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This work systematically studied the structure, magnetic and electronic properties of
the MXene materials Nd2N and Nd2NT2 (T = OH, O, S, F, Cl, and Br) via first-principles
calculations based on density functional theory. Results showed that Nd2NT2 (T = OH,
O, S, F, Cl, and Br) have half-metallic characteristics whose half-metallic band gap
width is higher than 1.70 eV. Its working function ranges from 1.83 to 6.50 eV. The
effects of strain on its magnetic and electronic structures were evaluated. Results
showed that the structure of Nd2NT2 (T = OH, O, S, and Br) transitions from a
ferromagnetic half-metallic semiconductor to a ferromagnetic metallic and
ferromagnetic semiconductor under different strains. By contrast, the structures of
Nd2NF2 and Nd2NS2 were observed to transition from a half-metallic semiconductor to
a ferromagnetic metallic semiconductor under different strains. Calculations of the
electronic properties of different proportions of the surface functional groups of Nd2NTx
(T = OH, O, and F; x = 0.5, 1(I, II), and 1.5) revealed that Nd2NO1.5 has the
characteristics of semiconductors, whereas Nd2NO(II) possesses the characteristics
of half-metallic semiconductors. The other structures were observed to exhibit the
characteristics of metallic semiconductors. Prediction of Nd2NT2 (T = OH, O, S, F, Cl,
and Br) increases the types of lanthanide MXene materials. They are appropriate
candidate materials for preparing spintronic devices.
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1 INTRODUCTION

As candidate materials for preparing spintronic devices with a high-density, a high read/write
speed, and an ultra-small volume, two-dimensional ferromagnetic half-metallic materials are the
key to the development of spintronic devices (Wolf et al., 2001; Hu et al., 2014; Kent andWorledge,
2015; Wang et al., 2021a). Ferromagnetic half-metallic materials have 100% spin polarization. In a
spin state, they have metallic properties at the Fermi level. In another spin state, they exhibit
semiconductor or insulator properties at the Fermi level. Since 2004, graphene has been
experimentally prepared successfully (Novoselov et al., 2004). Graphene is a semiconductor
with a zero band gap, a feature limits its application in magnetic equipment (Novoselov et al., 2004;
Geim and Novoselov, 2007). Graphene can be applied to spintronic devices by improving graphene
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or developing graphene-like materials. Extensive research on
graphene-like materials, such as hexagonal boron nitride,
silicon, phosphorus, transition-metal dichalcogenides and
transition-metal carbon (nitrogen) compounds (MXenes), is
being conducted (Denk et al., 1994; Sevik, 2013; Liu et al.,
2014; Naguib et al., 2014; Kranthi Kumar et al., 2015). MXenes
have received increased attention because they have
abundant types.

Two-dimensional MXene materials have been developed
using HF corrosion body phase material Ti3AlC2 to remove
Al atom experimentally and obtain Ti3C2 materials with a few
layers (Naguib et al., 2011). MXene materials are represented by
the formula Mn+1XnTx (n = 1, 2, 3), where M is a transition
metal, X is either C or N, and Tx is a surface functional group.
MXenes are becoming popular two-dimensional materials.
Theoretical and experimental studies revealed that various
MXene materials have intrinsic ferromagnetic half-
metallicity, such as Cr2C, Cr2NO2, Fe2NO2, Co2NO2, Ni2NT2

(T = O, F, OH), and Mn2NT2 (T = O, OH, F) (Si et al., 2015;
Wang, 2016; Wang and Liao, 2017; Frey et al., 2018). External
conditions can be applied to induce Ti2NO2, Cr3C2, and
Hf2MnC2O2 and obtain ferromagnetic half-metals (Chen
et al., 2017; Zhang and Li, 2017; Siriwardane et al., 2019).
However, several MXene materials have semiconductor
properties, such as Sc2CO2, Ti2CO2, and Cr2CT2 (T = F, OH,
O, Cl) (Lee et al., 2014; Si et al., 2015; Zhou et al., 2016).
Therefore, MXenes have rich magnetic and electronic properties
that must be harnessed.

Most MXene materials have different sensitivities to surface
functional groups and external conditions. Therefore, MXene
functional materials can be feasibly designed by exploiting
functional groups or external conditions. However, current
research on MXene materials mostly focuses on transition
metals and largely ignores MXene materials with lanthanide
elements. Tan et al. studied the strain piezoelectric coefficient
of La2CO2, a lanthanide MXene material, under axial strain. They
reported that strain piezoelectric coefficient of this material is up
to 22.32 pm/V, which is substantially higher than that of other
known piezoelectric materials, such as Sc2CO2, Y2CO2, BN,
GaAs, and AlSb (Chen et al., 2021; Wang et al., 2021b). Bai
et al. reported that the semiconductor MXene material Lu2CT2 (T
= F, OH) has a low work function and a carrier mobility of about
105 cm2/V at room temperature (Zhang et al., 2021). Therefore,
lanthanide MXene materials have excellent properties with great
application potential in sensors, electromagnetic interference and
catalysis.

M2N (M = Cr, Mo, W), which belongs to the VIB group in
MXene materials (Hou et al., 2021), has excellent properties
whose surface functional groups can induce Cr2NO2 to exhibit
stable half-metallicity (Wang, 2016). On the basis of the
semimetal properties of VIB MXene materials reported thus
far, this work explored the structural and electromagnetic
properties of the lanthanide MXene material Nd2NT2 (T =
OH, O, S, F, Cl, and Br) to increase the known types of
lanthanide MXene materials. This study provides theoretical
guidance and direction to the preparation of related spintronic
devices.

2 CALCULATION METHOD

First-principles calculations based on density functional theory
were conducted using the CASTEP calculation package (Lin and
Wang, 2017). Perdew–Burke–Ernzerhof exchange correlation
function under the generalized gradient approximation was
applied and ultrasoft pseudopotentials were selected to
describe the interaction between electrons and ions in a two-
dimensional system (Tan et al., 2019; Bai et al., 2020). In the
process of geometric optimization of the structure of Nd2NT2 (T
= OH, O, S, F, Cl, and Br), the two-dimensional structure
preliminarily assumed was a ferromagnetic structure, and spin
polarization calculations were performed. After testing the
preliminary calculation parameters, the truncation energy
chosen was 420 eV, the self-consistent convergence standard
was set to 1 × 10−6 eV/atom, the sampling at k point was 10 ×
10 × 1, and the total energy convergence standard was set to 1 ×
10−6 eV/atom. When the atomic structure was optimized, the
force of each atom was not over 0.03 eV/Å, the maximum
displacement of each atom was set to 0.001 Å, and the
vacuum layer of the c axis was set to 20 Å.

The formation energy was calculated to describe the
thermodynamic stability of two-dimensional MXene material
systems with different surface functional groups by using the
following formula (Bekaert et al., 2020):

EF � Etotal(Nd2NT2) − Etotal(Nd2N) − Etotal(T2) (1)
where Etotal(Nd2NT2) is the total energy of Nd2NT2, Etotal(Nd2N)
is the total energy of Nd2N, and Etotal(T2) is the total energy of T2

(T = OH, O, S, F, Cl, and Br) of functional groups.

3 RESULTS AND DISCUSSION

3.1 Surface Functional Groups of the
Structure
The top and side views of Nd2N after structural relaxation are
shown in Figures 1A, C, respectively. The optimization results
showed that Nd2N is a hexagonal crystal structure composed of
Nd atoms on both sides and N atoms in the middle. This
structure is similar to that of materials reported in the
literature (Si et al., 2015; Zhang et al., 2021). Different
methods for preparing MXene materials inevitably result in
the formation of certain functional groups on their surface. In
this study, six different functional groups present T2 (T = OH,
O, S, F, Cl, and Br) in the optimized structure of Nd2N were
investigated (Figures 1B, D). According to previous studies, the
functional groups on the surface may be found at three sites,
namely, on the top of Nd, on the top of N, and on the top of Nd
at the bottom of both sides. In this study, the functional groups
were observed to be located on the top of Nd at the bottom of
both sides, similar to that reported in the literature (Wang and
Liao, 2017; Zhang et al., 2021).

The lattice constants of Nd2N and Nd2NT2 and the bond
lengths of Nd–N and Nd–T are listed in Table 1. The lattice
constant of Nd2NT2 and the bond length of Nd–N are larger than
those of Nd2N, indicating that the functional groups on the
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surface can change the structure of Nd2N. Nd2NS2 has the largest
lattice constant (4.232 Å), whereas Nd2NO2 has the smallest
lattice constant (3.755 Å). Moreover, the Nd–N and Nd–T
bond lengths of Nd2NS2 are longer than those of Nd2NO2

because both O and S belong to the VIA family and have
similar properties. The radius of the S atom is greater than
that of the O atom. The lattice constants of Nd2NF2,
Nd2NCl2, and Nd2NBr2 are 3.796, 3.911, and 3.971 Å,
respectively. The lattice constants increase with the increase in
the atomic radius of the VIIA family, and the bond lengths of
Nd–N and Nd–T gradually increase. However, the bond length of
Nd–T is quite different. Nd–Br has the maximum bond length
(3.015 Å), whereas Nd–O has the minimum bond length
(2.280 Å), indicating that the bonding intensity of Nd and O
is greater than that of Nd–Br. However, the bond length of Nd–N
is 2.62–2.69 Å, indicating that although the different surface

functional groups have an effect on the structure of the
monolayer Nd2N, their effect on the bond length of this
structure is less than that on its lattice constant.

3.2 Magnetic and Thermodynamic Stability
The atomic resolution magnetic moments and formation
energies of Nd2N and Nd2NT2 (T = OH, O, S, F, Cl, and
Br) were calculated to assess their magnetic and
thermodynamic stability (Table 2). The magnetic moments
of monolayer Nd2N (up to 8.95 μB) are higher than those of
Nd2NT2 (T = OH, O, S, F, Cl, and Br). However, the magnetic
moments of Nd2N(OH)2, Nd2NF2, Nd2NCl2, Nd2NBr2,
Nd2NO2, and Nd2NS2 are 7.01, 7.01, 7.00, 7.00, 5.00, and
4.98 μB, respectively. The magnetic moment of Nd2N mainly
comes from two Nd atoms, and the contribution of the N atom
to the total magnetic moment is small. The Nd atom is still the
main contributor to the magnetic moment of Nd2N(OH)2.
However, with the addition of –OH, the total magnetic
moment is reduced to 7.01 μB. The magnetic moment of the
nonmagnetic elements is also reduced because of the
strengthening of hybridization between the atoms that
strengthened the magnetic coupling effect and reduced the
magnetic moment. In the structures of Nd2NO2 and Nd2NS2,
the total magnetic moment is substantially reduced primarily
because of the fact that the magnetic moment of the N atom of
the Nd atom is remarkably smaller. Moreover, the magnetic
moments of the nonmagnetic elements O and S in the induced
surface functional groups are considerably smaller than those
of the magnetic elements, indicating that the bonds between

FIGURE 1 | Diagram of the structure of the 2 × 2×1 supercell of the two-dimensional MXene materials (A,C) Nd2N and (B,D) Nd2NT2 (T = OH, O, S, F, Cl, and Br).
(A,B) top views; (C,D) side views.

TABLE 1 | Lattice constants of the two-dimensional MXene materials Nd2N and Nd2NT2 and bond lengths of Nd–N and Nd–T (T = OH, O, S, F, Cl, and Br).

Type Nd2N Nd2N(OH)2 Nd2NO2 Nd2NS2 Nd2NF2 Nd2NCl2 Nd2NBr2

a = b/Å 3.743 3.785 3.755 4.232 3.796 3.911 3.971
dNd-N/Å 2.595 2.630 2.670 2.786 2.633 2.667 2.686
dNd-N/Å — 2.541 2.280 2.738 2.457 2.857 3.015

TABLE 2 | Total atomic magnetic moment (Mtotal) and atomic resolution magnetic
moment (M), and formation energy (EF) of the two-dimensional MXene
materials Nd2N and Nd2NT2 (T = OH, O, S, F, Cl, and Br).

Structure MNd(μB) MN(μB) MT(μB) Mtotal(μB) EF(eV)

Nd2N 9.04 –0.09 — 8.95 —

Nd2N(OH)2 7.24 –0.19 –0.04 7.01 –25.92
Nd2NO2 6.46 –0.88 –0.58 5.00 –16.98
Nd2NS2 6.76 –1.02 –0.76 4.98 –10.42
Nd2NF2 7.24 –0.19 –0.04 7.01 –14.75
Nd2NCl2 7.26 –0.20 –0.06 7.00 –10.47
Nd2NBr2 7.28 –0.20 –0.08 7.00 –9.016
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the O and S atoms and Nd atom are relatively intense, resulting
in a sharp decrease in atomic localization. In addition, the total
magnetic moment of the structures of Nd2NF2, Nd2NCl2, and
Nd2NBr2 remains 7.00 μB. The increase in the amplitude of Nd
and the F, Cl, and Br atoms is the same as that in the decrease

in their amplitude. By comparison, the magnetic moment of
the N atom remains low.

After the structural and magnetic properties of the materials
were determined, the phonon spectrum of monolayer Nd2N and
the formation energy of Nd2NT2 (T = OH, O, S, F, Cl, and Br)
were further calculated. According to the phonon spectrum of
Nd2N, it has good dynamic stability (Figure 2). Equation 1 was
also used to calculate the formation energy of Nd2NT2 (T = OH,
O, S, F, Cl, and Br). Nd2N(OH)2 has the smallest formation
energy of –25.92 eV, whereas Nd2NBr2 has the largest formation
energy of –9.016 eV (Table 2), indicating an intense interaction
between the metals and the surface functional groups. When the
surface functional groups are F, Cl, and Br (VIIA group), the
formation energy gradually decreases (Table 2). However, the
surface functional groups O and S (VIA group) also show a
similar rule. According to previous studies, on the surface
functional groups of MXene structures, the formation energy
can easily change from high to low under certain conditions. The
formation energy of the –OH structure with surface functional
groups is smaller than that of the O, S, F, Cl, and Br structures
with surface functional groups (Table 2), suggesting that MXene
materials with O, S, F, Cl, and Br as functional groups should not
be washed or stored in H2O during preparation to prevent them
from being converted into –OH MXene materials (Perdew et al.,
1996).

FIGURE 2 | Phonon spectrum of Nd2N structure.

FIGURE 3 | Energy band structure and band gap width diagram of the two–dimensional MXenematerials Nd2N and Nd2NT2 (T =OH, O, S, F, Cl, and Br). (A)Nd2N,
(B) Nd2N(OH)2, (C) Nd2NO2, (D) Nd2NS2, (E) Nd2NF2, (F) Nd2NCl2, (G) Nd2NBr2, and (H) band gap width diagram.
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3.3 Electronic Properties
The electronic properties of Nd2N and Nd2NT2 (T = OH, O, S, F,
Cl, and Br) were evaluated by calculating and plotting the energy
band structure diagram (Figure 3). The spin up and the spin
down of the energy band structure of Nd2N pass through the
Fermi level, indicating that it has ferromagnetic characteristics. In
the spin down channel, the energy band density near the Fermi
level is relatively sparse, indicating that the energy band structure
can be changed under certain conditions, which are described
below.

1) In the energy band structure of Nd2NT2 (T = OH, F, Cl, and
Br), the spin up energy band at the Fermi level passes through
the Fermi level, whereas the spin down energy band has an
energy band gap, indicating that it has semimetal
characteristics. The spin up energy band has an energy
band gap near the Fermi level, indicating that the structure
may change from a semimetal to a semiconductor under
certain conditions.

2) In the band structure of Nd2NT2 (T = O and S), the spin up
band at the Fermi level passes through the Fermi level,
suggesting that it has metal characteristics. However, the
spin down band has an energy band gap at the Fermi level,
reflecting the nature of a semiconductor. Therefore, there is
100% spin polarization at the Fermi level, indicating that it has
semimetal characteristics. According to the energy band
structure, the band gap width between the spin down
valence band and the Fermi surface is approximately
0.2–0.6 eV, and the band gap width between the spin down
conduction band and the Fermi surface is greater than 3 eV,
indicating that the structure does not readily change from a

half-metal to a metal. Theoretically, the half-metallicity
remains stable under certain external conditions.

3) The spin down band gap width of the semimetal was counted.
Nd2N(OH)2 has the smallest band gap width (1.72 eV),
whereas Nd2NO2 has the largest band gap width (4.61 eV)
(Figure 3H). Therefore, the half-metallicity can remain stable
within a certain range.

The calculated total density of states (TDOS) of Nd2N and
Nd2NT2 (T =OH, O, S, F, Cl, and Br) are provided in Figure 4. As
can be seen from the TDOS graphs, the polarization peak of
Nd2N(OH)2 appears at 1.5 eV, but this phenomenon is not
observed in Nd2N. Moreover, the spin down band gaps of
Nd2NO2 and Nd2NS2 move to the high energy region, and
their band gap width increase. However, the spin down band
gaps of Nd2NF2, Nd2NCl2, and Nd2NBr2 exhibit similar
behavioral changes, and the only differences are in the energy
range of spin polarization peaks, which gradually move to the
high-energy region.

3.4 Work Functions of Nd2NT2 (T = OH, O, S,
F, Cl, and Br)
Work function, as a reference for charge transfer, is a key
parameter. The definition of work function (φwf) is as follows
(Vanderbilt, 1990):

φwf � Evacuum − EF (2)
where Evacuum represents the energy of the surface electron
energy level in the vacuum, and EF is the Fermi level of the

FIGURE 4 | Total density of states (TDOS) of Nd2N and Nd2NT2 (T = OH, O, S, F, Cl, and Br). The red line represents Nd2N, whereas the black line denotes is (A)
Nd2N(OH)2, (B) Nd2NO2, (C) Nd2NS2, (D) Nd2NF2, (E) Nd2NCl2, (F) Nd2NBr2, respectively.
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FIGURE 5 | Calculated electrostatic potentials along the Z direction of Nd2NT2 (T = OH, O, S, F, Cl, and Br), while (A) Nd2N(OH)2, (B) Nd2NO2, (C) Nd2NS2, (D)
Nd2NF2, (E) Nd2NCl2, (F) Nd2NBr2, respectively. The black arrow indicates the difference from vacuum level to the Fermi level. The black dashed line denotes the
Fermi level.

FIGURE 6 | Total magnetic moments of monolayer Nd2NT2 (T = OH, O, S, F, Cl, and Br) under biaxial strain. (A)Nd2N(OH)2, (B)Nd2NO2, (C)Nd2NS2, (D)Nd2NF2,
(E) Nd2NCl2, (F) Nd2NBr2. FM, FHM, and FS denote ferromagnetic metallic, ferromagnetic half-metallic, and ferromagnetic semiconductor, respectively.
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MXene material. The electrostatic potentials of Nd2NT2 (T =
OH, O, S, F, Cl, and Br) are calculated using Eq. 2 and plotted
in Figure 5. The work function of Nd2N is approximately
1.186 eV, whereas that of Nd2N(OH)2, Nd2NO2, Nd2NS2,
Nd2NF2, Nd2NCl2, and Nd2NBr2 is 1.83, 5.38, 6.50, 2.22,
4.33, and 4.40 eV, respectively. The work function of –OH
is 1.6–2.8 eV, similar to that reported in the literature (Khazaei
et al., 2013). Moreover, the work function of Nd2NT2 (T = OH,
F, Cl, and Br) increases as VIIA atoms are introduced. The
work function of Nd2NO2 is evidently lower than that of
Nd2NS2. The work functions indicate that lanthanide
MXene materials have potential applications in spintronic
devices.

3.5 Strain Effect
The effects of strain on the magnetic and electronic structure of
monolayer Nd2NT2 (T = OH, O, S, F, Cl, and Br) were evaluated
by calculating the magnetic moment under different biaxial
strains (Figure 6). Theoretical studies indicated that the
electronic and magnetic properties of the monolayer MXenes
Ti2C and Ti2N are tunable by strain (Clark et al., 2005; Sternik
and Wdowik, 2018). Thus, biaxial strain was applied to
monolayer Nd2NT2 (T = OH, O, S, F, Cl, and Br) by using
the following formula:

ε � L − L0

L0
(3)

where L and L0 are the lattice constants of strain and the
equilibrium, respectively. Positive and negative ε values

correspond to tensile and compressive strain, respectively.
Under different strains, both Nd2NF2 and Nd2NCl2
transition from a ferromagnetic half-metallic structure to a
ferromagnetic metallic structure (Figure 6), and their total
magnetic moment is maintained is from 6.5 to 9.0 μB. By
comparison, Nd2N(OH)2, Nd2NO2, Nd2NS2, and Nd2NBr2
transition from a ferromagnetic half-metallic structure to a
ferromagnetic metallic structure and a ferromagnetic
semiconductor under different strains. Notably, the total
magnetic moments of the transition of Nd2NO2 and Nd2NS2
range from 5 to 7 μBunder strain.

3.6 Electronic Properties of Different
Proportions of the Surface Functional
Groups of Nd2NTx (T = OH, O, F; x = 0.5, 1(I,
II), and 1.5)
Surface functional groups have a great influence on the electronic
properties of MXene materials (Xie et al., 2014). The influence of
different proportions of the surface functional groups of the
Nd2NTx materials on their electronic properties was assessed
at proportions of x = 0.5, 1, and 1.5 (Figure 7). x = 1 has two types;
in type I, the functional groups are distributed on both sides,
whereas in type II, the functional groups are distributed on one
side only. After geometry optimization, TDOS was calculated
(Figure 8).

The structures of Nd2N(OH)x and Nd2NFx exhibit metal
characteristics because of the asymmetry of their surface functional
groups. When the surface functional group is 100%, the material has

FIGURE 7 | Top and side views of the 2 × 1×1 supercell of the structure of the two-dimensional MXene material Nd2NTx (T = OH, O, F; x = 0.5, 1, and 1.5). (A)
Nd2NT0.5 (T = OH, O, F), (B) Nd2NT (T = OH, O, F)(I), (C) Nd2NT (T = OH, O, F)(II), and (D) Nd2NT1.5 (T = OH, O, F).

FIGURE 8 | Total density of state(DOS) of (A) Nd2N(OH)x, (B) Nd2NOx, and (C) Nd2NFx, where x = 0.5, 1(I), 1(II), and 1.5.
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half-metallic characteristics. This result provides a direction for
detecting the richness of surface functional groups experimentally.

When x = 0.5 and 1 (type I), the structure of Nd2NOx exhibits
metal characteristics. However, when x= 1 (type II), an obvious band
gap is observed in the spin downward at the Fermi level, indicating
that it has half-metal characteristics. Unexpectedly, when x = 1.5,
both spin up and spin down have a symmetric band gap width at the
Fermi level, indicating that it has the characteristics of a
semiconductor. This result provides a reliable direction for the
regulation of electronic properties by controlling the richness of
surface functional groups experimentally.

4 DISCUSSION

The structural, magnetic, and electronic properties of Nd2N and
Nd2NT2 (T = OH, O, S, F, Cl, and Br) were evaluated via first-
principles calculations based on density functional theory.
According to the calculated phonon spectrum and formation
energies, Nd2N and Nd2NT2 (T = OH, O, S, F, Cl, and Br) are
stable. Owing to the effects of surface functional groups on the
electronic properties of Nd2NT2 (T = OH, O, S, F, Cl, and Br), it
exhibits the characteristics of a half-metal, and its band gap width is
higher than 1.70 eV. The work function ranges from 1.83 to 6.50 eV,
indicating that lanthanide MXene materials have potential
applications in spintronic devices. Under different strains,
Nd2NT2 (T = OH, O, S, and Br) transition from a ferromagnetic
half-metallic structure to a ferromagnetic metallic structure and a
ferromagnetic semiconductor. However, the structures of Nd2NF2
and Nd2NS2 transition from a half-metallic structure to a
ferromagnetic metallic structure under different strains.
Calculation of the electronic properties of different proportions of
the surface functional groups of Nd2NTx (T = OH, O, F; x = 0.5, 1(I,

II), and 1.5) revealed that Nd2NO1.5 has the characteristics of a
semiconductors, whereasNd2NO(II) has the characteristics of a half-
metal. The other structures show the characteristics of a metal. This
study demonstrated that new lanthanide MXene materials have a
high application potential in spintronic devices.
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