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Abstract The role of protein localization along the apical-basal axis of polarized cells is difficult

to investigate in vivo, partially due to lack of suitable tools. Here, we present the GrabFP system, a

collection of four nanobody-based GFP-traps that localize to defined positions along the apical-

basal axis. We show that the localization preference of the GrabFP traps can impose a novel

localization on GFP-tagged target proteins and results in their controlled mislocalization. These

new tools were used to mislocalize transmembrane and cytoplasmic GFP fusion proteins in the

Drosophila wing disc epithelium and to investigate the effect of protein mislocalization.

Furthermore, we used the GrabFP system as a tool to study the extracellular dispersal of the

Decapentaplegic (Dpp) protein and show that the Dpp gradient forming in the lateral plane of the

Drosophila wing disc epithelium is essential for patterning of the wing imaginal disc.

DOI: 10.7554/eLife.22549.001

Introduction
Despite of its importance, the role of protein localization and the effects of forced protein mislocali-

zation have not been studied extensively and hence remain in many cases not well understood. Over

the last few years, genetically encoded protein binders have been introduced to basic biological

research and provide novel means for protein manipulation in vivo. While protein function was

largely studied by genetic manipulation at the DNA or RNA levels in the past, protein binders allow

direct, specific and acute modification and interference of protein function in vivo (Kaiser et al.,

2014; Bieli et al., 2016) and might therefore represent valid tools to study protein localization.

Several types of protein binders exist (for recent reviews see Helma et al., 2015; Plück-

thun, 2015). One class of widely applied protein binders are the so-called nanobodies, which are

derived from single chain antibodies found in members of the Camelid family. A nanobody specifi-

cally recognizing GFP (vhhGFP4, Saerens et al., 2005) has been extensively used for cell and devel-

opmental biology applications. Importantly, vhhGFP4 functions in the intracellular environment and

can be fused to other proteins without losing its activity and specificity in vivo (Rothbauer et al.,

2008). As a consequence, vhhGFP4 has been functionalized by fusing it to different protein domains

in order to visualize (Rothbauer et al., 2006), relocalize (Berry et al., 2016) and degrade

(Caussinus et al., 2012; Shin et al., 2015) GFP-tagged proteins of interest. More recently, GFP

nanobodies were used to generate inducible tools that allow controlled transcription (Tang et al.,

2013) and enzyme activity (Tang et al., 2015), and to generate synthetic receptors

(Harmansa et al., 2015; Morsut et al., 2016), to mention only a few examples.

Recently, we utilized vhhGFP4 to create a synthetic receptor for GFP-tagged signaling molecules

and termed it morphotrap (Harmansa et al., 2015). Morphotrap consists of a fusion protein

between vhhGFP4 and the mouse CD8 transmembrane protein, designed such that the nanobody is
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presented extracellularly along the surface of cells. In combination with a GFP-tagged version of the

Decapentaplegic (eGFP-Dpp) morphogen, morphotrap proved to be a powerful tool to modify and

study secretion and extracellular dispersal of eGFP-Dpp in the Drosophila wing disc tissue

(Harmansa et al., 2015).

Here, we introduce the GrabFP (grab Green Fluorescent Protein) toolbox, consisting of morpho-

trap and five novel synthetic GFP-traps that either localize to both the apical and basolateral com-

partment (morphotrap) or preferentially to one compartment: apical (GrabFP-A) or basolateral

(GrabFP-B, Figure 1A). For each of these three localizations, two versions were constructed in which

the vhhGFP4 domain either faces the extracellular space (GrabFPExt) or the intracellular milieu

Figure 1. The GrabFP constructs localize to distinct regions along the apical-basal axis. (A) Linear representation of the six different versions of the

GrabFP system; the constructs exist in two topologies with the GFP-nanobody (vhhGFP4) either facing extracellular (Ext) or intracellular (Int). Numbers

refer to the amino acid positions from the N-terminus (N) to the C-terminus (C). TM = transmembrane domain, CDS=coding DNA sequence. (B)

Schematic representation of wing disc morphology, the junctions (J) are marked in blue. (C–E) Cross-sections of wing discs expressing morphotrap (C),

GrabFP-AExt (D) and GrabFP-BExt (E) in the wing pouch (nub::Gal4). The GrabFP tools are shown in red and the junctions are visualized by staining for

Dlg (blue). In the magnifications the junctional level is marked by a dashed line. Relative distribution of the GrabFP tools along the A-B axis in respect

to the junctions (marked by Dlg) is quantified in the plots to the right (n = 4 for each plot, error bars represent the standard deviation). For details on

the quantification see Materials and methods and Figure 1—figure supplement 3.

DOI: 10.7554/eLife.22549.002

The following source data and figure supplements are available for figure 1:

Figure supplement 1. Localization of the GrabFPIntra tools.

DOI: 10.7554/eLife.22549.003

Figure supplement 2. Expression of the GrabFP system allows normal wing development.

DOI: 10.7554/eLife.22549.004

Figure supplement 2—source data 1. Source data for wing area quantification.

DOI: 10.7554/eLife.22549.005

Figure supplement 3. Quantification and analysis of protein distribution along the A-B axis.

DOI: 10.7554/eLife.22549.006
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(GrabFPInt). Consequently, the GrabFP system can be used to interfere with target proteins in the

extracellular and the intracellular space (Figure 1A).

In the following, we first investigate the potential of these anchored GFP-traps to interfere with

target protein localization within a cell along the apical-basal (A-B) axis. Our results show that the

GrabFP system can effectively mislocalize GFP/YFP-tagged proteins in a controlled manner. As a

proof of principle experiment, we characterized the phenotypical consequences of mislocalizing the

Myosin II regulatory light chain Spaghetti-squash. In a second part, we use the GrabFP system to

trap the Decapentaplegic (Dpp) morphogen in the extracellular space and modify its dispersal in

specific regions of the tissue. Our results suggest that the functional Dpp morphogen gradient forms

in the lateral plane of the wing disc epithelium.

Results

The GrabFP system consists of localized GFP-traps
Analogous to morphotrap, the novel GFP-traps GrabFP-A and GrabFP-B are fusion proteins consist-

ing of vhhGFP4 fused to transmembrane proteins determining the localization and to a fluorescent

protein as a marker (Figure 1A). All constructs of the GrabFP system were implemented as Gal4 and

LexA-inducible transgenes (see Materials and methods).

To test the localization and function of the GrabFP system, we made use of the Drosophila wing

imaginal disc epithelium, a well-characterized model system to study epithelial polarity

(Tepass, 2012; Flores-Benitez and Knust, 2016) and dispersal of extracellular signaling proteins,

for example morphogens (Thérond, 2012; Gradilla and Guerrero, 2013; Akiyama and Gibson,

2015; Langton et al., 2016). The wing imaginal disc consists of two contiguous, monolayered epi-

thelial sheets, the pseudo stratified disc proper (DP) epithelium and the squamous peripodial epithe-

lium (PPE; see Figure 1B). The apical surface of both, the DP and the PPE, is facing a luminal cavity

formed between them. In this study, we characterized the expression and activity of the GrabFP

toolset focusing on the columnar cells of the DP epithelium, which will form the adult wing. Visualiza-

tion of the junctions via the localization of the septate junction component Discs-large (Dlg, see

Materials and methods) was used to mark the border separating the apical and basolateral compart-

ment in DP cells.

In order to restrict the GFP-traps to specific regions along the A-B axis, the GFP-nanobody was

fused to a protein of known subcellular localization. Morphotrap, based on the mouse CD8 protein

scaffold, was shown to localize to both the apical and the basolateral domains (see Figure 1C and

Harmansa et al., 2015). The morphotrapInt construct, in which the nanobody faces the cytosol, also

localizes to the apical and basolateral compartments (Figure 1—figure supplement 1A).

In order to generate an apically anchored trap (GrabFP-A), we made use of the transcript 48

(T48) protein (Kölsch et al., 2007). However, since a fusion protein between the GFP-nanobody,

T48, and mCherry showed only mild apical enrichment (not shown), we additionally attached the

minimal localization domain of Bazooka (Krahn et al., 2010) to the C-terminus of the fusion protein

(see Figure 1A and Materials and methods for details). Expression in DP cells of both versions of

GrabFP-A, GrabFP-AExt and GrabFP-AInt, resulted in strong enrichment in the apical compartment,

while only minor amounts of GrabFP-AExt or GrabFP-AInt were observed along the basolateral

domain (Figure 1D and Figure 1—figure supplement 1B).

Our basolaterally anchored GFP-trap GrabFP-B is based on the Nrv1 protein scaffold (Figure 1A,

Sun and Salvaterra, 1995; Xu et al., 1999). Nrv1 localizes to the basolateral compartment of the

wing disc, even when overexpressed (Genova and Fehon, 2003; Paul et al., 2007). In DP cells,

GrabFP-BExt and GrabFP-BInt exclusively localized to the basolateral compartment with no detect-

able signal along the apical compartment (Figure 1E and Figure 1—figure supplement 1C).

Expression of the GrabFP constructs in the wing imaginal disc yielded viable and fertile adults

with proper wing blade size (Figure 1—figure supplement 2), suggesting that the GrabFP system is

inert in the absence of GFP and can be used as a tool to study protein function along the A-B axis in

the wing imaginal disc.
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Mislocalizing transmembrane and cytosolic proteins along the A-B axis
using the GrabFP system
We wanted to test whether the interaction between our localized GFP-traps and a GFP-tagged tar-

get protein, transmembrane or cytosolic, can result in defined mislocalization of the target protein.

Therefore, single components of the GrabFP system were co-expressed with different target pro-

teins in defined domains of the wing imaginal disc (hh::Gal4 for GrabFPExt and ptc::Gal4 for GrabF-

PInt), while neighboring areas were used as an internal control for the analysis of wild-type target

protein localization. We analysed and measured the changes in distribution along the A-B axis of a

total of 15 GFP/YFP-tagged proteins, of which 11 were transmembrane/membrane-anchored and

four were cytoplasmic proteins. We used target proteins localizing either exclusively to a subcellular

compartment (apical or basolateral) or, alternatively, throughout the A-B axis. In order to represent

target protein localization, we plotted GFP/YFP fluorescence along the A-B axis.

However, it is known that the binding of nanobodies can interfere with the fluorescent properties

of GFP (Kirchhofer et al., 2010). We therefore tested if binding of vhhGFP4 to eGFP results in

changes of eGFP fluorescence in vitro. Indeed, we observed that binding of vhhGFP4 to eGFP mod-

ulated the fluorescent properties of eGFP and resulted in a 1.47-fold increase in eGFP fluorescence

in vitro (see Figure 2—figure supplement 2 and Materials and methods for details). Hence, it is

important to consider the possibility that binding of GFP/YFP to our GrabFP traps results in modula-

tion of GFP/YFP fluorescence in vivo. In such a scenario, the observed increase in fluorescence due

to GrabFP-mediated mislocalization would be an overestimation of real protein levels. To account

for this likeliness in our quantifications, we included A-B profiles of the observed GFP/YFP fluores-

cence levels (continuous red line) as well as profiles that were corrected for a potential fluorescence

increase at GrabFP-positive positions (dashed red line, see Materials and methods for details).

We tested the GrabFPExt system, which displays the anti-GFP nanobody along the extracellular

side (Figure 2A), in combination with eight transmembrane proteins extracellularly tagged with

GFP/YFP. Expression of either GrabFP-AExt (Figure 2B,C and Figure 2—figure supplement 1A–B)

or GrabFP-BExt (Figure 2D,E,F and Figure 2—figure supplement 1C–D) caused significant changes

in the distribution of all eight proteins tested. Generally, GrabFP-AExt efficiently induced mislocaliza-

tion of target proteins (i.e. the gain of a novel apical fraction in proteins excluded from the apical

compartment, as seen for NrxIV-YFP, Figure 2B) and stabilization of an existing apical fraction (as

seen for Dlp-YFP, Dally-YFP, PMCA-YFP, Figure 2C and Figure 2—figure supplement 1A–B). How-

ever, GrabFP-AExt expression did not result in efficient depletion of the basolateral protein fraction

(see plots Figure 2B–C). This might be due to the fact that GrabFP-AExt itself was partially mislocal-

ized by the interaction with polarized target proteins and showed enhanced localization to the baso-

lateral compartment (Figure 2—figure supplement 1E). In contrast, GrabFP-BExt displayed a strong

potential in depleting apical target-protein fractions (Figure 2D–F and Figure 2—figure supple-

ment 1C–D). In particular, GrabFP-BExt significantly reduced the apical pool and increased the baso-

lateral fraction of Dally-YFP, Notch-YFP, Fra-YFP, Crb-GFP and Ed-YFP. Furthermore, GrabFP-BExt

was resistant to mislocalization induced by target protein-interaction (Figure 2—figure supplement

1F).

In summary, expression of GrabFPExt components leads to significant mislocalization of target

proteins. Moreover, GrabFP-BExt caused significant and efficient depletion of the apical fractions of

all proteins analyzed.

In a next step, we tested the mislocalization potential of the GrabFPInt system, in which the anti-

GFP nanobody localizes intracellularly (Figure 3A). To this aim, we used three transmembrane pro-

teins (Fat, Nrv1, Nrv2) containing an intracellular GFP/YFP tag and 3 GFP/YFP-tagged cytoplasmic

proteins (Arm, aCat, Hts). We observed significant changes in the distribution of both transmem-

brane and cytoplasmic target proteins (Figure 3B–F). GrabFP-BInt efficiently depleted the apical frac-

tion of Fat-GFP and induced strong enrichment of its basolateral fraction (Figure 3B). In contrast,

GrabFP-BInt was less efficient in mislocalizing and depleting the apical fraction of the cytoplasmic

proteins aCat-GFP and Arm-GFP (Figure 3C and Figure 3—figure supplement 1A). Concomitantly,

GrabFP-BInt showed a higher tendency to be mislocalized when co-expressed with these two cyto-

solic targets (Figure 3—figure supplement 1C). In contrast, GrabFP-AInt efficiently mislocalized tar-

get proteins by decreasing their basolateral concentration and increasing their apical fraction.

Notably, all proteins tested in combination with GrabFP-AInt had a strong bias toward the
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basolateral side in wild-type conditions and acquired a strong apical fraction when co-expressed

with GrabFP-AInt (Figure 3D–F). Furthermore, GrabFP-AInt showed to be resistant to mislocalization

induced by target protein interaction (Figure 3—figure supplement 1B).

To further validate the GrabFP system as a tool to study the role of protein localization in vivo,

we attempted to mislocalize Spaghetti squash (Sqh), the Drosophila regulatory light chain of Myosin

II. We made use of a Sqh-GFP transgene expressed under the control of the sqh promoter (sqhSqh-

GFP flies, Royou et al., 2004) that rescues the sqhAX4 null allele. Drosophila Sqh is crucial for mor-

phogenesis and control of epithelial cell shape (Young et al., 1993; Kiehart et al., 2000). Sqh-GFP

is a cytosolic protein that localizes to the subapical cortex in wing disc cells (Figure 4A) and is

required for maintaining the elongated shape of DP cells (Widmann and Dahmann, 2009). To test

whether mislocalization of Sqh-GFP from the apical cortex to the basolateral domain affects DP cell

shape, we expressed GrabFP-BInt in sqhSqh-GFP flies. Expression of GrabFP-BInt in sqhSqh-GFP

Figure 2. Mislocalization of transmembrane proteins using the GrabFPExt system. (A) In the GrabFPExt system, the

GFP-nanobody (vhhGFP4) faces the extracellular space and can interact with extracellular-tagged transmembrane

proteins. (B–C) Optical cross-section of wing disc cells expressing either NrxIV-YFP (B) or Dlp-YFP (C) alone (Ctrl.,

left) or together with GrabFP-AExt (middle). The junctional level is marked by a dashed line. Quantification of

absolute target protein localization (right) along the A-B axis in the absence (black) or in the presence of GrabFP-

AExt (continuous red line). Dashed lines represent profiles corrected for increased GFP/YFP fluorescence due to

nanobody binding. The position of the junctions is marked by a blue bar. (Error bars show the standard deviation).

(D–F) Optical cross sections showing the localization of Crb-GFP (D), Notch-YFP (E) or Ed-YFP (F) in the absence

(left) or in the presence of GrabFP-BExt (middle). Quantifications are shown to the right. (Sample numbers for plots

in B-F: NrxIV n = 10, Dlp n � 8, Notch n � 8, Crb n = 8, Ed n � 6, significance was assessed comparing wild type

with corrected profiles using a two-sided Student’s t-test with unequal variance, *p<0.05).

DOI: 10.7554/eLife.22549.007

The following source data and figure supplements are available for figure 2:

Figure supplement 1. Examples of target protein mislocalization using the GrabFPExtra system.

DOI: 10.7554/eLife.22549.008

Figure supplement 2. Modulation of EGFP fluorescent properties by vhhGFP4 binding in vitro.

DOI: 10.7554/eLife.22549.009

Figure supplement 2—source data 1. Source data pannels C-E.

DOI: 10.7554/eLife.22549.010
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female flies that are heterozygous for sqhAX4 (and hence, carry one wild-type and one GFP-tagged

copy of Sqh) resulted in increased Sqh-GFP levels in the basolateral domain and concomitant reduc-

tion in the basal cell surface (Figure 4B–C). In sqhSqh-GFP male flies, which are hemizygous for

sqhAX4 (and in which Sqh-GFP represents the only source of Sqh protein), Sqh-GFP mislocalization

with GrabFP-BInt caused an even more drastic alteration of cell shape (Figure 4D) visible as a strong

constriction of the basolateral domain accompanied by a significant expansion of the apical cell sur-

face (Figure 4F–G). This behavior could be explained by loss of apical tension (due to the reduction

of apical Sqh-GFP) and increased basolateral tension (due to mislocalized Sqh-GFP) (Figure 4E). In

conclusion, GrabFP-BInt altered the localization of Sqh-GFP, presumably causing significant altera-

tions in the force distribution along the cortex of DP cells.

In summary, our results validate the GrabFP system as novel toolbox to modify protein localiza-

tion along the A-B axis in a controlled manner and to study the role of protein localization via forced

protein mislocalization in vivo.

Figure 3. Mislocalization of GFP/YFP-tagged proteins using the GrabFPInt system. (A) With the GFP-nanobody

facing the cytosol, the GrabFPInt system can interact with cytosolic proteins and transmembrane proteins tagged

along their cytosolic portion. (B–C) Optical cross-sections of wing disc cells expressing either Fat-GFP (B) or aCat-

YFP (C) alone (Ctrl., left) or together with GrabFP-BInt (middle). A dashed line marks the junctional level.

Quantification of relative target-protein localization (right) along the A-B axis in the absence (black) or in the

presence of GrabFP-BInt (continuous red line). Profiles corrected for fluorescence increase due to nanobody

binding are depicted by a dashed red line. The position of the junctions is marked by a blue bar. (Error bars show

the standard deviation). (D–F) Optical cross-sections showing the localization of Nrv1-YFP (D), Nrv2-YFP (E) or Hts-

YFP (F) in the absence (left) or in the presence of GrabFP-AInt (middle). Quantifications are shown to the right.

(Sample numbers for plots in B-F: Fat n = 10, aCat n = 9, Nrv1 n = 10, Nrv2 n = 10, HTS n = 10, significance was

assessed comparing control with the corrected profiles using a two-sided Student’s t-test with unequal variance,

*p<0.05).

DOI: 10.7554/eLife.22549.011

The following figure supplement is available for figure 3:

Figure supplement 1. Examples of GFP/YFP-target protein mislocalization using the GrabFPIntra system.

DOI: 10.7554/eLife.22549.012
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Figure 4. GrabFP-BInt-mediated Sqh-GFP mislocalization results in changes of DP cell shape. (A) Optical cross-

section of a wing disc expressing Sqh-GFP (green), stained for Dlg (blue). In the magnifications, the junctional level

is marked by a dashed line. (B–D) Optical cross-sections of wing discs expressing GrabFP-BInt (grey) in the patched

domain (marked by dashed orange line, ptc::Gal4) either alone (Ctrl., (B) or together with Sqh-GFP (green) in

heterozygous sqh females (C) and hemizygous sqh males (D). Sqh-GFP mislocalization causes a drastic increase of

basolateral Sqh-GFP (C–D). Mislocalization of Sqh-GFP causes cell shape alterations resulting in a triangular shape

of the ptc domain (C–D), compared to the rectangular shape of the ptc domain in control discs (B). The white

dashed line marks the apical (top) and basal (bottom) surface of DP cells. (E) Schematic representation of the

effect of Sqh-GFP mislocalization. Tension is higher in the apical cortex of columnar cells due to polarization of

myosin II activity (top). Mislocalization of Sqh-GFP causes increased basolateral tension, leading to constriction of

the basolateral cell area (middle). In sqh hemizygous conditions, the apical surface expands due to decreased

apical myosin II activity (bottom). (F) Projections of the junctional level of the DP columnar epithelium of the

genotype shown in (D) either in the absence of GrabFP-BInt (left, normal Sqh::GFP localization) or in the presence

of GrabFP-BInt (right, mislocalized Sqh::GFP). (G) Quantification of apical surface area as marked in (F). The green

line marks the median, statistical significance was assessed using a two-sided Students t-test (***p<0.0005),

n � 77.

DOI: 10.7554/eLife.22549.013

The following source data is available for figure 4:

Source data 1. Source data for apical surface area.

DOI: 10.7554/eLife.22549.014
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GrabFP as a tool to study the dispersal of the Decapentaplegic
morphogen
Another potential application of the GrabFP system is to study how morphogen gradients form and

control patterning and growth during animal development. Morphotrap has previously been used to

address the requirement of the Dpp morphogen gradient for patterning and growth of the wing

imaginal disc (Harmansa et al., 2015). We wanted to extend these studies using the newly gener-

ated tools reported here.

A key property that has not been studied in detail is the dispersal of functional Dpp in the wing

disc tissue with regard to the A-B axis. We therefore utilize the GrabFPExt system in combination

with an eGFP-tagged version of Dpp (eGFP-Dpp, Teleman and Cohen, 2000) to study the localiza-

tion of the functional Dpp gradient along the A-B axis.

Dpp disperses in the apical and in the basolateral compartment
In the developing wing imaginal disc, Dpp is expressed and secreted from a central stripe of anterior

cells adjacent to the anterior/posterior (A/P) compartment boundary from where it forms a concen-

tration gradient into the surrounding target tissue. The Dpp gradient in the wing disc has been visu-

alized by using different GFP-Dpp fusion proteins (Entchev et al., 2000; Teleman and Cohen,

2000) and by antibody staining against endogenous Dpp protein (Gibson et al., 2002). Dpp was

observed in the lateral plane of the wing disc epithelial cells (Teleman and Cohen, 2000) as well as

apically in the wing disc lumen (Entchev et al., 2000; Gibson et al., 2002). However, the results of

these different studies were not entirely consistent and hence the routes of Dpp dispersal remain

controversial.

To investigate the localization of Dpp in the wing disc, we used an eGFP-Dpp fusion protein that

was shown to rescue the dpp mutant phenotype (Harmansa et al., 2015). When eGFP-Dpp is

expressed in its endogenous expression domain using the LexA/LOP binary expression system

(dpp::LG, Yagi et al., 2010), it forms a wide concentration gradient into the target tissue (Figure 5A

and [Harmansa et al., 2015]). In order to better characterize the localization of eGFP-Dpp in the

wing imaginal disc, we acquired high-resolution confocal stacks along the z-axis. Optical cross-sec-

tions revealed that eGFP-Dpp localized prominently to dotted structures along the lateral region of

the DP (Figure 5B, arrowheads), which were suggested to represent endocytic vesicles

(Teleman and Cohen, 2000). We did not detect eGFP-Dpp signal within the luminal space

(Figure 5B, magnification). These results suggest that, using fluorescence microscopy, Dpp is promi-

nently detected within the lateral plane of the DP epithelium.

Morphotrap was reported to immobilize and accumulate eGFP-Dpp on the cell surface

(Harmansa et al., 2015). Therefore, we used morphotrap to visualize even low levels of extracellular

eGFP-Dpp and to determine where along the A-B axis eGFP-Dpp encounters morphotrap-express-

ing target cells. When we expressed eGFP-Dpp in its central stripe source (using dpp::LG) and mor-

photrap in clones (Figure 5C), we observed high amounts of immobilized eGFP-Dpp on the

proximal surface (the one facing the source of Dpp) of morphotrap clones situated in the target tis-

sue (Figure 5D–E). Subapical projections (Figure 5D) as well as optical cross sections (Figure 5E’)

showed that low amounts of eGFP-Dpp accumulated on the apical surface of morphotrap clones.

However, the prominent majority of eGFP-Dpp accumulation was observed along the basolateral

cell surface of morphotrap clones (Figure 5E). These results suggest that only low amounts of eGFP-

Dpp disperse in the apical/luminal compartment while the majority of eGFP-Dpp dispersal takes

place along the basolateral compartment.

GrabFP can specifically interfere with sub-fractions of the Dpp gradient
To investigate the role of apical and basolateral Dpp pools in patterning and growth control, we

expressed eGFP-Dpp in the stripe source (using dpp::LG) and the different versions of the GrabFPExt
system in the posterior compartment (using hh::Gal4, see Figure 6B–D, left). Thereby, we specifically

interfered with Dpp dispersal in the posterior compartment, not modifying Dpp production and

secretion.

As shown before, eGFP-Dpp expressed in a wild-type background is observed in presumptive

vesicular structures along the lateral plane of the epithelium but is not present at detectable levels in

the wing disc lumen (Figure 6A). Posterior morphotrap expression resulted in immobilization of
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eGFP-Dpp predominantly along the basolateral compartment of target cells adjacent to the Dpp

source. In few cases, eGFP-Dpp immobilization was observed along the apical surface of morphotrap

expressing cells (see Figure 6B, arrow in right image and Figure 6—figure supplement 1A). Since

the A/P boundary in the PPE is shifted anteriorly, morphotrap is also expressed in the PPE cells cov-

ering the Dpp DP source. Interestingly, PPE cells covering the Dpp DP source showed substantial

immobilized eGFP-Dpp on their luminal surface (Figure 6B, asterisk in right image). This observation

suggests that a fraction of Dpp is secreted into the lumen and disperses in the luminal cavity. These

results show that posterior expression of morphotrap reduces spreading of apical and basolateral

Dpp pools into the posterior compartment.

Posterior expression of GrabFP-BExt resulted in the exclusive basolateral immobilization of eGFP-

Dpp close to the source (Figure 6C), consistent with its restricted localization to the basolateral

membrane.

In sharp contrast, posterior expression of GrabFP-AExt resulted in strong apical and peripodial,

but also basolateral immobilization of eGFP-Dpp (Figure 6D and Figure 6—figure supplement 1C).

Therefore, it seems that the relative small portion of GrabFP-AExt localizing to the basolateral side is

large enough to interfere with basolateral eGFP-Dpp dispersal (or that eGFP-Dpp relocalizes

GrabFP-AExt). The increased levels of apical eGFP-Dpp immobilization might also hint toward misloc-

alization of basolateral immobilized eGFP-Dpp to the apical compartment by GrabFP-AExt.

Figure 5. The Dpp morphogen spreads in the apical and basolateral compartment. (A) Wing disc expressing

eGFP-Dpp in the central Dpp stripe and eGFP fluorescence profile (bottom). (B) Optical cross-section of a wing

disc as shown in (A) additionally stained for Dlg (blue). eGFP-Dpp is prominently observed in spots (arrowheads)

along the lateral axis of the disc but not in the wing disc lumen (see magnified insert). (C) Scheme of morphotrap

expression in clones and eGFP-Dpp in the central dpp stripe. (D) Subapical projection of a wing disc expressing

eGFP-Dpp in the dpp stripe and two lateral morphotrap clones. Magnifications to the right show apical eGFP-Dpp

immobilization on the proximal surface of morphotrap clones. (E) Lateral projection of the wing disc shown in (D).

An optical cross-section to the right shows low level apical (also see arrow in magnification in [E’]) and high level

basolateral immobilization of eGFP-Dpp.

DOI: 10.7554/eLife.22549.015
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In summary, the GrabFPExt system can be used to interfere with both apical and basolateral dis-

persal (morphotrap) or to specifically interfere with basolateral eGFP-Dpp dispersal (GrabFP-BExt).

However, localization of GrabFP-AExt is not specific enough to exclusively interfere with apical Dpp

dispersal (see also Discussion).

Basolateral Dpp dispersal is required for patterning and growth of the
Drosophila wing
In an earlier study using morphotrap, we reported that Dpp dispersal is important for wing disc

growth and patterning (Harmansa et al., 2015). Since we find that Dpp is prominently found in the

basolateral compartment, we used the newly generated GrabFP system to investigate whether baso-

lateral Dpp dispersal is required for patterning of the wing. We therefore compared the p-Mad sig-

naling response of dppd8/d12 mutant wing discs rescued with eGFP-Dpp (normal Dpp dispersal) to

dppd8/d12 mutant wing discs rescued with eGFP-Dpp expressing either morphotrap (apical and baso-

lateral Dpp dispersal reduced) or GrabFP-BExt (only basolateral Dpp dispersal reduced) in the poste-

rior compartment, respectively (Figure 7A–H).

In control conditions (normal Dpp spreading), p-Mad forms a wide bilateral concentration gradi-

ent into the anterior and posterior compartments (>40 mm; see Figure 7A). In contrast, reduction of

Figure 6. The GrabFPExt system can interfere with specific sub-fractions of the Dpp morphogen gradient. Optical cross sections of wing discs either

expressing eGFP-Dpp (green) in the stripe source (A) or eGFP-Dpp in the stripe and the different versions of the GrabFP system (red, B–D) in the

posterior compartment of disc proper and PPE cells (hh::Gal4). (A) When expressed alone (Ctrl.), eGFP-Dpp is mainly observed in the lateral plane of

the DP epithelium. Peripodial epithelium (PPE), lumen (L) and disc proper epithelium (DP). (B) Posterior expression of morphotrap results in strong

eGFP-Dpp immobilization along the basolateral domain and low or no apical immobilization (see arrow in the magnification to the right). eGFP-Dpp is

also immobilized on the apical surface of PPE cells overlaying the Dpp DP source (see asterisk in magnification). (C) Posterior expression of GrabFP-BExt

results in exclusive immobilization of eGFP-Dpp in the basolateral domain. No apical immobilization is observed, neither in DP (see arrow) nor in PPE

cells. (D) Expression of GrabFP-AExt in the posterior compartment results in strong basolateral (asterisk) and apical (arrow) immobilization of eGFP-Dpp.

DOI: 10.7554/eLife.22549.016

The following figure supplement is available for figure 6:

Figure supplement 1. Quantification of differential eGFP-Dpp accumulation by morphotrap, GrabFP-BExt and GrabFP-AExt.

DOI: 10.7554/eLife.22549.017
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apical and basolateral spreading by expression of morphotrap in the posterior compartment

resulted in a drastic reduction of the posterior p-Mad range to ~3 cells or ~10 mm (Figure 7B–D).

Interestingly, specifically interfering with basolateral Dpp spreading by posterior expression of

GrabFP-BExt also resulted in a reduction of posterior p-Mad range to ~3 cells or ~10 mm (Figure 7F–

H), a result strikingly similar to the morphotrap experiment. Hence, these experiments demonstrated

that basolateral Dpp spreading is required for proper Dpp signaling range and patterning and that

apical/luminal Dpp spreading is not sufficient.

We also investigated whether growth of the wing disc requires basolateral Dpp spreading.

Indeed, we found that the posterior wing pouch area visualized by immunostaining against Distal-

less (Dll) was reduced to a similar extend when expressing either morphotrap or GrabFP-BExt in the

Figure 7. Basolateral Dpp spreading is required for patterning and size control. (A–B) p-Mad staining in representative dppd8/d12 mutant wing disc

rescued by eGFP-Dpp (A) and in dppd8/d12 wing disc rescued by eGFP-Dpp expressing morphotrap in the posterior compartment (hh::Gal4, B). (C)

Magnifications of the posterior, dorsal pouch region of the images shown in (A–B). The A/P boundary is marked by a dashed yellow line. (D) Average

posterior p-Mad profiles of 98–100 hr AEL old dppd8/d12 wing disc rescued by eGFP-Dpp (black) and dppd8/d12 wing disc rescued by eGFP-Dpp

expressing morphotrap (red). (E–H) Representative wing discs and quantification of p-Mad levels in dppd8/d12 wing disc rescued by eGFP-Dpp (E, black

in H) and dppd8/d12 wing disc rescued by eGFP-Dpp expressing GrabFP-BExt in the posterior compartment (F, red in H). (I–K) Representative 98–100 hr

AEL old wing discs of the indicated genotypes stained for Distal-less (Dll) as a marked for pouch size. The posterior wing pouch is outlined by a dashed

yellow line. (L) Quantification of posterior wing pouch area as shown in (I–K). (Control n = 9, morphotrap n = 10, GrabFP-BExt n = 12) (M–O), Female

wings of the genotypes indicated. The area posterior to vein 4 (IV4-5) is marked in green. Block of apical and basolateral, as well as block of basolateral

Dpp dispersal results in a loss of the distal parts of wing vein 5 and hence patterning (see arrowheads). (P) Quantification of relative IV4-5 area as

indicated in (M–O). (***p>0.0005, Control n = 10, morphotrap n = 8, GrabFP-BExt n = 11).

DOI: 10.7554/eLife.22549.018

The following source data and figure supplement are available for figure 7:

Source data 1. Wing pouch area and IV4-5 area.

DOI: 10.7554/eLife.22549.019

Figure supplement 1. morphotrap expression in PPE cells interferes with luminal Dpp spreading.

DOI: 10.7554/eLife.22549.020
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posterior compartment (Figure 7I–L). Accordingly, the posterior wing blade area was reduced to a

similar extend in both the morphotrap and the GrabFP-BExt conditions (Figure 7M–P). In addition,

and consistent with the strongly reduced p-Mad range, the distal portion of wing vein 5 was lost

upon posterior expression of morphotrap or GrabFP-BExt (19/19 wings).

In summary, these results show that basolateral, not apical/luminal Dpp dispersal is important for

patterning and size control of the wing disc and the adult wing. To further test the requirement of

luminal Dpp spreading, we expressed morphotrap in PPE cells to hinder luminal Dpp dispersal (Fig-

ure 7—figure supplement 1). However, we observed only very mild effects on wing patterning and

growth in this condition, supporting the view that apical Dpp spreading plays a minor role in wing

development.

Dpp dispersal in the basal and lateral plane control wing disc growth
Our results suggest a prominent role of basolateral Dpp spreading in the wing imaginal disc. Hence,

we further dissected the function of Dpp spreading along the basolateral compartment. The basolat-

eral compartment consists of the lateral region, where epithelial cells are compactly surrounded by

their neighbors, and the basal region, where cells contact the extracellular matrix (ECM) of the basal

lamina (BL). Dpp is known to interact with the heparin sulphate proteoglycans Dally and Dally-like

localizing to the apical and lateral region (Figure 2C and Figure 2—figure supplement 1A) as well

as with Collagen IV localizing to the BL (Wang et al., 2008).

In order to investigate the role of Dpp spreading in the lateral plane versus Dpp spreading in the

BL, we generated GrabFP-ECM, a GFP-trap localizing to the extracellular matrix of the BL. GrabFP-

ECM is a fusion protein consisting of the coding sequence of the Drosophila Collagen IV gene viking

(vkg, Yasothornsrikul et al., 1997; Wang et al., 2008), vhhGFP4 and mCherry inserted between the

first and the second exon of vkg (see Materials and methods). When expressed in the larval fat body

(r4::Gal4) GrabFP-ECM integrated into the BL of the wing disc (Figure 8A–B) as observed for wild-

type collagen IV (Pastor-Pareja and Xu, 2011).

When GrabFP-ECM was expressed in the fat body of dppd8/d12 mutant larvae rescued with eGFP-

Dpp (GrabFP-ECMRescue flies), high levels of eGFP-Dpp were immobilized in the BL underlying the

Dpp source and low, graded levels were immobilized in the BL further away from the source stripe

(Figure 8C–D). Hence, GrabFP-ECM can specifically trap Dpp and affect its dispersal in the BL, while

Dpp dispersal in the lateral plane of the disc epithelium remains unaffected (Figure 8D).

To study the function of Dpp dispersal in the BL, we compared p-Mad profiles in control discs

and in discs of GrabFP-ECMRescue flies (Figure 8E–G). Wing discs of GrabFP-ECMRescue flies showed

a clear reduction in p-Mad range and peak levels (Figure 8E–G). The reduction in p-Mad range was

accompanied by a significant reduction in wing disc pouch size (Figure 8H–J) and adult wing blade

area (Figure 8K–M). These findings suggest that basally secreted Dpp and/or Dpp spreading in the

BL contribute to proper Dpp signaling range and size control. However, despite a clear reduction in

size, the overall patterning of the wing seemed unaffected in the GrabFP-ECM condition

(Figure 8L–M) suggesting that basal Dpp is not strictly required for patterning the fly wing. Yet,

quantification of the intervein areas showed that the medial region adjacent to the Dpp source is

most susceptible to a reduction of Dpp signaling levels (Figure 8N).

Discussion
Many proteins localize to specific membrane domains or organelles within a cell, and it has been

shown in several cases that correct protein localization plays a vital role in cell homeostasis

(Wodarz and Näthke, 2007; Mellman and Nelson, 2008). However, the functional implication and

the necessity of proper localization, as well as the consequences of distinct mislocalization of a given

protein, are less well understood. Here, we have developed and used a novel, nanobody-based tool-

set, the GrabFP system, to interfere with the localization of GFP-tagged proteins along the apical-

basal axis in the larval wing imaginal disc.

The GrabFP system can interfere with protein localization
Recently, it was reported that tethering of nanobodies to specific cellular compartments can result in

protein relocalization (Berry et al., 2016). In line with these observations, expression of the GrabFP

constructs altered the subcellular localization along the apical-basal axis of the 15 different GFP-
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Figure 8. Basal Dpp is required to control wing size. (A) Schematic representation of GrabFP-ECM localization when expressed in the larval fat body.

(B) Wing disc optical cross-section of an animal expressing GrabFP-ECM in the fat body, stained for mCherry (GrabFP-ECM, red) and F-Actin

(Phalloidin, white). (C) Schematic of eGFP-Dpp immobilization in the ECM by GrabFP-ECM. (D) Optical cross-section of a dppd8/d12 mutant wing disc

rescued by eGFP-Dpp (green) and GrabFP-ECM (red) localizing to the basal lamina. Tissue outlines are visualized by F-Actin staining (blue).

Magnification to the right shows strong eGFP-Dpp accumulation below Dpp source cells. (E–F) 98–100 hr AEL old wing discs of the indicated genotype

stained for p-Mad. (G) Average p-Mad gradient at 98–100 hr AEL. (H–I) 98–100 hr AEL old wing discs of the above indicated genotypes stained for Dll.

The wing pouch is outlined by a dashed yellow line and quantified in (J). (J) Relative wing pouch area of dppd8/d12 mutant wing disc rescued by eGFP-

Dpp and GrabFP-ECM localizing to the basal lamina (n = 11). (K) Relative wing blade area of dppd8/d12 mutant wing disc rescued by eGFP-Dpp and

GrabFP-ECM localizing to the basal lamina (n = 14). (L–M) Representative female wings of the genotypes indicated. (N) Quantification of intervein area

in GrabFP-ECM flies relative to control wings (n = 11).

DOI: 10.7554/eLife.22549.021

The following source data is available for figure 8:

Source data 1. Wing pouch and blade areas.

DOI: 10.7554/eLife.22549.022
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tagged cytosolic or transmembrane proteins we tested. All the different components of the GrabFP

system induced drastic mislocalization of target proteins, causing the gain of a novel subcellular frac-

tion, which was minor or absent in wild-type conditions. In addition, the GrabFP system significantly

depleted the wild-type subcellular fractions of two-thirds of the tested target proteins.

An interesting target that was effectively mislocalized is the transmembrane receptor Notch

(Notch-YFP). Notch signaling is required for cell-cell communication and differentiation during devel-

opment (Guruharsha et al., 2012). The apical localization of Notch is conserved in different tissues

and organisms, suggesting that it is crucial for Notch function (Fehon et al., 1991; Ohata et al.,

2011; Hatakeyama et al., 2014). In particular, Notch apical localization might be necessary to allow

interaction with its ligand Delta, which also localizes to the apical cell surface (Sasaki et al., 2007). In

future studies, the GrabFP system will help to better understand the requirements for polarized dis-

tribution of signaling pathway components in different developmental contexts.

In line with observations made by Berry et al. (Schornack et al., 2009; Berry et al., 2016), the

GrabFP components were in some cases themselves mislocalized due to interaction with target pro-

teins. This was particularly relevant for GrabFP-AExt and GrabFP-BInt (Figure 2—figure supplement

1G and Figure 3—figure supplement 1H), which were, presumably as a consequence, less efficient

in causing target protein mislocalization.

In conclusion, the GrabFP system provides a general and ready-to-use framework to specifically

mislocalize GFP-tagged proteins. Conveniently, large collections of GFP-tagged protein are avail-

able in Drosophila melanogaster (Lowe et al., 2014; Lye et al., 2014; Nagarkar-Jaiswal et al.,

2015; Sarov et al., 2016). Moreover, the GrabFP system can be induced in a tissue-specific and

temporally controlled manner and thus represents a versatile tool to study the effect of forced pro-

tein mislocalization and protein function in specific subcellular compartments in vivo.

Localized nanobodies to study the functional role of protein localization
Using Sqh-GFP, we have provided a first example of GrabFP implementation for functional studies

on protein localization. We have initially described a role of Sqh during dorsal closure in the Dro-

sophila embryo using the deGradFP system (Caussinus et al., 2012). Tissue-specific degradation of

Sqh (which leads to a failure to contract actomyosin networks) combined with laser ablation studies

have now shown that amnioserosa cell constriction but not actin cable tension in the adjacent dorsal

ectodermal cells autonomously drives dorsal closure (Pasakarnis et al., 2016). Similarly, the role of

Sqh localization and the effect of Sqh mislocalization on epithelial cell shape can now be studied in

more detail using the GrabFP toolset combined with other approaches such as laser ablation and

force measurement.

A basolateral Dpp pool is essential for patterning the Drosophila wing
imaginal disc
We have previously used morphotrap to show that spreading of eGFP-Dpp is required for wing

pouch patterning and for medial growth, while it is dispensable for lateral wing disc growth

(Harmansa et al., 2015). Based on this finding, we have used the GrabFP system to further dissect

the functional role of eGFP-Dpp spreading with regard to the apical-basal axis in Drosophila wing

disc development. We find that the vast majority of the eGFP-Dpp pool can be immobilized on the

basolateral side of disc cells, indicating that Dpp spreads in the basolateral intercellular space. In

line with this, functional interference with Dpp spreading in the basolateral compartment only

(GrabFP-BExt) suggests that the patterning function of the Dpp gradient is brought about to a large

extend by Dpp spreading in the lateral plane of the wing disc epithelium. Growth control, in con-

trast, is influenced by Dpp dispersing in both the lateral and in the basal planes. These results are

based on the findings that restricting basolateral Dpp dispersal (using GrabFP-BExt) strongly impairs

pattern and size while immobilizing eGFP-Dpp in the BL (using GrabFP-ECM) only impairs the size of

the Drosophila wing.

Our finding of a prominent role of the basolateral compartment in Dpp spreading is interesting

with regard to the mechanism of gradient formation and, at the same time, raises several new ques-

tions. Dpp gradient formation in the Drosophila wing disc remains a paradigm to study morphogen

dispersal and several mechanisms for morphogen gradient formation have been suggested, operat-

ing in different extracellular environments (for a recent review see [Akiyama and Gibson, 2015]).
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These proposed mechanisms include free extracellular diffusion in the wing disc lumen (Zhou et al.,

2012), restricted extracellular diffusion in the lateral plane of the epithelium (Belenkaya et al.,

2004; Akiyama et al., 2008; Schwank et al., 2011), and active transport by actin-based filopodial

extensions called cytonemes along the apical surface of DP cells (Hsiung et al., 2005). While the for-

mation of the functional Dpp gradient in the lateral compartment is compatible with a restricted

extracellular diffusion mechanism, it is not as easily compatible with the formation of a functional

Dpp gradient via free diffusion in the lumen or with a key role of apical cytonemes in Dpp readout.

Since we have not been able to visualize apical cytonemes, neither in wild type discs nor in disc, in

which Dpp spreading along the basolateral side was blocked, we cannot make firm statements

about a direct involvement of apical cytonemes in either situation.

In line with Dpp gradient formation via restricted extracellular diffusion, several studies

highlighted that Dpp morphogen receptors (Lecuit et al., 1996; Lecuit and Cohen, 1998;

Lander et al., 2002; Crickmore and Mann, 2006) and interaction partners (e.g. Dally,

Belenkaya et al., 2004, Akiyama et al., 2008) found along the extracellular surface of target cells

crucially influence morphogen gradient shape. Therefore, future studies will need to investigate the

localization and the effect of forced mislocalization of Dpp receptors and interaction partners on

Dpp dispersal and gradient formation. Furthermore, using a GrabFP toolset based on nanobodies or

protein binders against other fluorescent proteins (Brauchle et al., 2014), the Dpp ligand and the

Dpp receptors or interaction partners could be localized to different compartments and the effect of

such altered localization could confirm or refute emerging hypotheses. Of course, it will be of critical

importance to complement the results obtained using the GrabFP system with functional studies

interfering with trafficking and secretion of Dpp.

Material and methods

Fly strains
The following fly lines were used: y1w1118 (wild-type control), Crb-GFP (Huang et al., 2009). dpp::

LG86Fb (K. Basler, Yagi et al., 2010), LOP-eGFP-Dpp and LOP/UAS-morphotrap (Harmansa et al.,

2015), tub>CD2,Stop>Gal4 (F. Pignioni), sqhAX3 and sqhSqh-GFP (R. Karess) The fly stocks Dally-

YFP, Dlp-YFP, Nrv1-YFP, Nrv2-YFP, NrxIV-YFP, Arm-YFP, aCat-YFP, Hts-YFP, Notch-YFP, Ed-YFP,

PMCA-YFP have been obtained from the KYOTO Stock Center (DGRC) in Kyoto Institute of Technol-

ogy. The fly line Fat-GFP is described in Sarov et al. (2016) and obtained from the VDRC stock cen-

ter. r4::Gal4 was obtained from Bloomington (BL33832). nub::Gal4, ptc::Gal4, hh::Gal4, dppd8 and

dppd12 are described on FlyBase (www.flybase.org).

Genotypes by figure
Figure 1: C, nub::Gal4 / LOP/UAS-morphotrap; D, w; nub::Gal4 / LOP/UAS-GrabFP-AExt; E, w; nub::

Gal4 / LOP/UAS-GrabFP-BExt;

Figure 2: B, LOP/UAS-GrabFP-AExt / +; NrxIV-YFP / hh::Gal4; C, LOP/UAS-GrabFP-AExt / +; Dlp-

YFP / hh::Gal4; D, LOP/UAS-GrabFP-BExt / +; Crb-GFP / hh::Gal4; E, Notch-YFP / +; LOP/UAS-

GrabFP-BExt / +; hh::Gal4 / +; F, LOP/UAS-GrabFP-BExt / Ed-YFP; hh::Gal4 / +

Figure 3: B, Fat-GFP / ptc::Gal4; LOP/UAS-GrabFP-BInt / +; C, ptc::Gal4 / +; LOP/UAS-GrabFP-

BInt / aCat-YFP; D, Nrv1-YFP / ptc::Gal4; LOP/UAS-GrabFP-AInt / +; E, Nrv2-YFP / ptc::Gal4; LOP/

UAS-GrabFP-AInt / +; F, Hts-YFP / ptc::Gal4; LOP/UAS-GrabFP-AInt / +;

Figure 4: A, sqhAX3 / +; sqhSqh-GFP; B, ptc::Gal4 / +; LOP/UAS-GrabFP-BInt / +; D, sqhAX3 / +;

sqhSqh-GFP / ptc::Gal4; LOP/UAS-GrabFP-BInt / +; E–F, sqhAX3 / Y; sqhSqh-GFP / ptc::Gal4; LOP/

UAS-GrabFP-BInt / +

Figure 5: A–B: w; LOP-eGFP-Dpp / +; dpp::LG86Fb / +; C–E: yw hsFlp; tub>CD2,Stop>Gal4,

LOP-eGFP-Dpp / UAS-morphotrap; dpp::LG86Fb / +

Figure 6: A: w; LOP-eGFP-Dpp / +; dpp::LG86Fb / +; B: w; LOP-eGFP-Dpp / UAS-morphotrap;

dpp::LG86Fb / hh::Gal4; C: w; LOP-eGFP-Dpp / UAS-GrabFP-BExt; dpp::LG86Fb / hh::Gal4; D: w;

LOP-eGFP-Dpp / UAS-GrabFP-AExt; dpp::LG86Fb / hh::Gal4;

Figure 7: A,E,I,M: w; LOP-eGFP-Dpp, dppd12 / dppd8; dpp::LG86Fb / +; B,J,N: w; LOP-eGFP-

Dpp, dppd12 / UAS-morphotrap, dppd8; dpp::LG86Fb / hh::Gal4; F,K,O: w; LOP-eGFP-Dpp, dppd12

/ UAS-GrabFP-BExt, dpp
d8; dpp::LG86Fb / hh::Gal4;
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Figure 8: B: w; UAS-GrabFP-ECM / +; r4::Gal4 / +; D,F,I,M: w; LOP-eGFP-Dpp, dppd12 / UAS-

GrabFP-ECM, dppd8; r4::Gal4 / dpp::LG86Fb; E,H,L: w; LOP-eGFP-Dpp, dppd12 / dppd8; dpp::

LG86Fb/ +

Molecular cloning
The following constructs were created using standard molecular cloning techniques.

GrabFP-BExt - pUASTLOTattB_vhhGFP4::Nrv1::TagBFP
The TagBFP (Evrogen) coding sequence was inserted between the first and the second exon of the

nervana 1 (Nrv1, FlyBase ID: FBgn0015776) cDNA (BDGP DGC clone LD02379). The vhhGFP4 cod-

ing fragment (Saerens et al., 2005) was inserted at the C-terminal end of Nrv1::TagBFP. A Drosoph-

ila Kozak sequence (CAAA) was added and subsequently vhhGFP4::Nrv1::TagBFP was inserted into

the multiple cloning site (MCS) of the pUASTLOTattB vector(Kanca et al., 2014).

GrabFP-BInt - pUASTLOTattB_mCherry::Nrv1::vhhGFP4
To generate a basolateral GrabFP construct that exposes the nanobody to the cytosol we started

with the GrabFP-BExt plasmid. The tagBFP sequence was replaced by the vhhGFP4 sequence and

the original vhhGFP4 sequence was exchanged with an mCherry coding sequence.

GrabFP-AExt - pUASTLOTattB_vhhGFP4::T48-Baz::mCherry
The HA-tag was replaced by vhhGFP4 in the T48-HA plasmid (obtained from Kölsch et al. [2007]).

mCherry was inserted at the C-terminal end of vhhGFP4::T48. In addition, the 2316 base pair mini-

mal apical localization sequence of Bazooka (obtained from Krahn et al., 2010) was attached C-ter-

minally to mCherry. A Drosophila Kozak sequence (CAAA) was added when inserting vhhGFP4::T48-

Baz::mCherry into the MCS of the pUASTLOTattB vector (Kanca et al., 2014).

GrabFP-AInt - pUASTLOTattB_mCherry::T48-Baz::vhhGFP4
To switch the topology, we exchanged the mCherry with the vhhGFP4 coding region, resulting in

orientation of the nanobody into the cytosol.

GrabFP-ECM - pUASTLOTattB_vhhGFP4::Vkg::mCherry
vhhGFP4 and mCherry coding sequences, separated by a short linker region, were inserted between

the first and second exon in the Vkg full-length plasmid (obtained from Wang et al., 2008). This

insertion site was chosen, since a viable Vkg GFP-trap line exists which carries an exogenous GFP

exon at this position (Morin et al., 2001). Finally the vhhGFP4::Vkg::mCherry construct was inserted

into the MCS of the pUASTLOTattB vector (Kanca et al., 2014).

All transgenes were inserted by phiC31-integrase-mediated recombination into the 35B region

on the second chromosome and the 86F region on the third chromosome (Bischof et al., 2007). The

obtained transgenic flies respond to both, LexA and Gal4 transcriptional activators. By crossing with

Crey expressing flies one of the response elements can be removed in a mutually exclusive manner.

The excision was screened for by PCR as described in Kanca et al. (2014).

Antibodies
Rabbit (rb)-anti-mCherry (1:5000, gift from E. Nigg), rb-anti-tRFP (1:2000, Evrogen, #AB233), mouse

(m)-anti-Dlg (4F3, 1:500, DSHB, University of Iowa), rb-anti-phospho-Smad1/5 (1:300; Cell Signaling,

9516S), guinea pig (gp)-anti Dll (1:2000, a gift from R. Mann), m-anti-Wg (4D4-s; 1:120; DSHB, Uni-

versity of Iowa); m-anti-Ptc (Apa1-s; 1:40; DSHB, University of Iowa). Secondary antibodies from the

AlexaFluor series were used at 1:750 dilution with the exception from Alexa405-anti-rb which was

used at 1:500 dilution. CF405S-anti-gp was used at 1:1000 dilution (Sigma Aldrich).

Statistics and data representation
Sample size was chosen large enough (n � 5) to allow assessing statistical significance using a two-

sided Student’s t-test with unequal variance (*p�0.05, **p�0.005, ***p�0.0005). Sample number

and p-values are indicated in either the figure or the figure legend for each experiment. n-numbers

indicate biological replicates, meaning the number of biological specimens evaluated (e.g. the
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number of wing discs or wings). In boxplot graphs outliers are indicated by a red cross (e.g. Fig-

ure 1—figure supplement 2) and were excluded from further computation.

In the apical-basal concentration profiles (e.g. Figure 2B–F), bold lines represent average fluores-

cent values and error bars correspond to the standard error, dashed lines represent profiles cor-

rected for the increase in GFP/YFP fluorescence levels due to nanobody binding (see below). Bold

lines in the p-Mad expression profiles (Figure 7D,H and Figure 8G) indicate the arithmetic mean

and the error bars show the standard deviation; individual profiles used for the analysis are shown

light-colored. In box plots individual data points are shown and the center value represents the

media while the whiskers mark the maximum and minimum data points.

Specific methods for part I - fluorescent protein mislocalization
(Figures 2–4)
Sample collection, immunostaining and imaging
Third instar wandering larvae were dissected and used for analysis. Larvae were dissected, fixed and

stained as described before (Harmansa et al., 2015). For high-resolution imaging along the z-axis

(optical cross-sections of wing discs) discs were mounted with their apical side facing the coverslip

and using double sided tape as spacer to avoid squeezing of the discs and to preserve their mor-

phology. To obtain maximum resolution along the z-axis, stacks were acquired with sections every

0.17 mm on a Leica SP5 microscope. Importantly, due to our experimental design the GrabFP tools

were only expressed in a subset of cells (the posterior compartment for GrabFPExt and the ptc-

domain for GrabFPInt) and we used the non-GrabFP expressing cells as internal controls. Microscope

settings were chosen to allow highest fluorescence levels (usually in the GrabFP domain) to be

imaged under non-saturating conditions and were kept identical while imaging of all wing discs of

one experiment (one target protein). Therefore, the fluorescence levels between the control and the

experimental condition can be compared directly.

Image processing
Image data was processed and quantified using ImageJ software (National Institute of Health). Opti-

cal cross-sections were computed using the section tool in Imaris software (Bitplane).

For improved resolution, datasets in Figures 1–4 were deconvolved using the Huygens Remote

Manager software (Ponti et al., 2007).

Purification of eGFP and vhhGPF4 and fluorescent in vitro essay
In order to control for potential modulation of fluorescence signal due to GFP/YFP binding to

vhhGPF4, we purified eGFP and vhhGFP4 and tested the effect of vhhGFP4 binding to eGFP in vitro.

To do so, the coding sequences of vhhGFP4 and eGFP were cloned into pET22b(+) (Novagen) via

NdeI and XhoI restriction enzyme sites. vhhGFP4 and eGFP proteins were expressed in BL21(DE3) E.

coli bacteria (NEB) for 3 hr at 30˚C using 1 mM IPTG. Subsequently, the respective bacterial pellets

were lysed using a conventional Sonicator. The lysates were loaded on Protino Ni-NTA Agarose

beads (Macherey-Nagel), and the proteins were purified according to the manufacturer’s protocol.

The purified proteins were dialyzed against 1x Phosphate Buffered Saline (PBS, Gibco) using Spec-

tra/Por Dialysis Tubes (MWCO: 8000–10000 D, Spectrum Laboratories, Inc.).

To estimate changes in eGFP fluorescence upon vhhGFP4 binding we titrated defined amounts

of purified vhhGFP4 (5–216 nM) on 54 nM purified eGFP in PBS (see Figure 2—figure supplement

2). Five independent replicas of the different concentration ratios were mixes in 96-well cell culture

plates and incubated at room temperature for 30 min. eGFP fluorescence was imaged using a Leica

SP5 confocal microscope. Fluorescent levels were measured using the histogram function (Analyze>-

Histogram) in ImageJ software (National Institute of Health) and average fluorescence values were

plotted in Matlab software (Matworks). Our results show that low levels of vhhGFP4 (5–27 nM) do

not result in a change of eGFP fluorescence (Figure 2—figure supplement 2C). However, vhhGFP4

concentrations of 54 nM or higher resulted in increased eGFP fluorescence. This increase plateaued

for amounts of 108 nM and above (corresponding to a 1:2 ratio of eGFP to vhhGFP4). To estimate

the mean increase in eGFP fluorescence when the plateau was reached (at saturating conditions), we

calculated the mean value of all data points at plateau conditions (108 and 216 nM vhhGFP4); which

resulted in a mean eGFP fluorescence increase of 47.5% or 1.475-fold under saturating conditions.
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In order to give a fair representation of this phenomenon, we also show fluorescence profiles cor-

rected for this 47.5% increase in fluorescence due to vhhGFP4 binding, as explained in the next

section.

Furthermore, to ensure that we imaged eGFP fluorescence under microscope settings that are

within the linear range of the fluorophores, we imaged defined amounts of purified eGFP protein

under the identical setup as used for the in vitro fluorescence assay (Figure 2—figure supplement

2E). Indeed, the obtained fluorescent levels behaved proportional to the actual eGFP concentration,

suggesting that our imaging conditions are in the linear-range and that eGFP fluorescence is propor-

tional to eGFP concentration.

Extraction of concentration profiles along the apical-basal axis
In order to quantify absolute protein levels in the apical versus the basolateral compartment, we

acquired high-z-resolution stacks (as described in the imaging section) of wing discs stained for the

junctional marked discs-large (Dlg). From these discs, we obtained optical cross-sections in the dor-

sal compartment parallel to the D/V boundary using the ‘reslice’ option in Fiji software (ImageJ,

National Institute of Health) (see Figure 1—figure supplement 3A). From these cross-sections, we

extracted the fluorescent intensity profiles of Dlg and the protein of interest in a rectangular region

of 114 � 16 mm using the ‘plot profile’ function in ImageJ (see Figure 1—figure supplement 3B).

Importantly, we extracted concentration profiles of the GrabFP expressing regions (experiment) and

the non-GrabFP expressing neighboring cells (internal control) of the same discs. In order to average

individual profiles from different discs, we used the junctional peak of the Dlg profile to align the

individual profiles. To correct for variation between profiles from different discs, we subtracted the

background fluorescence observed in the disc lumen (minimal fluorescence intensity observed in the

luminal region, see Figure 1—figure supplement 3A). Average profiles were calculated in Excel

software (Microsoft) and plotted in Matlab software (Matworks). In the depicted plots, we only

included signal from the DP region and excluded signal from the PPE (see Figure 1—figure supple-

ment 3C–D). The peak of the average Dlg profile plus and minus 1.0 mm (marked by a blue bar) was

defined as the junctional plane and the border between the apical and the basolateral compartment.

Error bars show the standard error.

In order to account for the observed increase in eGFP fluorescence due to interaction with

vhhGFP4 in vitro, we show the original, non-corrected profiles (continuous lines) and profiles that

were corrected for the observed increase in fluorescence due to vhhGFP4 (dashed lines). To do so,

we corrected for the 1.475-fold increase incorporating the local vhhGFP4 (GrabFP) concentration

using the following formula:

eGFPc xð Þ ¼ eGFP xð Þ�
eGFP xð Þ � relGrabFP xð Þ

1:475
(1)

where eGFPc(x) is the corrected eGFP fluorescence, eGFP(x) the observed eGFP fluorescence and

relGrabFP(x) the relative GrabFP concentration at position x. relGrabFP was calculated by normaliza-

tion to maximum GrabFP fluorescence levels. Doing so, we correct eGFP fluorescence proportional

to vhhGFP4 concentrations and only at positions where vhhGFP4 is present and potentially modifies

eGFP fluorescence. Importantly, corrected profiles are supposed to provide means to account for a

potential modulation of eGFP fluorescence by vhhGFP4 binding in vivo, based on our in vitro

findings.

Quantification of apical cell surface area
In order to assess the size change in apical cell surface area induced by Sqh-GFP basolateral misloc-

alization, we measured the apical area using the polygon selection tool in using ImageJ software

(National Institute of Health). Individual data points were plotted in Matlab software (Matworks)

using the Scatplot script (A. Sanchez-Barba; http://www.mathworks.com/matlabcentral/fileex-

change/8577-scatplot).
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Specific methods for part II – Dpp gradient formation (Figures 5–8 )
Staging of larvae and dataset creation
For quantification of expression profiles (Figure 7A–H and Figure 8E–G) or pouch size (Figure 7I–L

and Figure 8H–J) larvae were staged to 98–100 hr after egg laying (AEL) as described before

(Hamaratoglu et al., 2011; Harmansa et al., 2015). Only male larvae were included in this analysis,

positively selected by the presence of the transparent genitalia disc. All larvae of one experiment

(control condition and one or several GrabFP conditions) were dissected and stained together using

identical solutions, as described before (Harmansa et al., 2015). All wing discs of one experiment

were mounted on the same cover slide using larval brains as spacers. Disc were mounted with the

apical side of the DP facing the coverslip.

Data-sets were imaged in a SP5 confocal microscope (imaging a slice every 1 mm). All images of

one data-set were acquired in the same microscope session using identical microscope settings; con-

ditions were chosen within the linear range of the fluorescent signal obtained.

Plotting of average expression profiles along the A-P axis
Average expression profiles were obtained using the WingJ software (Schaffter, 2014) (http://

tschaffter.ch/projects/wingj/) as done previously (Harmansa et al., 2015). In brief, we made use of

Wg and Ptc stainings marking the D/V and the A/P boundary, respectively. Profiles were then

extracted up to the edge of the wing disc with a 30% offset in the dorsal compartment along a line

parallel to the D/V boundary (see Hamaratoglu et al., 2011; Harmansa et al., 2015). Plotting of the

average profiles was done in Matlab software (Mathworks) using the WingJ Matlab toolbox.

Quantification of pouch and wing area
Areas of the wing pouch and the adult wing were quantified using the polygon selection tool in

ImageJ software.
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