reducing transplant immune tolerance in organ  transplantation18.

MSC can migrate to the inflamed colon and exert anti-inflammatory and immunoregulatory  effects19, but 
their intestinal colonization rate is extremely low, and MSC are considered to be at least partially therapeutic 
by paracrine mechanisms. Furthermore, due to ischaemia, hypoxia and inflammatory reactions in local tissues, 
the survival rate of MSC after transplantation is extremely low, and the number of surviving cells at 4 days after 
transplantation is significantly decreased, while less than 1% of cells survive more than 1  week20. Regardless of 
the way MSC exert their reparative, anti-inflammatory, and immunomodulatory effects, their effects are severely 
limited by low survival in vivo. In the BMMSC treatment group, pathological examination at 10 days showed that 
the tissue structure was severely damaged, a large number of inflammatory cells had infiltrated and apoptotic 
cells were increased significantly, indicating moderate to severe rejection. Although the rejection extent was 
lower than that in the NS group, the survival and pathological changes of the recipient rats were significantly 
worse than before. The various test results suggested that the BMMSC group did not maintain good inhibi-
tion of NK cell activity, regulation of cytokine expression levels and the induction of Treg production within 
1 week. HO-1 is an inducible form of HO, a cytoprotective enzyme that protects cells by inhibiting inflamma-
tory, antiapoptotic, and oxidative stress effect and ischaemia/reperfusion  injury21,22. HO-1/BMMSC improved 
allogeneic LT outcomes by attenuating inflammatory responses and acute cellular rejection, as well as enhancing 
immunomodulatory effects, compared with BMMSC. However, the mechanism by which HO-1 helps BMMSC 
attenuate the inflammatory response and acute rejection is  unclear23. Our research showed that HO-1 also has 
protective and reparative effects on intestinal damage due to various causes, the main mechanisms of which 
include antioxidation, anti-inflammatory, antiapoptosis and the regulation of  microcirculation24,25. In addition, 
HO-1 has a regulatory effect that can attenuate MSC apoptosis under hypoxia and oxidative  stress26. However, 
in organ transplantation, HO-1 also reduces rejection, prolongs graft survival times and even induces graft 
immune  tolerance27,28. In this study, BMMSC were genetically engineered to express HO-1. HO-1 transfection 
can improve the transformation and antioxidant capacity of BMMSC to improve the survival and proliferation 
ability of BMMSC. On the one hand, it was thought that the cytoprotective enzyme could improve the survival 
rate of BMMSC in liver-transplanted rats. On the other hand, it was thought that both HO-1 and BMMSC could 
exert inhibitory effects and a stronger immunosuppressive effect to better control liver transplant rejection. NK 
cells are one of the effector cells involved in liver transplant rejection. In the presence of untreated BMMSCs, 
the activity of NK cells was significantly decreased, but it still showed an upwards trend. After treatment with 
gene-transfected cells (HO-1 was used), the activity of NK cells was inhibited within the normal range and did 
not increase significantly. We hypothesize that this occurred because BMMSC prolonged the survival time in vivo 
and exerted a more sustained immunosuppressive effect. This effect may also be associated with immune regula-
tion by HO-1 overexpression. HO-1 enhanced and prolonged the effects of BMMSC on acute rejection following 
reduced-size liver transplantation, with immunomodulatory effects in which adaptive and innate immunity, as 
well as paracrine signalling, may play important  roles29. However, there are certain limitations in the viability 
and homing ability of BMMSC. Even after the transplantation of BMMSC in the lesion site, most of the cells die 
within a few hours. Selecting suitable genes to modify BMMSC may be an effective way to improve efficacy. The 
analysis of GFP expression in the transfected BMMSC confirmed that HO-1 had been successfully transferred 
into BMMSC. Adenovirus is often used as the vector for target genes, which has the advantage of high transfec-
tion efficiency in dividing and nondividing cells. However, the DNA carried by adenovirus exists freely in the 
cytoplasm and is not integrated into the genome, which makes the target gene unstable. With passage and the 
culture of cells, the target gene will be lost, which is a disadvantage of using adenovirus. However, if the cell is 
stable and not passaged, it can still produce a stable effect of the target gene.

The morphology, surface phenotype and differentiation potential of transgenic BMMSC showed that the 
transfected BMMSC retained the basic characteristics of normal BMMSC. The transfected genes did not affect 
the basic characteristics of BMMSC. These results fully confirmed that we successfully obtained BMMSC with 
basic characteristics through genetic engineering. The efficacy of HO-1/BMMSC was demonstrated in vitro by 
MLR assays.

In organ transplantation, graft rejection is a T cell-mediated immune response to donor antigens. Th1, Th2, 
Th17, Treg cells and other  CD4+ Th cells have different immune effects. The ratios of Th1/Th2 and Th17/Treg 
cells play important roles in regulating the T cell immune  response30. Th1 cells mainly secrete IL-2, IFN-γ and 
TNF-α, while Th2 cells mainly secrete IL-2, IFN-γ, TNF-α, IL-4, IL-10 and IL-13. The Th1/Th2 ratio and related 
cytokines are often used to explain immune-related phenomena in organ  transplantation31. Th17 cells are char-
acterized by the secretion of the cytokines IL-17, IL-21 and IL-22. Their differentiation requires the participa-
tion of TGF-β and IL-6, and the stabilization of this phenotype requires IL-23, TNF-α and IL-1β32. Tregs can 
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produce anti-inflammatory effects and promote self-tolerance by secreting IL-10 and TGF-β. Th17 cells and their 
cytokines IL-6, IL-17 and IL-23 may mediate transplantation  rejection33. Tregs may prevent rejection and even 
induce the maintenance of immune  tolerance34. The immunoregulation of BMMSC is related to the amplification 
of Tregs. In some studies, MSC can induce  Foxp3+ and Treg-dependent  tolerance35.

In this study, inflammation and Th cell differentiation-related cytokines were significantly changed in response 
to treatment with BMMSC and HO-1/BMMSC. Specifically, the concentrations of IL-10 and TGF-β increased 
significantly, while the concentrations of IL-2, IL-6, IL-17, IL-23, TNF-α and IFN-γ decreased significantly. Com-
pared with BMMSC group, HO-1/BMMSC group had increased expression of IL-10 and TGF-β and decreased 
expression of IL-2, IL-6, IL-17, IL-23, TNF-α and IFN-γ, and the rising trend in IL-6, IL-17 and IL-23 was 
reversed to some extent. The change in Tregs was also significant. HO-1/BMMSC upregulated Treg expression, 
which was stable and lasting. We hypothesized that these effects were related to protecting BMMSC and enhanc-
ing the immune regulation of HO-1.

In the BN → BN,LEW → LEW model, we assessed for rejection with clinical parameters such as the mental 
status, activity, diet, water intake, weight, and so on. These results indicated that the syngraft model has no obvi-
ous rejection occurred and immune tolerance was achieved finally. Therefore, to obtain transplanted liver by 
relaparotomy and perform histopathological examination were not necessary so as to avoid waste of experimental 
resources. Naturally, the Banff as an histopathological evaluation criteria for rejection was not needed to use in 
the syngraft model. Due to immune tolerance, transfection of BMMSC and BMMSC/HO-1 into the syngeneic 
transplantation group is of little scientific significance. The syngraft model also revealed from the opposite side 
that HO-1/BMMSC play a very important role in inhibiting rejection in allotransplantation of the liver.

In summary, compared to that of BMMSC alone, HO-1/BMMSC-mediated inhibition of liver transplant 
rejection was stronger and lasted longer, possibly due to the interaction between NK cells, Tregs, and relevant 
cytokines.

Materials. DMEM/F12 (1:1) (HyClone, USA), foetal bovine serum (PAA, Australia), glutamate, penicillin/
streptomycin double-antibody (Gibco, USA), trypsin, dimethyl sulfoxide, phosphate buffer solution (Sigma, 
USA), 10× red blood cell lysis buffer (BD, USA), rat IL-10, TGF-β, IL-2, IL-17, IL-23, and TNF-α kits (Santa 
Cruz Biotechnology, USA), recombinant adenovirus expressing rat HO-1 (Shanghai Jikai Gene Chemical Tech-
nology Co. Ltd, China). 3H-TdR (Shanghai Institute of Atomic Energy), a Leica 0269 surgical microscope (Leica 
microsystems AG, Germany), microsurgical instruments (Admiralty Medical Devices, China), an upright flu-
orescence microscope (Nikon Ni-U, Japan), a flow cytometer (BD FACSCalibur, USA), an enzyme standard 
instrument (Bio Tek Synergy 2, USA), and a Centricon Plus-20 centrifugal ultrafiltration device (Millipore, 
USA) were used.

Animal experimental groups. Experimental animals were purchased and maintained in our Experimen-
tal Animal Centre under specific pathogen-free conditions. The procedures for the use of rats in this study were 
approved by the Animal Care and Ethics Committee of Hubei University of Medicine. Healthy male BN rats 
(RT-1n) and male Lewis rats (RT-11) (BN rats weighing 180–200 g and Lewis rats weighing 200–220 g) were used. 
The animals were placed in an environment with a 12-h light–dark cycle and were fed adaptively for 7 days. BN 
rats were used as donors, and Lewis rats were used as recipients to establish an allogeneic acute rejection model 
(BN → LEW). Rats were injected with NS or cells via the dorsal penile vein before the operation. The animals 
were divided into three groups: NS group, BMMSC group and HO-1/BMMSC group. A total of 70 rats (35 pairs) 
were operated on in each group. At 0, 1, 5, 7, and 10 days, five rats were randomly selected for study. Survival 
time, clinical evolutions and body weight were observed for the rest of the rats. The experimental group was 
administered 5 ×  106/ml cells (1 ml/rat). The control group was given NS (1 ml/rat). The rats were euthanized 
at 10 days after transplantation, and peripheral venous blood and tissue samples were collected. The rats were 
handled according to the recommendations in the ARRIVE guidelines.

The establishment of liver transplantation model. Orthotopic liver transplantation was performed 
according to previous  studies36. Anaesthesia was induced by an intraperitoneal injection of 5% chloral hydrate 
in the donor. We incised the abdomen, dissociated the liver peripheral ligament and separated the portal vein 
and hepatic inferior vena cava. We incised the common bile duct and placed biliary stents into it. We punctured 
the portal vein to perfuse lactate Ringer’s solution. We cut off the suprahepatic and infrahepatic inferior vena 
cava as outflow. When the liver was a dusty yellow colour, the portal vein and common hepatic artery were cut 
off, and the donor liver was excised and removed. The tissues around the suprahepatic and infrahepatic inferior 
vena cava were trimmed. The donor liver was stored at 4 °C in lactate Ringer’s solution for transplantation. When 
the portal vein, suprahepatic and infrahepatic inferior vena cava and proper hepatic artery were removed, the 
recipient liver was removed. The donor liver was placed. The portal vein and infrahepatic inferior vena cava 
were anastomosed with a cuff. The suprahepatic inferior vena cava was anastomosed along the diaphragm ring 
with an end-to-end running suture. The donor bile duct stent was inserted into the recipient common bile duct 
and fixed. The greater omentum covered the bile duct junction. The donor common hepatic artery was anasto-
mosed to the recipient proper hepatic artery. After checking that the cuff was not twisted and suprahepatic and 
infrahepatic inferior vena cava had no leakage, the abdominal cavity was flushed and the abdomen was closed. 
HO-1/BMMSCs and BMMSCs (5 ×  106/ml) were infused via the portal vein during the operation. Postoperative 
care involved feeding in a single cage after surgery, drinking freely after waking and eating freely after 12 h. The 
cage was cleaned and disinfected regularly, and the dressing was changed to keep the wound clean. The survival 
state, clinical body weight, liver function, and survival time in each group after transplantation were observed. 
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We observed the American Veterinary Medical Association (AVMA) Guidelines for the Euthanasia of Animals 
(2020).

Extraction, culture and HO‑1 transfection of BMMSCs and their efficacy. The source of BMMSCs 
were BN rats. BMMSCs were verified based on our previous  research36. HO-1/BMMSCs were constructed by 
incubating third-generation BMMSCs with recombinant adenovirus containing the HO-1 gene. Modification of 
BMMSCs with the HO-1 gene can improve their tolerance of hypoxia and reoxygenation injury and their sur-
vival and proliferative abilities. The adenovirus was packaged and transfected into 293 T cells. The supernatant 
containing the virus was collected and purified by ultrafiltration using a Centricon Plus-20 centrifugal ultrafil-
tration device (Millipore, USA). The viral titre was 5 ×  108 TU/mL by the hole dilution method. We observed 
and counted BMMSCs expressing green fluorescence under a fluorescence microscope. We found that the fluo-
rescence expression rate at an MOI of 10 was the best. Therefore, we chose an MOI value of 10 to complete the 
subsequent experiments. Twenty-five days after liver transplantation, fresh liver tissue was collected and made 
into frozen slices. The dense distribution of HO-1/BMMSCs was observed under a fluorescence microscope to 
verify treatment efficacy. The expression of HO-1 in HO-1/BMMSCs was detected by cytochemical staining and 
a semiquantification method that was performed in a blinded manner. A sterilized cover slip was placed in the 
bottom of a sterile Petri dish, and 5 ml of adenovirus-loaded HO-1 was added to the stained BMMSC suspension 
(density 1 ×  106/ml) in the culture dish. After the cells were grown and had fused, the cells were rinsed 3 times 
with PBS and treated with 4% paraformaldehyde for 20 min. Then, 0.5% Triton X-100 was added and incubated 
for 20 min at room temperature, the cells were rinsed with 3%  H2O2 for 15 min at room temperature and then 
rinsed with 100 ml/L normal sheep serum blocking solution for 1 h. A rabbit anti-mouse HO-1 antibody (1:100) 
was added to the slides, and the slides were incubated at 4 °C overnight after being washed. After being rinsed, 
PE-labelled sheep anti-rabbit immunofluorescence antibody (1:400) was added and incubated in a 37 °C water 
bath for 1 h in the dark. The red fluorescence was observed under a fluorescence microscope after the samples 
were rinsed.

Mixed lymphocyte reaction (MLR) in vitro. Splenic lymphocytes from BN and Lewis rats were isolated, 
and the final concentration was adjusted to 2 ×  106/ml. Mitomycin C was added to BN splenic lymphocytes, 
which were treated as the stimulus cells. Lewis splenic lymphocytes were treated as the stimulus cells. The cells 
were treated at 37  °C for 1  h, centrifuged and washed with DMEM. The cell concentration was adjusted to 
2 ×  105/ml with 10% foetal bovine serum. In the control group, the cells (2 ×  105/well) were added to 96-well 
plates, and stimulus cells (2 ×  105/well) from BN rats were added. The ratio of HO-1/BMMSCs or BMMSCs to 
the responsive cells was 1:20. BMMSCs and HO-1/BMMSCs were added (1 ×  104/well) on the basis of the above 
control group. Each group was examined in replicate wells in which DMEM containing 10% foetal bovine serum 
was added to an adjusted final volume of 250 µl. The cells were cultured in an incubator at 37 °C and 5%  CO2 
for 5 days. 3H-TdR was added at a dose of 1 μCi/well and incubated for 18 h before the culture was terminated, 
and the cells were collected on fibre filter paper. After being dried, the cells were put into a scintillation solu-
tion, and the CPM value was measured in a scintillation counter. The inhibition rate was calculated as follows: 
(%) = (1 − CPM value of the experimental group/CPM value of the control group) × 100%.

Postoperative histopathological and liver function examination. Histopathological examination 
was performed in each group 10 days after the operation. The histopathological changes were observed by opti-
cal microscopy. According to the criteria of acute rejection, the degree of rejection at each time point in each 
group of rats was scored, and statistical analysis was performed. Under an optical microscope, 5 fields were ran-
domly selected to observe the pathological changes in the two groups of animals. The liver transplant rejection 
evaluation was based on the Banff international standard formulated in 1997. Venous blood was extracted from 
the inferior vena cava and gently placed into a biochemical anticoagulant tube, allowed to stand for more than 
5 min and then centrifuged at 1200 RPM. After centrifugation for 15 min, the supernatant was retained. Liver 
function, including ALT, AST, and TBil, was examined by an automatic biochemical analyser.

Detection of NK cell activity in recipient. We extracted splenic lymphocytes from each group of recipi-
ents and cocultured them with YAC-1 target cells to calculate the activity of NK cells by measuring the amount 
of lactate dehydrogenase (LDH) released. Statistical analysis was performed by analysing the differences between 
groups (P < 0.05).

Detection of immune‑related cytokines and Tregs. Enzyme-linked immunosorbent assay (ELISA) 
was used to measure the levels of TNF-α, IL-10, TGF-β, IL-2, IL-17, and IL-23 in the serum of each group at each 
time point. The specific steps were performed according to the kit instructions. To detect splenic Tregs by flow 
cytometry, recipient rat splenic lymphocytes were isolated and resuspended in PBS to a concentration of 1 ×  107/
ml, and 0.1 ml of the cells was added to 0.5 μl of anti-CD4 and 0.625 μl of anti-CD25 antibodies and incubated 
at 4℃ for 30 min in the dark. After being washed with PBS, the cells were incubated with 1 ml overnight at 4 °C 
in the dark. The cells were washed with PBS, diluted to 0.1 ml with 5 μl of anti-Foxp3 antibody, and incubated at 
4 °C for 2 h in the dark. After being washed with PBS, the cells were fixed in 4% paraformaldehyde and analysed. 
The changes in  CD4+,  CD25+, and  Foxp3+ cells were detected by cytometry. The differences between the groups 
were statistically analysed.
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To establish LT model of the syngraft. The syngraft model (LEW → LEW,BN → BN)was also estab-
lished. The main clinical features, such as mental state, activity, diet, water intake, body weight, liver function 
and average survival, were observed to evaluate rejection.

Statistical analysis. Dataanalysis and graphproduction were performed by using GraphPad Prism 5.0 soft-
ware. Statistical analysis was performed by using SPSS20. Data comparisons were performed between the two 
groups using Student’s t test. One-way analysis of variance (one-way ANOVA) was used to examine data from 3 
or more groups. P < 0.05 was considered statistically significant.
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