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Allergic rhinitis (AR) is a common heterogeneous chronic disease with a high prevalence
and a complex pathogenesis influenced by numerous factors, involving a combination of
genetic and environmental factors. To gain insight into the pathogenesis of AR and to
identity diagnostic biomarkers, we combined systems biology approach to analyze
microbiome and serum composition. We collected inferior turbinate swabs and serum
samples to study the microbiome and serum metabolome of 28 patients with allergic
rhinitis and 15 healthy individuals. We sequenced the V3 and V4 regions of the 16S rDNA
gene from the upper respiratory samples. Metabolomics was used to examine serum
samples. Finally, we combined differential microbiota and differential metabolites to find
potential biomarkers. We found no significant differences in diversity between the disease
and control groups, but changes in the structure of the microbiota. Compared to the HC
group, the AR group showed a significantly higher abundance of 1 phylum
(Actinobacteria) and 7 genera (Klebsiella, Prevotella and Staphylococcus, etc.) and a
significantly lower abundance of 1 genus (Pelomonas). Serum metabolomics revealed 26
different metabolites (Prostaglandin D2, 20-Hydroxy-leukotriene B4 and Linoleic acid,
etc.) and 16 disrupted metabolic pathways (Linoleic acid metabolism, Arachidonic acid
metabolism and Tryptophan metabolism, etc.). The combined respiratory microbiome
and serum metabolomics datasets showed a degree of correlation reflecting the influence
of the microbiome on metabolic activity. Our results show that microbiome and
metabolomics analyses provide important candidate biomarkers, and in particular,
differential genera in the microbiome have also been validated by random forest
prediction models. Differential microbes and differential metabolites have the potential to
be used as biomarkers for the diagnosis of allergic rhinitis.
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1 INTRODUCTION

Allergic rhinitis (AR) is a common heterogeneous chronic
disorder in both children and adults that currently affects up to
40% of the global population, with a high prevalence especially in
industrialized countries, and has a negative impact on the social
life, school performance and productivity of patients (1, 2). It is
an inflammation disease of the nasal mucosa characterized by the
presence of one or more nasal symptoms, including nasal
pruritus, sneezing, rhinorrhea, and nasal congestion (3–5). Its
pathogenesis is complex and influenced by numerous factors,
involving a combination of genetic and environmental factors, in
which the interaction between a dysregulated state of the
microbiota and an allergic response to allergen exposure has a
major role (6). There are no biomarkers available for clinical
practice to predict the subtype and severity of AR and the
development of its common comorbidities (5).

The respiratory tract is a complex system that extends from the
nasal cavity, nasopharynx, oropharynx, and trachea straight to the
lungs and is divided into the upper respiratory tract and the lower
respiratory tract. It has been found that a large number of bacterial
communities exist throughout the respiratory tract, and the
microbial community structure has variations in richness and
diversity along the respiratory tract (7), which has a great role in
determining the occurrence and development of diseases (8–10).
Current studies have found that lower respiratory microflora can
be involved in the development of lung diseases such as lung
cancer (11), asthma (12, 13) and chronic obstructive pulmonary
disease (14), by modulating the local inflammatory response. The
upper respiratory tract is composed of different anatomical
structures that have different epithelial cell types and are
exposed to various environmental factors, so the nasal
microbiota may be abnormal, especially in the context of airway
allergy (7). Therefore, exploring the relationship between allergic
inflammation and the upper airway microbiota is essential to
understand the mechanisms associated with AR and to provide
potential therapeutic strategies.

Metabolomics is the detection, identification and quantification
of smallmolecule compounds involved inmetabolism, and itsmost
widespread application is the identification of biomarkers for
diagnosis and prediction of diseases, which have great potential in
the elucidation of diseasemechanisms (15–17). In some respiratory
diseases, such as asthma (18, 19), lung cancer (20), and chronic
obstructivepulmonarydisease (21),metabolomics approacheshave
identified potential biomarkers that can be used as disease
characterization and new therapeutic targets (22, 23). Our
previous study also identified differences in metabolic profiles
between asthma phenotypes (24). Environmental factors and
metabolic markers in allergic rhinitis might be new points to
explore metabolic changes in allergic diseases and to identify
some potential metabolites and key metabolic pathways to
account for the pathogenesis of AR (25).

In this study, 16S rRNA sequencing was used to identify the
microorganisms of the nasal airways of AR patients and healthy
volunteers to uncover the role of microflora in the pathogenesis
of AR. We also conducted an in-depth exploration of the
differential metabolic status of AR patients and healthy
Frontiers in Immunology | www.frontiersin.org 2
volunteers by non-targeted metabolomics to elucidate the
metabolic characteristics and metabolic pathway patterns of
AR patients and to further understand the pathogenesis of AR
by multi-omics association analysis.
2 MATERIALS AND METHODS

2.1 Study Population and Sample Collection
We recruited patients with acute exacerbations of allergic rhinitis
at the China-Japan Union Hospital of Jilin University during the
spring and fall of April 2018 to May 2019. Inferior turbinate
mucosa samples from the patients and age- and sex- matching
healthy subjects were obtained. Allergic rhinitis patients were
diagnosed according to the following criteria: the occurrence of 2
or more symptoms of sneezing, clear watery nasal discharge,
itchy nose and nasal congestion that persist or accumulate for
more than 1h per day, accompanied by ocular symptoms such as
itchy eyes, tearing and red eyes; nasal endoscopy of the nasal
mucosa showing pallor and edema; seasonal allergen test result
positive for serum-specific IgE (26). The exclusion criteria used
for the above patients were as follows: receiving no
immunotherapy; not diagnosed with malignancy; no history of
allergic skin disease or allergic asthma; receiving no medication
for allergic diseases in the 2 months prior to sampling. Healthy
controls without clinical symptoms of rhinitis were enrolled
and paired.

This study was performed in accordance with the Helsinki
Declaration and Rules of Good Clinical Practice. It was approved
by the China-Japan Union Hospital of Jilin University Ethics
Committee (2018-NSFC-029) and registered in Chinese Clinical
Trial Registry (NO. ChiCTR1800015420). All participants signed
written informed consent.

2.2 DNA Extraction and 16S rDNA Sequencing
All inferior turbinate samples were collected and immediately
frozen at -80°C. Total genome DNA from samples was extracted
using CTAB method. 16S rRNA genes of distinct regions (16S
V3-V4) were amplified used specific primer (341F—
CCTAYGGGRBGCASCAG and 806R—GGACTACNNGGG
TATCTAAT). After PCR products mixing and purification,
sequencing libraries were generated using Ion Plus Fragment
Library Kit 48 rxns (Thermo Scientific), whose quality was
assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific),
and finally library was sequenced on an Ion S5TM XL platform.

2.3 Sample Preparation for Metabolomics
and UPLC-Q/TOF-MS/MS Procedure
All serum samples were stored in aliquots at -80°C and thawed on
ice prior to analysis. The serum (400 mL) of each sample was mixed
with acetonitrile (1,200mL) and vortexed for 3min. After 15min of
resting on ice, allmixtureswere centrifuged at 12,000 g for 10min at
4°C in order to remove proteins. Next the supernatantwas collected
and lyophilized at -60°C and 10 pa air pressure for 20 h. The
lyophilized material was redissolved in 150 mL 90% methanol and
then centrifuged for the supernatant as test sample solution. The
January 2022 | Volume 12 | Article 771136
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quality control (QC) sample was a 5 mL aliquot of each test sample
solution that was mixed for method validation.

The UPLC-QTOF-MS analysis was performed by Waters
Xevo G2-XS QTOF mass spectrometer (Waters Co., Milford,
MA, USA.) combined with a UPLC system through an
electrospray ionization (ESI) interface. ACQUITY UPLC BEH
C18 (50 mm × 2.1 mm, 1.7 mm, Waters Co., Milford, MA, USA.)
was used for chromatographic separation. The column
temperature was set at 30°C and the room temperature was set
at 16°C. The mobile phase consisted of eluent A (0.1% formic
acid in aqueous solution) and eluent B (0.1% formic acid in
acetonitrile solution). The gradient elution program was set up as
follows: 0~2 min, 10% B; 2~26 min, 10%!90% B; 26~28 min,
90% B; 28~28.1 min, 90%!10% B; 28.1~30 min, 10% B with the
flow rate at 0.4 mL/min. Mass spectra were obtained from 100 to
1200 Da in MSE centroid mode.

The optimized MS parameters were shown as follows based on
our previous study (27, 28): cone voltage (40 V), capillary voltage
at 2.6 kV (ESI+ mode) and 2.2 kV (ESI- mode), cone gas flow rate
(50 L/h under the 120°C source temperature condition) and
desolvation gas flow (800 L/h at 300°C desolvation temperature).
In theMSEmode ofmass spectrometry, low energy and high energy
were set as 6 V and 20–40 V, respectively. Sodium formate solution
wasused tocalibrate the instrument, and leucine enkephalinwasused
as the Lock Spray™ calibration standard liquid. The QC sample was
randomly injected 6 times throughout the whole process. Data
processing was performed on a MassLynx V4.1 workstation.

2.4 Microbiomics Study
All sequencing raw data were deposited into the NCBI Sequence
Read Archive database (Accession number, PRJNA760816). Raw
reads were processed into clean reads by data filtration using
Cutadapt (v1.9.1) and chimera removal using UCHIME
algorithm. The quality of all sequence have been filtered to
ensure that the average quality of the bases was more than
Q20. Sequences with more than 97% similarity were assigned to
the same operational taxonomic units (OTUs). For clustered
OTUs, the Silva Database based on Mothur algorithm was used
to annotate taxonomic information. The alpha diversity and beta
diversity analysis were calculated with QIIME software (version
1.9.1) and displayed with R software (version 2.15.3). Metastats
analysis of phylum and genus was performed with R software,
followed by false discovery rate correction. Random forest
analysis was the classification of samples based on a machine
learning model for the purpose of filtering variables.

2.5 Metabolomics Study
The raw data from the UPLC-Q/TOF-MS/MS system were
processed with MarkerLynx (v4.1) software for alignment,
deconvolution, and reduction to further multivariate analysis.
The main parameters were set as follows: retention time range
0~28 min, mass range 100~1200 Da, retention time window 0.20
min, mass window 0.1 Da, marker intensity threshold 2000
counts and noise cancellation level 6. The processed data were
entered into SIMCA-P software (Version 14.1) for multivariate
analysis, including principal component analysis (PCA) and
orthogonal projection to latent structures discriminant analysis
Frontiers in Immunology | www.frontiersin.org 3
(OPLS-DA). S-plots based on OPLS-DA predictions could
demonstrate potential biomarkers which significantly
contribute to metabolic differences. Metabolites with the
variable importance in the projection (VIP) values above 1.0
and p-value below 0.05 were considered significantly different.
The distinct metabolites were identified by comparing mass
spectral fragmentation patterns according to HMDB databases
(http://www.hmdb.ca/). According to the mobile phase, the
adducts were selected as [M+H]+ and [M+Na]+ in ESI+, [M-
H]- and [M+FA-H]-, with a mass tolerance of 10 ppm. Then, the
predictive receiver operating characteristic (ROC) curve was
used to estimate the accuracy of identified metabolites as
potential biomarkers with the area under curve (AUC)>0.6.
Potential biomarkers were screened through MetaboAnalyst
4.0 (http://www.metaboanalyst.ca/) for potential metabolic
pathways, with the impact values above 0.10 and p values
below 0.05.

2.6 Data Analysis
The results are presented as mean ± standard deviation (SD).
Statistical analysis was performed using one-way analysis of
variance (ANOVA) for multiple comparisons. Data normality
was assessed by the Kolmogorov-Smirnov method. Comparisons
between the two groups were performed by t-test. Student’s t-test
was used to calculate p-value with homogeneity of variance;
conversely, Welch’s t-test was used to calculate p-value. Mann-
Whitney-Wilcoxon test was used to analyze non-normal data.
All statistical analysis about the identification of distinct
metabolites was completed with R (v4.0.2) basic statistical
packages. All statistical significance was accepted at p<0.05.
3 RESULTS

3.1Characteristics of All Participants
Atotal of 43participantswithAR(n=28) andhealthy controls (HC)
(n=15) were enrolled in this study. Clinical demographics of the
study cohort are presented inTable 1. The statistics of basic natural
characteristics, including gender, age, and BMI values, did not
display any significant difference between the two groups. The
serumtotal IgE levelwas significantlyhigher in subjectswithallergic
rhinitis than in the healthy controls. All patients with allergic
rhinitis are seasonal allergy patients with acute exacerbations.

3.2 Microbiota in the Upper Respiratory
Tract of AR Patients Versus HCs
3.2.1 Estimation of Sequencing Depth
16S rDNA sequencing of 43 samples was based on the Ion S5TM

XL sequencing platform. After quality control filtering, an
average of 79,137 valid data were obtained per sample. A total
of 2,736 OTUs were obtained by clustering the sequences into
OTUs with 97% identity, and then the sequences were annotated
with Silva132. A total of 1,314 (48.03%) OTUs were annotated to
the genus level in the annotation results.

Rarefaction curves showed curves in each group of samples
reaching the platform stage, indicating a reasonable amount of
January 2022 | Volume 12 | Article 771136
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sequencing data (Figure 1A). Rank Abundance curves reflected
great richness and evenness in each set of samples (Figure 1B).
The species accumulation boxplot showed a gradual increase in
species diversity with increasing sample size, with the curves
flattening out at 43 sample sizes (Figure 1C).

3.2.2 Alpha-Diversity and Beta-Diversity
Alpha-diversity is used to analyze the diversity of microbial
communities in a group. The assessment of the Chao1,
Observed species and Simpson indexes, in each sample
revealed that a-diversity was not changed in allergic rhinitis
patients compared with the HCs (Figures 2A–C). In short, no
significant change in species richness and diversity was observed.

Beta-diversity is a comparative analysis of the microbial
community composition of different groups. Principal
Component Analysis (PCA) based on Euclidean distances is able
to extract the two axes that maximize the differences between
samples, thus reflecting the differences in multidimensional data
on a two-dimensional coordinate chart (Figure 2D). Beta diversity
index analyzed by t-test showed significant differences between the
two groups (Figure 2E).

3.2.3 Distribution of Microbiota Taxonomic
Composition in AR Patients
According to the species annotation results, the top 10 species with
the highest abundance at phylum and genus level are selected for AR
and HC group to generate a relative abundance histogram, so as to
visualize the species with higher relative abundance and their
Frontiers in Immunology | www.frontiersin.org 4
proportion at different taxonomic levels. At the phylum level,
Proteobacteria, Firmicutes, and Bacteroidetes were the most
abundant entities in the airway microbiota (Figure 3A). In
addition, the Stenotrophomonas , Sphingomonas , and
Faecalibacterium dominated the airway microbiota at the genus
level (Figure 3B). There was higher abundance of the
Actinobacteria phylum in ARs (p<0.05, Figure 3C). Klebsiella,
Prevotella, Finegoldia, Vibrio were obviously significantly enriched
in ARs (p<0.01, Figure 3D). And unidentified_Cyanobacteria,
unidentified_Corynebacteriaceae, Delftia, Staphylococcus were
higher in AR patients compared with HCs, while the Pelomonas
was more abundant in HCs (p<0.05, Figure 3D). To further
investigate the phylogenetic relationships of species at the genus
level, a representative sequence of the genus top100 was obtained by
multiple sequence alignment and is shown in Figure 3E.

3.2.4 Predictive Modeling of the Airway Microbial
Profile for AR
Random forest is a classical machine learning model based on
classification tree algorithm that provided further support for the
differentiation of AR andHC groups. This analysis based onOTU-
based feature constructed randomforest predictivemodel for the 10
genera. Significant genera were selected byMeanDecreaseAccuracy
(Figure 4A), 10-fold cross-validation was done for the model and
receiver operating characteristic (ROC) curves are plotted to score
the predictive power. The area under the curve (AUC) was 0.9628
(95% CI: 0.906−1.000) (Figure 4B), suggesting that the airway
microbiota had the potential to diagnose allergic rhinitis patients
from healthy and disease controls. We observed that in the model,
10 genera were Proteus, Brevundimonas, Muribacter, Prevotella,
Phyllobacterium, Finegoldia, Lactobacillus , Pelomonas ,
unidentified_Corynebacteriaceae, Candidatus_Saccharimonas, 5
belonged to the phylum Proteobacteria, 2 belonged to Firmicutes,
1 belonged to Bacteroidetes, and 1 belonged to Actinobacteria.
Therefore, they might be used as bio-markers to identify patients
most likely to develop AR.

3.3 Metabolomic Analysis of AR Versus HC
3.3.1 Multivariate Analysis of Metabolomic Data
To further identify the pathogenesis of allergic rhinitis, non-
targeted metabolomics was performed using UPLC-QTOF-MS/
A B C

FIGURE 1 | Estimation of sample depth in the AR and HC groups. (A) Rarefaction curves. (B) Rank Abundance curves. (C) Species Accumulation Boxplots. AR,
allergic rhinitis; HC, healthy control.
TABLE 1 | Clinical characteristics of the enrolled participants.

Parameter AR HC

No. of subjects 28 15
Male (%) 14 (50.0) 6 (40.0)
Female (%) 14 (50.0) 9 (60.0)
Serum IgE level (range: ≥200 IU/ml) 16 (57.1) 0 (0.0)
Serum IgE level (range: 100-199 IU/ml) 12 (42.9) 0 (0.0)
Serum IgE level (range: 0-99 IU/ml) 0 (0.0) 12 (100.0)
Age range, years 18-66 18-56
Mean age, years (SEM) 39.8(± 2.7) 34.8(± 3.2)
BMI, kg·m-2 (SEM) 23.2(± 0.6) 22.7 (± 0.7)
Seasonal Allergies 28 0
January 2022 | Volume 12 | Article 771136
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MS. Principal component analysis (PCA) is an unsupervised
pattern recognition method that could be applied to select distinct
variables in the searchofpossiblebiomarkers. PCAscore2Dplots of
the serummetabolomics in ESI+ and ESI- modes were displayed in
Figures 5A, B. QC samples were tightly clustered, which further
indicated the good stability of the metabolomics system.Moreover,
a clear separation of the allergic rhinitis group (AR) and healthy
control group (HC) could be observed, indicating that these two
groups were differential.

Orthogonal Projections to Latent Structures Discriminant
Analysis (OPLS-DA), a supervised method of pattern
recognition, enables visualization and depiction of the general
metabolic variation between the AR and HC groups. As shown in
Figures 5C, D, each sample was represented as one spot in score
plots and the AR and HC groups were separated in ESI+ and ESI-
modes. Permutation tests (n=200) were used to validate the
OPLS-DAmodel. From the permutation plots, all blue Q2-values
to the left were lower than the original points to the right,
indicating the validity of the original models (see Figures 5E, F).

3.3.2 Identification of the Differential Metabolites
in Serum
S-plotswere created to identifydifferentialmetabolites (Figures6A,
B).Different spots in the S-plots represented different variables, and
the farther away they were from the origin, the more significantly
the spots contributed to the difference between the disease group
andhealthy group. Potentially differentialmetabolites were selected
basedon the contributionofVariable Importance for theProjection
(VIP) extracted from the OPLS-DA models above. A total of 26
robust endogenous metabolites in serum were identified as
potential biomarkers (marked in red in S-plots) based on
Frontiers in Immunology | www.frontiersin.org 5
VIP>1.0, p<0.05 standard screening and mass spectrometry
comparison. After comparison with the referenced spectra from
HMDB or METLIN databases of every metabolite, where the
detailed information of fragments used to identify was shown in
Table 2. Predicted ROC curves were generated using 26 candidate
biomarkers in ESI+ and ESI- modes, suggesting that these
metabolites are potential diagnostic markers for allergic rhinitis
(Figures 6C, D).

3.3.3 Identification of the Differential Metabolic
Pathways in Serum
Based on the identified metabolites, 16 disturbed metabolic
pathways that may be associated with the occurrence of AR were
identified using MetaboAnalyst 4.0 and the results are shown in
Figure 7. The impact value represents the importance of the
metabolic pathways, the -log10(P) value represents the difference
in the metabolic pathway and the size of the circle is positively
correlatedwith the twoparametersmentionedabove.The identified
metabolic pathways are summarized in Table 3. A total of three
significantly altered pathways were observed in the serum samples,
specifically, two altered metabolic pathways (linoleic acid
metabolism and arachidonic acid metabolism) showed extreme
significance (impact > 0.1, p<0.01), and the remaining one pathway
(caffeine metabolism) showed potential significance (impact > 0.1,
p < 0.05). Whereas tryptophan metabolism was potentially
correlated with the occurrence of AR (impact > 0.1, p > 0.05).

3.4 Microbiome and Metabolome
Association Analysis in AR
Using correlation analysis between microbiome and
metabolome, we calculated the Spearman’s correlation
A B

D E

C

FIGURE 2 | Alpha-diversity analysis of microbiome in allergic rhinitis (AR) group and healthy control (HC) group. (A) Chao1 index statistics. (B) Observed species
index statistics. (C) Simpson index statistics. (D) Display of Principal Component Analysis (PCA) of the samples in two-dimension (PC1 = 13.54%, PC2 = 10.25%).
(E) Beta diversity index statistics. Student’s t-test, **p < 0.01.
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between the 15 differential genera and the 26 differential
metabolites (Figure 8). We found that the AR-enriched
genera correlated positively with AR-enriched metabolites
but negat ive ly with the HC-enr iched metabol i te s .
Consistently, the HC-enriched genera correlated positively
with HC-enriched metabolites but negatively with AR-
enriched metabolites, implying highly consistent metabolic
interactions between the respiratory microbiota and the host.
Brevundimonas , Proteus , Muribacter , Finegoldia and
Prevotella had the most significant relationships with
metabolites. In contrast, Lactobacillus and Staphylococcus
were barely associated with differential metabolites.
Frontiers in Immunology | www.frontiersin.org 6
4 DISCUSSION

In this study, we first collected nasal inferior turbinate swabs
from AR patients and HC volunteers, and combined with high-
throughput sequencing of 16S rRNA reported no significant
differences in diversity, abundance and homogeneity between the
disease and control groups, but changes in microbiota structure,
which revealed significantly higher levels of 1 phylum and 7
genera and significantly lower levels of 1 genus in the AR group
compared to the HC group. Based on the characteristics of OTU
we constructed a random forest prediction model with 10 genera
and performed 10-fold cross-validation of the model, indicating
A B

D

E

C

FIGURE 3 | The distribution of taxa in phylum and genus levels of AR and HC groups. (A) composition of microbiome at the phylum level. (B) composition of
microbiome at the genus level. (C) the statistical results of top 10 phyla. (D) the statistical results of top 35 genera. (E) Phylogenetic tree constructed from
representative sequences of genus-level species, with branch and fan colors indicating their corresponding gates, and stacked histograms outside the fan rings
indicating information on the abundance distribution of the genus in different samples.
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A B

FIGURE 4 | Prediction model of the airway microbiota for AR status based on the genus-level relative abundances using random forests. (A) variable importance
ranking chart, MeanDecreaseAccuracy measures the degree to which the prediction accuracy of a random forest decreases by changing the value of a variable to a
random number. A higher value indicates that the variable is more important. (B) ROC curve of the AR model using 10 discriminatory genera.
A B

D

E F

C

FIGURE 5 | Serum metabolomic profile in different groups. (A, B) PCA score plots of serum metabolic profiling of allergic rhinitis and healthy control groups.
(C, D) OPLS-DA score plots of serum metabolic profiling of AR and HC groups. (E, F) The permutations plots of the OPLS-DA models.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yuan et al. Microbiome and Metabolomics in AR
that the airway microbiota has the potential to diagnose patients
with allergic rhinitis and may be used as a candidate biomarker.
We then used metabolomics to analyze serum from AR patients
and HC volunteers and found that the systematic metabolic
profile of AR patients was altered, identifying a total of 26
different metabolites and 16 perturbed metabolic pathways.
The multi-omics study revealed that the upper respiratory
microbiota maintains a highly consistent role with
host metabolism.

Microbiota plays an essential role in regulating the immune
response associated with atopic diseases. We noted that the
inferior turbinate microbiota of AR patients in the acute
exacerbation phase consists primarily of members of the phyla
Proteobacteria, Firmicutes, and Bacteroidetes, which are similar to
the that of HC (29, 30), but differs in that the phyla Actinobacteria
is significantly increased in AR. And on a lower taxonomic level,
the genera Klebsiella, Prevotella, and Staphylococcus were
significantly increased in AR, while in HC, the most prevalent
genera were Moraxella, Haemophilus, Streptococcus, and
Flavobacterium (31, 32), differing probably due to dysbiosis of
microbial ecology caused by the interaction between inflammatory
state and microorganisms. Under normal conditions, the
microbiota of the nasopharynx are predominantly Proteobacteria
(e.g., Moraxella spp. and Haemophilus spp.), Firmicutes (e.g.,
Staphylococcus and Dolosigranulum spp.), and Actinobacteria
(e.g., Corynebacterium spp.) (33, 34). The increase of the phyla
Actinobacteria and the genera Klebsiella, Prevotella and
Staphylococcus in the upper respiratory tract of AR patients may
be related to the enlargement of the inferior turbinates during the
Frontiers in Immunology | www.frontiersin.org 8
allergic state, increasing epithelial permeability, allowing the
presence of abnormal fluid accumulation on the airway surface
and affecting the balance of the commensal microbiota in the nasal
mucosa. Klebsiella has two main channels of colonization in the
population host: the upper respiratory tract and the intestine. Its
colonization fights against the microbiota in these two locations
and the defenses established by the immune system. It has been
shown that in the upper respiratory tract, Proteobacteria enhances
immunity through IL-17A, but Klebsiella overcomes these
defenses and thus colonizes effectively by encapsulation (35).
Bacteroidetes are sufficient to prevent the host-to-host spread of
Klebsiella between hosts via IL-36 (35). Staphylococcus are
common in patients with allergic rhinitis, especially S. aureus,
with a colonization rate of 44% compared to 20% in healthy
controls (36). And allergic S. aureus carriers had higher nasal
symptom scores (37). Hyun et al. described a lower microbial
biodiversity observed in individuals with high serum total IgE
levels (high IgE group) compared to individuals with low total IgE
levels (low IgE group), with a higher relative abundance of
Staphylococcus aureus (38). Staphylococcus aureus induces IgE
production and promotes allergic inflammation. High IgE levels
cause S. aureus blooms, which activate mast cell degranulation and
lead to inflammation. Therefore, controlling S. aureus and IgE
levels may be an effective strategy to prevent IgE-related diseases,
including AR. Prevotella is the second most abundant genus in the
human oral cavity, and it is essentially the most abundant of the
gut microbiota whenever it is present. the association between
Prevotella and diet may account for its decline in westernized
populations, whose diets are rich in fat and fiber (39). Chiu et al.
A B

DC

FIGURE 6 | Identification of the Differential Metabolites in Serum. A-B, OPLS-DA S-plots of metabolomic analysis based on serum samples in ESI+ mode (A) and in
ESI- mode (B). The predictive ROC curves generated using 26 candidate biomarkers contributing to AR progress. (C) CAR>CHC; (D) CAR<CHC.
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suggested that airway microbial dysbiosis in response to HDM and
its interaction with intestinal microbiota are associated with early
allergic respiratory disease in children (40). Thus, the dietary
modulation of gut microbiota was suggested to be involved in
allergy processes (41, 42) and to influence the microbiota
alterations in the airway and gut. Not only adults, but also
children with chronic rhinitis have been shown to have
significant differences in the relative abundance of specific
microbiota compared to children with healthy conditions (34,
43). These results support our findings that the IgE mediated
inflammatory response characteristic of AR may influence the
airway microbiota. The potential for variability shown by
differentially abundant taxa provides a starting point for future
studies with the potential to improve patient outcomes. However,
the results are inconsistent as to whether there are differences in
the diversity of airway microbiota between AR and HC (38, 44),
which may be due to the different regional environments, different
types of allergens and different amounts of allergens in the
study population.

Metabolomics is a branch of omics techniques that
systematically analyzes the concentration of all low molecular
mass metabolites in the organism (45). Metabolites provide the
opportunity to establish powerful exploratory tools for monitoring
disease states and help to explain the pathophysiological
Frontiers in Immunology | www.frontiersin.org 9
mechanisms of disease (46). Metabolomic profiling from serum
or urine samples has been widely applied to many diseases to
identify markers for early disease detection and treatment
outcome prediction (22, 23). Previously, metabolomic profiles of
urine have been demonstrated to distinguish between healthy
children and asthmatics (47), between patients with unstable
asthma in the emergency room and patients with stable asthma
in the clinic, and between adults with asthma and patients with
chronic obstructive pulmonary disease (48). In the present study,
we have reported the differential metabolic profile between AR
patients and healthy subjects. All differential metabolites in serum
were identified with UPLC-MS/MS techniques. Multivariate
analysis was performed to clarify the difference between the two
groups. We developed robust and reliable OPLS-DA models
characterizing 26 different metabolites and 16 perturbed
metabolic pathways. Linoleic acid metabolism, arachidonic acid
metabolism and caffeine metabolism, the top 3 significantly altered
metabolic pathways, have been determined. Notably, arachidonic
acid (AA) metabolism network produces crucial inflammatory
mediators that are notably considered to be hallmarks of diverse
inflammation-related diseases, including allergic asthma (49). We
found significantly altered metabolites related to arachidonic acid
metabolism in the serum of AR patients, suggesting that the
formation and development of AR may be associated with
TABLE 2 | Distinct metabolites identified in serum samples.

No. Compound Name Formula Rt/
min

Mass/
Da

KEGG
ID

VIP ESI Error/
ppm

Pathways Content
Level

S1 Deoxyuridine C9H12N2O5 0.74 273.071 C00526 1.12 – 7 Pyrimidine metabolism CHC<CAR

S2 Inosine C10H12N4O5 0.8 267.072 C00294 1.59 – 6 Purine metabolism CAR<CHC

S3 Oleic acid C18H34O2 26.43 281.247 C00712 3.16 – 6 Biosynthesis of unsaturated fatty acids CHC<CAR

S4 Coproporphyrin III C36H38N4O8 7.7 653.265 C05770 1.89 – 5 Porphyrin and chlorophyll metabolism CAR<CHC

S5 Chenodeoxycholic acid
glycine conjugate

C26H43NO5 17.15 448.305 C05466 2.62 – 4 Primary bile acid biosynthesis CAR<CHC

S6 Linoleic acid C18H32O2 24.97 279.232 C01595 3.90 – 3 Linoleic acid metabolism; Biosynthesis of
unsaturated fatty acids

CHC<CAR

S7 L-Tryptophan C11H12N2O2 2.12 203.082 C00078 3.64 – 3 Tryptophan metabolism; Aminoacyl-tRNA
biosynthesis

CAR<CHC

S8 Taurochenodesoxycholic acid C26H45NO6S 15.55 498.286 C05465 1.84 – 7 Primary bile acid biosynthesis CAR<CHC

S9 Prostaglandin E2 C20H32O5 22.55 397.224 C00584 1.74 – 2 Arachidonic acid metabolism CHC<CAR

S10 Prostaglandin H2 C20H32O5 22.55 397.224 C00427 1.74 – 2 Arachidonic acid metabolism CHC<CAR

S11 Prostaglandin D2 C20H32O5 22.55 397.224 C00696 1.74 – 2 Arachidonic acid metabolism CHC<CAR

S12 Thromboxane A2 C20H32O5 22.55 397.224 C02198 1.74 – 2 Arachidonic acid metabolism CAR<CHC

S13 20-Hydroxy-leukotriene B4 C20H32O5 22.55 397.224 C04853 1.74 – 2 Arachidonic acid metabolism CAR<CHC

S14 Docosahexaenoic acid C22H32O2 24.38 327.232 C06429 4.24 – 3 Biosynthesis of unsaturated fatty acids CHC<CAR

S15 Pregnenolone sulfate C21H32O5S 15.77 395.187 C18044 2.07 – 7 Steroid hormone biosynthesis CAR<CHC

S16 Dehydroepiandrosterone
sulfate

C19H28O5S 14.82 367.155 C04555 1.47 – 9 Steroid hormone biosynthesis CAR<CHC

S17 Bilirubin C33H36N4O6 11.92 585.269 C00486 1.12 + 3 Porphyrin and chlorophyll metabolism CHC<CAR

S18 Glycerophosphocholine C8H20NO6P 0.61 280.094 C00670 3.64 + 7 Ether lipid metabolism; Glycerophospholipid
metabolism

CAR<CHC

S19 D-Glucose C6H12O6 0.66 203.054 C00221 2.11 + 7 Glycolysis/Gluconeogenesis CAR<CHC

S20 Presqualene diphosphate C30H52O7P2 5.49 609.308 C03428 1.35 + 0 Steroid biosynthesis CAR<CHC

S21 Paraxanthine C7H8N4O2 0.66 203.054 C13747 2.11 + 0 Caffeine metabolism CAR<CHC

S22 Theobromine C7H8N4O2 0.66 203.054 C07480 2.11 + 0 Caffeine metabolism CAR<CHC

S23 9,10-Epoxyoctadecenoic acid C18H32O3 21.19 297.242 C14825 1.16 + 1 Linoleic acid metabolism CAR<CHC

S24 12,13-EpOME C18H32O3 21.19 297.242 C14826 1.16 + 1 Linoleic acid metabolism CAR<CHC

S25 PA(P-16:0/18:2(9Z,12Z)) C37H69O7P 15.2 679.461 C15647 1.50 + 9 Ether lipid metabolism CAR<CHC

S26 6-Thioxanthine 5’-
monophosphate

C10H13N4O8PS 0.62 381.026 C16618 1.11 + 1 Drug metabolism - other enzymes CHC<CAR
January 2022 | Volume 12 | Art
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abnormal metabolism of AA. In the AA/Cyclooxygenase (COX)
pathway, the hematopoietic PGD synthase (hPGDS) catalyzes the
isomerization of PGH2 to PGD2, which makes it an interesting
target for the treatment of allergic inflammation (50). In the
present study, Prostaglandin (PG) D2 levels were significantly
Frontiers in Immunology | www.frontiersin.org 10
higher in AR patients than in healthy volunteers, suggesting that
PGD2 signaling may be a promising biomarker, as IgE binding to
mast cells triggers the release of PGD2, which activates eosinophils
and basophils. Zhou et al. studied serum samples from pollinosis
patients using NMR-based metabolic patients and found that
FIGURE 7 | Disturbed metabolic pathways in serum samples were performed by MetaboAnalyst 4.0.
TABLE 3 | The results from metabolic pathways of distinct metabolites.

Pathway Name Match Status p -log10(P) FDR Impact

Linoleic acid metabolism 3/5 4.10E-05 4.3868 0.0034476 1
Arachidonic acid metabolism 5/36 0.0002349 3.6291 0.0098659 0.13147
Caffeine metabolism 2/10 0.011214 1.9502 0.31399 0.69231
Biosynthesis of unsaturated fatty acids 3/36 0.020733 1.6833 0.4354 0
Ether lipid metabolism 2/20 0.042722 1.3693 0.71774 0
Porphyrin and chlorophyll metabolism 2/30 0.088342 1.0538 1 0.08243
Primary bile acid biosynthesis 2/46 0.17897 0.74722 1 0.01954
Glycolysis/Gluconeogenesis 1/26 0.35818 0.4459 1 0.00021
Steroid hormone biosynthesis 2/85 0.42225 0.37443 1 0
Glycerophospholipid metabolism 1/36 0.45992 0.33732 1 0.04814
Drug metabolism - other enzymes 1/39 0.48729 0.31222 1 0.04891
Pyrimidine metabolism 1/39 0.48729 0.31222 1 0.05729
Tryptophan metabolism 1/41 0.50478 0.29689 1 0.14305
Steroid biosynthesis 1/42 0.51332 0.28961 1 0.01444
Aminoacyl-tRNA biosynthesis 1/48 0.56162 0.25056 1 0
Purine metabolism 1/65 0.67474 0.17086 1 0.00234
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pollinosis could alter the metabolic profile of energy, amino acid and
lipid in patients, which may be diagnostic and/or prognostic markers
in patients with hay fever (51). Adamko et al. provided conceptual
evidence that metabolomic analysis of excreted urine metabolites
could distinguish severity in patients with AR (52). A recent serum
metabolomics study showed that at least nine metabolites (13(S)-
HPODE, bilirubin, leukotriene D4, hypoxanthine, L-steroidal
bilirubin, N-succinyl-L-diaminoheptanedioic acid, chlorophyllb, 15-
hydroxyeicosatetraenoic acid, and uric acid) were significantly altered
in the serum of patients with AR (53). Another study identified serum
biomarkers that can reliably and correctly predict the efficacy of
sublingual immunotherapy in patients with AR (54). These studies
may contribute to a better understanding of the underlying
pathogenesis and provide metabolic evidence for in-depth studies
of AR.

Integrative analysis of microbiomes and non-target
metabolomes of diseased individuals preliminary revealed the
relationship between differential microorganisms and differential
metabolites and indicated two major lipid metabolic pathways,
linoleic acid and arachidonic acid metabolism. Our multi-omics
study demonstrated the correlation between differential bacterial
genera and metabolites. While the causes of these differentially
expressed metabolites may or may not result from the altered
microbiota structure, the nutritional homeostasis may also be at
play at the host-microbiome interface (55). We hypothesize that
the altered metabolites and immune environment during acute
exacerbations of allergic rhinitis promotes increased colonization
of the respiratory tract by harmful bacteria such as Klebsiella and
Staphylococcus, and that host-microbiota interactions affect the
host immune system, influencing metabolic pathways such as
Frontiers in Immunology | www.frontiersin.org 11
linoleic acid metabolism and arachidonic acid metabolism and
promoting allergic responses. There is emerging evidence that
bacterial metabolites, toxins and structural components from
pathogenic and opportunistic bacteria could stimulate
detrimental immune responses that contribute to the
pathogenesis of respiratory disease (56). Our research provides
strong evidence for an in-depth study of the mechanisms of AR,
but there are still significant limitations. The sample size of this
study is small and the future studies with increased sample size
are necessary to further elucidate the roles of the identified
factors and lipid and metabolic pathways in allergic rhinitis
exacerbation. Allergic rhinitis can be classified into multiple
subtypes, such as seasonal/perennial, intermittent/persistent
(57), monosensitized/polysensitized (58) and mild/moderate/
severe (59). In the future, the search for specific, sensitive and
reliable biomarkers for different subtypes of allergic rhinitis
patients will open new avenues for more precise disease
classification and individualized targeted therapy.
5 CONCLUSION

In conclusion, there are differential microorganisms with
different relative abundance and structural composition in the
upper airways of AR patients compared to those of HC
volunteers. Understanding the role of the airway microbiota
may help to modulate the therapeutic strategy for AR. The
current metabolomic study showed the presence of 26
identifiable differential metabolites and 16 perturbed metabolic
pathways between AR patients and HCs, which involve immune
FIGURE 8 | Correlation analysis of the microbiome and metabolome. Spearman’s correlation analysis was conducted using potential microbiome biomarkers of AR
and potential metabolite biomarkers. Student’s t-test, *p < 0.05, **p < 0.01.
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regulation. The identified metabolites contributed to the
understanding of the pathophysiology of allergic rhinitis, and
further targeted metabolomics are needed to improve
therapeutic strategies.
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