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Through the developments of Omics technologies and dissemination of large-scale
datasets, such as those from The Cancer Genome Atlas, Alzheimer’s Disease
Neuroimaging Initiative, and Genotype-Tissue Expression, it is becoming increasingly
possible to study complex biological processes and diseasemechanismsmore holistically.
However, to obtain a comprehensive view of these complex systems, it is crucial to
integrate data across various Omics modalities, and also leverage external knowledge
available in biological databases. This review aims to provide an overview of multi-Omics
data integration methods with different statistical approaches, focusing on unsupervised
learning tasks, including disease onset prediction, biomarker discovery, disease
subtyping, module discovery, and network/pathway analysis. We also briefly review
feature selection methods, multi-Omics data sets, and resources/tools that constitute
critical components for carrying out the integration.
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INTRODUCTION

With the development of multi-Omics initiatives (e.g., The Cancer Genome Atlas (TCGA) www.
genome.gov/Funded-Programs-Projects/Cancer-Genome-Atlas, International Cancer Genome
Consortium (ICGC) dcc.icgc.org/, and Genotype-Tissue Expression (GTEx) gtexportal.org/home/
), several collections of Omics data (epigenome, genome, transcriptome, proteome, andmetabolome)
have become available to the biomedical community. Moreover, curated databases for Omics
interactions (e.g., DoRiNA, a database of RNA interactions in post-transcriptional regulation,
dorina.mdc-berlin.de/), and molecular pathways (e.g., Kyoto Encyclopedia of Genes and
Genomes (KEGG) www.genome.jp/kegg/, Reactome reactome.org/, and functional protein
association networks (STRING) string-db.org/) are also available to incorporate known
biological information in the Omics analysis. Environmental/clinical features are external
sources of influence that can play a key role in the development of complex diseases
(Chakraborty et al., 2018). Incorporating known biological information (a detailed list of
databases/resources is presented in Supplementary Table S1) is particularly important since the
presence of many more features than available samples (high-dimensionality) pose a critical
challenge to almost all Omics analysis methods. Note that human genomes are regulated at
multiple levels, which are captured by different genomic assays, and also environmental/clinical
factors. Further, these factors exhibit intricate interdependencies; for example, DNA methylation is
known to affect the phenotypic outcome of genetic variation and offers highly complementary
information on transcriptional silencing and gene imprinting. However, the identification of causal
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relationships is still very much a work in progress. Therefore, a
coherent biological model of complex diseases would only be
possible if the various layers of Omics regulations,
environmental/clinical factors, and their relationships are
considered. Interconnections and heterogeneity are other
challenges in understanding the complex nature of diseases
and their key biomarkers.

There have been various attempts to address these issues. The
terms supervised and unsupervised are often used to describe
different approaches to data integration. Supervised methods
train a model using labeled training data with known outcome
variables (such as disease status, exposure to a specific
environmental factor, and survival time). In contrast,
unsupervised data integration consists of a class of methods
that make inferences and find patterns in input data sets
without labeled outcome variables (such as normal/disease
status, benign/tumor tissue, and early/late-stage progression).
Unsupervised multi-Omics approaches typically aim to classify
(e.g., disease and sample subtype) and discover biomarkers/
modules (such as prioritize genes associated with a disease).
There might be multiple outcome variables (such as time-to-
cure, or cancer-stage) which are mostly considered one-by-one in
the available methods (instead of using multivariate models).
Note that multiple Omics data often contain missing values, an
issue particularly common for individuals with measurements by
selected Omics modalities. Imputation is a typical solution to
infer the missing values, see (Song et al., 2020) for an overview of
the available multi-Omics imputation methods. Most of the
supervised multi-Omics methods/tools require “matched
samples” (where multiple types of Omics data are measured
on the same subject/patient). For the remainder of the paper,
we consider that samples are matched unless otherwise is stated.
Last but not least, themolecules andOmics modalities involved in
a biological process are usually correlated, and it is shown that
most of the major biological processes are only affected by a small
set of features (Wang et al., 2014). Thus, different feature
selection methods have been introduced to address this issue
and decrease computational complexity (for a comprehensive
review of feature selection methods refer to Supplementary
Section S2).

In the sequel, we review key unsupervised multi-Omics data
integration approaches and summarize the state-of-the-art of
statistical models and related topics, including an overview of
different Omics data and sources. Existing reviews on the topic of
multi-Omics data integration are narrowly focused, such as on a
specific statistical approach (e.g., network analysis or clustering)
or in a specific field (e.g., machine learning methods in oncology
(Nicora et al., 2020)). On the contrary, we provide a
comprehensive list of key unsupervised multi-Omics data
integration methods leveraging a diverse set of statistical
methods and biological objectives. Note that we furnish
technical details for a selective list of methods that have been
more widely adopted in applications. The remainder of the paper
is organized as follows: In Multi-Omics Data, we briefly review
the nature of multi-Omics data. In Unsupervised Multi-Omics
Data Integration Methods, we provide our categorization of
unsupervised multi-Omics data integration methods followed

by detailed descriptions and case studies of selected ones in
each of the proposed categories. We conclude with some
remarks and directions for future work. More detailed
information, including technical descriptions, formulas/
algorithms, and additional illustrative case studies are provided
in the Appendix due to space limitations. Further, a
comprehensive review of multi-Omics data definition
(Supplementary Section S1) and feature selection methods
(Supplementary Section S2) is provided in the Supplement.

MULTI-OMICS DATA

The term Omics refers to the collective characterization and
quantification of biomolecules that are involved in the structure,
function, and dynamics of organisms and biological processes.
Figure 1 provides an overview of the molecular arrangement of
key Omics modalities, potential interactions between and within
them, the types of features available in each Omics layer, and the
different approaches to their analysis. A full introduction to
different Omics data is beyond the aim of this article; for
detailed information and definition of Omics modalities, and a
list of multiple Omics public data sources/repositories, refer to
Supplementary Section S1 (including Supplementary Table S1).
For a comprehensive overview of Omics modalities, background,
technologies, and resources refer to (Gligorijević et al., 2016; Sun
and Hu, 2016; Manzoni et al., 2018).

UNSUPERVISED MULTI-OMICS DATA
INTEGRATION METHODS

Categorizing the multi-Omics data integration methods is not a
trivial task. There is a huge list of diverse methodologies with
different objectives. One way to systematically categorize these
methods is to consider their underlying statistical strategies, their
biological objective, and the way they handle and treat multiple
Omics datatypes. For instance, some methods (so-called “data-
ensemble”) concatenate the multi-Omics data from different
molecular layers to a single matrix as the input data (see
Figure 2). Whereas the so-called “model-ensemble”
approaches analyze each Omics data independently and then
ensemble/fuse the results to construct an integrative analysis (see
Figure 2).

We categorize the integrationmethods into the following three
comprehensive categories: 1) Regression/Association-based
Methods, 2) Clustering-based Methods, and 3) Network-based
Methods. In each category, we group the methods based on their
statistical approaches (see Table 1). Each of the methods will also
be assigned to one of the following “macro” categories: (A) Multi-
step and Sequential Analysis (MS-SA), (B) Data-ensemble
(DatE), and (C) Model-ensemble (ModE) (see Figure 2 and
Tables 2-4). “DatE” refers to methods that typically
concatenate the multi-Omics data from different molecular
layers to a single data matrix and consider that as the analysis
input. Whereas the so-called “ModE” approaches analyze each
Omics data independently and then ensemble/fuse the results to
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construct an integrative analysis. Table 1 shows the (high-level)
list of the key methods we aim to review, with details provided in
the proceeding sub-sections.

Regression/Association-Based Integration
Methods
One of the basic strategies for multi-Omics data integration is
identifying marginal associations/correlations between different
Omics layers. Sequential analysis is an example of this strategy
where a sequence of statistical tests and models are applied to
narrow down the list of features in one Omics layer (mostly
genes) based on their relationship with features in other Omics
layers (mostly CAN, genotypes, and DNA methylation).
Multivariate analysis (such as CCA, CIA, and factor analysis)
is another popular approach for multi-Omics data integration
due to its flexibility in accepting multiple matrices as input data.
The kernel-based method gives an excellent opportunity to work
with lower space similarity kernels (such as patient-patient
similarity, gene-gene similarity) instead of the original (raw)
Omics data. We grouped multi-Omics unsupervised regression-
based methods into three distinct categories based on their
statistical approaches, including sequential analysis, CCA- and
CIA-based, and factor analysis-based methods (see Table 2 for
complementary details for each method).

Sequential Analysis
CNAmet (Louhimo and Hautaniemi, 2011) is a biomarker-
discovery correlation-based method. It consists of two main

steps; first, weights are calculated for each gene connecting it
to DNA methylation and copy number variation (CNV). Second,
each gene’s weights are combined and tested (using a corrected
p-value via permutation) to calculate a global score for each gene.
These scores help identify whether a gene is hypomethylated (and
upregulated) or hypermethylated (and downregulated). The main
hypothesis is that amplified copy number and hypomethylation
result in gene upregulation. iPAC (in-trans Process Associated
and cis-Correlated) (Aure et al., 2013) is an unsupervised,
integrative method based on mRNA, and CNV aims to
identify the cis-regulated genes. It also uses a sequence of
statistical tests to narrow down the list of cancer driver genes.
In summary, it takes the matrix of all the genes as the input, first
filters the genes based on aberration frequency (>10%), then
filters the remaining genes based on in-cis correlation (>0.6), and
finally checks the in-trans functionality for the remaining ones
that make the final set of gens. MEMo (Mutual Exclusivity
Modules) (Ciriello et al., 2012) is a module-discovery method
to find a set of genes that exhibit the same genetic alternation
among patients. First, it gives a score to each gene and makes a
binary-event-matrix based on these scores where its elements are
either “1” indicating that the gene is significantly altered or “0”
otherwise. Subsequently, it builds a network from genes involved
in the same molecular pathway (using curated and nun-curated
sources of biological information/interactions). The final step
collects the genomic events within this network that show a
significant level of mutual exclusivity via a permutation test.

Illustrative Case-studies: CNAmet is applied to a cohort of
glioblastoma multiforme (GBM) patients from TCGA to find

FIGURE 1 | Different layers of multi-Omics data (genome, transcriptome, proteome, metabolome), the interactions between them (black dashed-arrow), types of
the Omics features in each layer, and different approaches to analyze Omics data in different layers (SNP: Single nucleotide polymorphism, SNV: Single nucleotide
variation, CNV: Copy number variation, CAN: Copy number alternation, CGIs: CpG islands, Indels: Insertion and deletion, GWAS: Genome-wide association study,
MWAS: Methylation-wide association study, RNA: Ribonucleic acid, mRNA: Messenger RNA, rRNA: Ribosomal RNA, tRNA: Transfer RNA, tmRNA: Transfer-
messenger RNA, miRNA: Micro RNA, lncRNA: Long-noncoding RNA, snRNA: Small nuclear RNA, siRNA: Small interfering RNA, GSE: Gene-set enrichment).
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synergistically regulated genes by DNA methylation CNV. It
could identify this synergistic effect on well-known oncogenes,
including MDM2, EGFR, and PDGFRA. CNAmet also showed

that GBM patients with hypomethylated (upregulated) EGFR had
a better prognosis than patients with amplified EGFR. iPAC is
applied to a cohort of breast carcinoma patients. It identified a list

FIGURE 2 | Unsupervised multi-omics data integration pipeline (input data, integration methods, and output). Data-ensemble methods concatenate the multi-
Omics data from different molecular layers to a single matrix as the input data. Model-ensemble methods analyze each Omics data independently and then ensemble/
fuse the results to construct an integrative analysis. A “module” is a combination of different Omics markers with similar functions or associations regarding the underlying
outcome. A “class” is a group of Omics markers that have the same effect on the outcome. A “sub-sample” is a group of biological samples (e.g., human, animal,
plant) with the same behavior regarding the underlying outcome. X and indicate the features and outcome variable, respectively. n and pj show the sample size and the
number of the Omics features in the jth Omics type.

TABLE 1 | High-level: Unsupervised multi-Omics data integration methods.

Category Approach Key methods

Regression/Association-based Sequential Analysis CNAMet (2011), MEMo (2012), iPAC (2013)
Integration Methods CCA- and CIA-based Methods Sparse MCCA (2009), BCCA (2013), MCIA (2014), sMCIA (2020)
(Refer to Table 2 for low-level
details)

Factor Analysis-based Methods Joint Bayesian Factor (2014), MOFA (2018), BayRel (2020)

Clustering-based Kernel-based Clustering Methods L-MKKM (2014), SNF (2014), rMKL-LPP (2015), WSNF (2016), mixKernel (2018), DSSF (2018),
ANF (2018), NEMO (2019), ab-SNF (2019), MvNE (2020), INF (2020), SmSPK (2020), PAMOGK
(2020)

Integration Methods Matrix Factorization-based Clustering
Methods

iCluster (2009), jNMF (2012), iClusterPlus (2013), FA (2013), moCluster (2016), JIVE (2016),
iNMF (2016), PFA (2017), IS -means (2017), MOGSA (2019), SCFA (2020)

(Refer to Table 3 for low-level
details)

Bayesian Clustering Methods TMD (2010), PARADIGM (2010), PSDF (2011), MDI (2012), BCC (2013), LRAcluster (2015)
Multivariate and Other Clustering
Methods

COCA (2014), iPF (2015), Clusternomics (2017), PINS (2017), iDRW (2018), PINSPlus (2019),
Subtype-GAN (2021)

Network-based Matrix Factorization-based Networks CMF (2008), NBS (2013), DFMF 2014), FUSENET (2015), Medusa (2016), MAE (2019), DisoFun
(2020), IMCDriver (2021), RAIMC (2021)

Integration Methods Bayesian Networks PARADIGM (2010), CONEXIC (2010)
(Refer to Table 4 for low-level
details)

Network Propagation-based Networks GeneticInterPred (2010), RWRM (2012), TieDIE (2013), SNF (2014), HotNet2 (2015), NetICS
(2018), RWR-M (2019), RWR-MH (2019), MSNE (2020), RWRF (2021)

Correlation-based and Other Networks WGCNA (2008), GGM (2011), GEM (2013), DBN (2015), Lemon-Tree (2015), TransNet (2018)
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of significant genes, including ERBB2,MAP3K7,MDM4, FGFR1,
CCND1, and FADD, which are well-known cancer-associated
genes. It also included some less appreciated genes such as
ATAD2, TPD52, and PPM1D, which were reported as cancer
genes in previous independent studies (Choschzick et al., 2010;
Lambros et al., 2010). iPAC could also identify several novel genes
such as MTL5 that can affect multiple proteins/enzymes via its
negative correlation with the MT (metallothionein) family of
proteins and metal-binding ability.

CCA- and CIA-Based Methods
CCA-based methods (Dolédec and Chessel, 1994) can be
applied for module identification, feature selection, and
classification in high-dimensional multi-Omics data. Due to
the high dimensionality of Omics data, standard CCA cannot
be employed directly. Therefore, there have been several
extensions of CCA for more than two datasets (B≥ 3) and/
or high dimensional data in an unsupervised setting. Sparse
MCCA (Sparse Multiple Canonical Correlation Analysis)
(Witten and Tibshirani, 2009) is a sample-subtyping
method applicable for more than two data types. It aims to
find sparse components (linear combination of the features)
by maximizing the following objective function (X(b)s are
standardized beforehand):

argmaxw(b) ∑
b

w′(b)X′(b)X(b)w(b), s.t.‖w(b)‖2 ≤ 1, Pb(w(b))≤ cb,

where Pb is a convex penalty function, such as lasso or fused
lasso, and cb is a tuning parameter for data type b
(b � 1, . . . , B). Two main disadvantages of CCA-based
models are (1) they are not capable of handling non-
linearity in data, which most of the time is the case in real-
world data, and (2) they cannot fully take into account the
structural information between and within Omics data (such
as gene-gene interaction and PPIs).

CIA-based methods (Dolédec and Chessel, 1994; Dray et al.,
2003) is another approach to find the low-dimensional
components in two-table data settings where
X � [X(1)

n × p1
|X(2)

n × p2
]. This method was first introduced in

ecology to link species abundance with environmental features.
Orthonormal directions (u and v ) are computed by maximizing
the covariance between the data tables:

argmaxu,v u′X(1)′X(2)v, s.t.‖u‖ � ‖v‖ � 1.

CIA can be considered as a variation of CCA (Sankaran and
Holmes, 2019); the only difference is that in CIA the norm
constraint (‖u‖ � ‖v‖ � 1) is directly applied on the
orthonormal directions (u and v ). MCIA (Multiple Co-Inertia
Analysis) (Meng et al., 2014) is the extension of the CIA for the
analysis of more than two data tables. sMCIA (sparse Multiple
Co-Inertia Analysis) (Min and Long, 2020) is a sparse version of
MCIA via imposing a sparsity constraint on the transformed
direction vectors.

TABLE 2 | Low-level: Regression/Association-based unsupervised integration methods.

Approach Method Macro
category*

Author Objective Omics
data**

Software***

Sequential
Analysis

• CNAMet MS-SA Louhimo and
Hautaniemi, (2011)

Biomarker-
prediction

CNV,
DM, GE

• CNAmet (http://csbi.ltdk.helsinki.fi/
CNAmet)

• MEMo (Mutual Exclusivity
Modules)

MS-SA Ciriello et al. (2012) Module-discovery CNA, GE • JAVA code (http://cbio.mskcc.org/
memo)

• iPAC (in-trans Process
Associated and cis-
Correlated)

MS-SA Aure et al. (2013) Biomarker-
prediction

CNV, GE • -

CCA & CIA • Sparse MCCA (Sparse
Multiple Canonical
Correlation Analysis)

DatE Witten and
Tibshirani, (2009)

Disease insight,
Hotspot-detection

GE, CNV • PMA (https://cran.r-project.org/web/
packages/PMA/index.html)

• BCCA (Bayesian Canonical
Correlation Analysis)

DatE Klami et al. (2013) Disease insight Any
Omics

• CCAGFA (https://cran.r-project.org/
web/packages/CCAGFA/index.html)

• MCIA (Multiple Co-Inertia
Analysis)

DatE Meng et al. (2014) Disease-subtyping,
Biomarker-
prediction

GE, PE • omicade4 (https://www.bioconductor.
org/packages/release/bioc/html/
omicade4.html)

• ade4 (https://cran.r-project.org/web/
packages/ade4/index.html)

• sMCIA (sparse Multiple Co-
Inertia Analysis)

DatE Min and Long, (2020) Biomarker-
prediction

Any
Omics

• pmCIA (https://www.med.upenn.edu/
long-lab/software.html)

Factor
Analysis

• Joint Bayesian Factor DatE Ray et al. (2014) Biomarker-
prediction

CNV,
DM, GE

• Matlab code (https://sites.google.com/
site/jointgenomics/)

• MOFA (Multi-Omics Factor
Analysis)

DatE Argelaguet et al.
(2018)

Biomarker-
prediction

Any
Omics

• MOFAtools
(https://github.com/bioFAM/MOFA)

• BayRel (Bayesian
Relational learning)

DatE Hajiramezanali et al.
(2020)

Biomarker-
prediction

Any
Omics

• TensorFlow (https://github.com/
ehsanhajiramezanali/BayReL)

*Macro categories include (A) Multi-step and Sequential Analysis (MS-SA), (B) Data-ensemble (DatE), (C) Model-ensemble (ModE). ** CNV: copy number variation, DM: DNAmethylation,
GE: gene expression, PE: Protein expression. ***R packages, unless otherwise stated.
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Illustrative Case-studies: Sparse MCCA is applied on a
diffuse large B-cell lymphoma dataset to assess the
relationships (such as co-amplification and codeletion)
between copy number changes in genome regions on
separate chromosomes (Meng et al., 2014). The results
showed a complex relationship between CAN in different
chromosomes. MCIA is applied to gene and protein
expression for NCI-60 cancer cell lines from different tissues.
Results showed that different cell lines were differentiated based
on their tissue of origin. That is, cell line-specific features can
help improve prediction and biomarker identification. In the
2nd application (Meng et al., 2014), MCIA is applied to a cohort
of ovarian cancer patients, including mRNA expression data
obtained from microarray and NGS. It identified four known
subtypes of ovarian cancer (proliferative, immunoreactive,
mesenchymal, and differentiated) along with its first two
directions (components). Moreover, gene expression analysis
in each component showed the capability of MCIA to detect
disease subtype-specific markers.

Factor Analysis-Based Methods
MOFA (Multi-Omics Factor Analysis) (Argelaguet et al., 2018) is
an unsupervised multi-Omics integration method that aims to
detect the sources of variation (both technical and biological) in
datasets via latent factors. It first decomposes each Omics data
(X(b)) as follows:

X(b) � ZW(b) + ε(b), b � 1, . . . , B

where Z indicates the factor-matrix which is common for all
data types and W(b) is a matrix of weights for datatype b, and
ε(b) is the residual (or noise) for datatype b. It then—following
the Bayesian framework—assigns a prior distribution for Z,
W(b), and parameters of the noise term. MOFA then applies a
two-step regularization on the weight matrices to deal with the
high dimensionality of multi-Omics data. it first identifies
which factor is more active in which datatype (Omics type)
and then applies a feature-wise sparsity to find a smaller set of
features with active weights. These latent factors can serve as an
input for further downstream analysis, including sample
classification and missing data imputation. The most
important advantages of MOFA are its interpretability, the
ability to visualize samples in the factor space, and the
capability of handling missing data and data with different
distributions.

Illustrative Case-studies: MOFA is applied to a cohort of
patients with chronic lymphocytic leukemia (CLL) to integrate
mRNA expression, DNA methylation, somatic mutation, and
drug response. It identified two important (already-known)
markers, including the IGHV gene (immunoglobulin heavy-
chain variable) and trisomy of chromosome 12. However,
MOFA could find a more comprehensive and complex sub-
structure for IGHV and connect it with multiple Omics,
including changes in mRNA expression (LPL, PLD1,
ADAM29), DNA methylation (cg17479716, cg19358877,
cg26615224), and with drugs (tamatinib, dasatinib,
AZD7762) that target kinases in the B-cell receptor pathway

(Argelaguet et al., 2018). These changes in mRNA expression
and DNA methylation were previously connected to IGHV in
different independent studies (Plesingerova et al., 2017).
Interestingly, IGHV and trisomy of chromosome 12
explained only <20% of the variation in CLL patients,
indicating the presence of other factors and sources of
heterogeneity. Therefore, they could find the oxidative stress
pathway (with HSP family of proteins as the top-weighted
genes) as one of the critical drivers which was previously
underappreciated in the context of CLL. The results (factors)
of MOFA are then used in a Cox-PH regression model and
could predict the time to the next treatment with a reasonably
high prediction accuracy (C-index~75%). In the second and the
third applications, MOFA is used to analyze Ustekinumab
(UST) drug-response (Verstockt et al., 2019) and mESCs
(mouse embryonic stem cells) multi-omics data (Argelaguet
et al., 2018) to identify predictive factors (a combination of
different Omics data).

Clustering-Based Integration Methods
Multi-Omics clustering methods enable the discovery of
molecular subtypes, disease subtypes, and patterns/modules.
These methods mostly aim to find a subgroup of features/
samples that have similar functions/patterns. We grouped
unsupervised multi-Omics clustering methods into four distinct
categories based on their statistical approaches, including 1)
kernel-based, 2) (non-negative) matrix factorization-based-
based, 3) Bayesian, and 4) multivariate and other clustering
methods (see Table 3 for complementary details for each
method). Descriptions of and case studies for the key methods
are provided in the proceeding sub-sections. For more detailed
information, model description, and case studies refer to
Supplementary Appendix Section SA1.

Kernel-Based Clustering Method
The input data in the kernel-based methods is the kernel matrix
(k(x(b)

i , x(b)
j ), b � 1, . . . , B), also called inter-patients similarities,

instead of the original data (X � [X(1)
n × p1

| . . . |X(B)
n × pB

]).
Therefore, the multi-Omics data integration problem is
converted to kernel integration in the sample space (Rn) rather
than the multi-Omics (feature) space (Rn×(p1+...+pB)). As a result,
the optimization problems in the kernel-based methods are called
dimension-free, i.e., it does not depend on the total number of the
features (p1 + . . . + pB).

SNF (Similarity Network Fusion) (Wang et al., 2014) is a
popular method for multi-Omics data integration and subtype
analysis. It first builds a sample-by-sample similarity matrix (or
network, where nodes are samples and edges are similarities
between samples) for each dataset separately and then fuses
them to a global (weighted) sample similarity network. The
second step (network-fusion) uses a nonlinear message-passing
theory-based method (Pearl, 2014) to fuse the similarity matrices.
SNF may lead to false fusion since it does not distinguish between
different data types. Another drawback of SNF is that it uses
Euclidean distance to calculate the similarity matrices between
the samples that often is incapable of capturing the intrinsic
similarities between data points. To address this issue, DSSF
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TABLE 3 | Low-level: Clustering-based unsupervised integration methods.

Approach Clustering method Macro
category*

Author Objective Omics
data**

Software***

Kernel-based
Clustering Methods

• L-MKKM (Localized Multiple
Kernel K-Means)

ModE Gönen and
Margolin, (2014)

Sample-
subtyping

CNV,
DM, GE

• Matlab code (https://github.com/
mehmetgonen/lmkkmeans)

• SNF (Similarity Network
Fusion)

ModE Wang et al. (2014) Disease-
subtyping

Any Omics • MOVICS (https://xlucpu.github.io/
MOVICS/MOVICS-VIGNETTE.html)

• CEPICS (https://rdrr.io/github/
GaoLabXDU/CEPICS/)

• CancerSubtypes (https://
bioconductor.org/packages/release/
bioc/html/CancerSubtypes.html)

• rMKL-LPP (regularized
Multiple Kernels Learning
with Locality Preserving
Projections)

ModE Speicher and
Pfeifer, (2015)

Disease-
subtyping

DM,
MiE, GE

• -

• WSNF (Weighted SNF) ModE Xu et al. (2016) Disease-
subtyping

MiE, GE • CancerSubtypes (https://
bioconductor.org/packages/
release/bioc/html/CancerSubtypes.
html)

• mixKernel ModE Mariette and
Villa-Vialaneix,
(2018)

Sample-
subtyping

GE,
MiE, DM

• mixKernel (https://cran.r-project.org/
web/packages/mixKernel/index.
html)

• DSSF (Deep Subspace
Similarity Fusion)

ModE Yang et al. (2018) Disease-
subtyping

DM,
MiE, GE

• -

• ANF (Affinity Network
Fusion)

ModE Ma and Zhang,
(2018)

Sample-
subtyping

DM,
MiE, GE

• ANF (https://bioconductor.org/
packages/release/bioc/html/ANF.
html)

• NEMO (NEighborhood
based Multi-Omics
clustering)

ModE Rappoport and
Shamir, (2019)

Disease-
subtyping

DM,
MiE, GE

• NEMO (https://github.com/Shamir-
Lab/NEMO)

• MOVICS (https://xlucpu.github.io/
MOVICS/MOVICS-VIGNETTE.html)

• ab-SNF (association-signal-
annotation boosted SNF)

ModE Ruan et al. (2019) Sample-
subtyping

DM, GE • R code (https://github.com/pfruan/
abSNF/)

• MvNE (Multiview
Neighborhood Embedding)

ModE Mitra et al. (2020) Molecular-
classification

DM,
MiE, GE

• -

• INF (Integrative Network
Fusion)

DatE/ModE Chierici et al.
(2020)

Disease-
subtyping,
Disease-
prediction

CNV, MiE,
GE, PE

• Python/R code (https://gitlab.fbk.eu/
MPBA/INF)

• SmSPK (Smoothed
Shortest Path graph Kernel)

ModE Tepeli et al. (2020) Sample-
subtyping

GE, PE,
Mutation

• Python code (https://github.com/
tastanlab/pamogk)

• PAMOGK (PAthway-based
MultiOmic Graph Kernel
clustering)

ModE Tepeli et al. (2020) Sample-
subtyping

GE, PE,
Mutation

• Python code (https://github.com/
tastanlab/pamogk)

(Non-negative) Matrix
Factorization-based
Clustering Methods

• iCluster ModE Shen et al. (2009) Disease-
subtyping,
Biomarker-
identification

CNV, GE • iCluster (https://cran.r-project.org/
web/packages/iCluster/index.html)

• iClusterPlus (https://bioconductor.
org/packages/release/bioc/html/
iClusterPlus.html)

• MOVICS (https://xlucpu.github.io/
MOVICS/MOVICS-VIGNETTE.html)

• CEPICS (https://rdrr.io/github/
GaoLabXDU/CEPICS/)

• CancerSubtypes (https://
bioconductor.org/packages/release/
bioc/html/CancerSubtypes.html)

• jNMF (Joint Non-negative
Matrix Factorization)

ModE Zhang et al. (2012) Disease-insight,
Module-discovery

MiE,
DM, GE

• -

• iClusterPlus ModE Mo et al. (2013) Disease-
subtyping

CNV,
DM, GE

• iClusterPlus (https://bioconductor.
org/packages/release/bioc/html/
iClusterPlus.html)Biomarker-

identification
• FA (Factor Analysis) DatE Liu et al. (2013) Disease-

subtyping
MiE,
GE, PE

• -

(Continued on following page)
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TABLE 3 | (Continued) Low-level: Clustering-based unsupervised integration methods.

Approach Clustering method Macro
category*

Author Objective Omics
data**

Software***

• moCluster ModE Meng et al. (2016) Disease-
subtyping,
Molecular-
subtyping

MiE,
DM, PE

• mogsa (https://www.bioconductor.
org/packages/release/bioc/html/
mogsa.html)

• MOVICS (https://xlucpu.github.io/
MOVICS/MOVICS-VIGNETTE.html)

• JIVE (Joint and Individual
Variation Explained)

ModE O’Connell and
Lock, (2016)

Disease-
subtyping

MiE,
DM, GE

• R.jive (https://cran.r-project.org/
web/packages/r.jive/index.html)

• iNMF (integrative Non-
negative Matrix
Factorization)

ModE Yang and
Michailidis, (2016)

Disease-
subtyping

MiE,
DM, GE

• MOVICS (https://xlucpu.github.io/
MOVICS/MOVICS-VIGNETTE.html)

• Python code (https://github.com/
yangzi4/iNMF)

• PFA (Pattern Fusion
Analysis)

ModE Shi et al. (2017) Disease-
subtyping

MiE,
DM, GE

• -

• IS k -means (Integrative
Sparse k-means)

DatE Huo and Tseng,
(2017)

Disease-
subtyping

CNV,
DM, GE

• IS-Kmeans (https://github.com/
Caleb-Huo/IS-Kmeans)

• MOGSA (Multi-Omics Gene-
Set Analysis)

DatE Meng et al. (2019) Disease-insight • GE,
CNV, PE

• Mogsa (https://www.bioconductor.
org/packages/release/bioc/html/
mogsa.html)

• SCFA (Subtyping via
Consensus Factor Analysis)

ModE Tran et al. (2020) Disease-
subtyping

• DM,
MiE, GE

• R code (https://github.com/
duct317/SCFA)

Bayesian Clustering
Methods

• TMD (Transcriptional
Modules Discovery)

ModE Savage et al.
(2010)

Disease-
subtyping

GE, TF • -

• PARADIGM (PAthway
Recognition Algorithm using
Data Integration on Genomic
Models)

ModE Vaske et al. (2010) Disease-
subtyping and
Disease-insight

CNV,
GE, PE

• GIANT interface (http://giant.
princeton.edu/)

• PSDF (Patient-Specific Data
Fusion)

ModE Yuan et al. (2011) Disease-
subtyping

CNV, GE • Matlab code (https://sites.google.
com/site/patientspecificdatafusion/)

• MDI (Multiple Dataset
Integration)

ModE Kirk et al. (2012) Disease-
subtyping

GE, PE • Matlab code (https://warwick.ac.uk/
fac/cross_fac/zeeman_institute/
zeeman_research/software/)

• BCC (Bayesian Consensus
Clustering)

ModE Lock and Dunson,
(2013)

Disease-
subtyping

MiE, DM,
GE, PE

• bayesCC (https://github.com/
ttriche/bayesCC)

• LRAcluster (Low-Rank-
Approximation)

ModE Wu et al. (2015) Disease-
subtyping

CNV,
DM, GE

• LRAcluster (http://lifeome.net/
software/lracluster/)

• MOVICS (https://xlucpu.github.io/
MOVICS/MOVICS-VIGNETTE.html)

Multivariate and Other
Clustering Methods

• COCA (Cluster-Of-Cluster
Assignment)

ModE Hoadley et al.
(2014)

Disease-
subtyping

MiE, CNV,
DM,
GE, PE

• MOVICS (https://xlucpu.github.io/
MOVICS/MOVICS-VIGNETTE.html)

• coca (https://github.com/acabassi/
coca)

• iPF (integrative Phenotyping
Framework)

DatE Kim et al. (2015) Sample-
subtyping

MiE, GE • iPF (http://tsenglab.biostat.pitt.edu/
software.htm)

• Clusternomics ModE Gabasova et al.
(2017)

Disease-
subtyping

MiE, DM,
GE, PE

• Clusternomics (https://github.com/
evelinag/clusternomics)

• PINS (Perturbation
clustering for data
INtegration and disease
Subtyping)

ModE Nguyen et al.
(2017)

Disease-
subtyping

MiE, CNV,
DM, GE

• -

• iDRW (integrative Directed
Random Walk)

DatE Kim et al. (2018) Disease-
subtyping,
Biomarker-
discovery

DM, GE • R code (https://github.com/
sykim122/iDRW)

• PINSPlus ModE Nguyen et al.
(2019)

Disease-
subtyping

MiE, CNV,
DM, GE

• PINSPlus (https://cran.r-project.org/
web/packages/PINSPlus/index.html)

• MOVICS (https://xlucpu.github.io/
MOVICS/MOVICS-VIGNETTE.html)

• Subtype-GAN ModE Yang et al. (2021) Disease-
subtyping

MiE, CNV,
DM, GE

• R code (https://github.com/
haiyang1986/Subtype-GAN)

*Macro categories include (A) Multi-step and Sequential Analysis (MS-SA), (B) Data-ensemble (DatE), (C) Model-ensemble (ModE). ** CNV: copy number variation, DM: DNAmethylation,
MiE: Micro RNA expression, GE: gene expression, TF: transcriptional factor, PE: Protein expression. ***R packages, unless otherwise stated.
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(Deep Subspace Similarity Fusion) (Yang et al., 2018) employs an
auto-encoder to improve the discriminative similarity between
samples. AFN (Affinity Network Fusion) (Ma and Zhang, 2018)
is also an extension of SNF that enables the consideration of
patients’ pairwise distances. To handle the unmatched samples
(different sample sizes in different Omics-types), NEMO
(NEighborhood based Multi-Omics clustering) (Rappoport and
Shamir, 2019) is introduced that enables the computation of
global kernel matrix without performing any imputation on the
missing observation. INF (Integrative Network Fusion) (Chierici
et al., 2020) is another extension that utilizes SNF within a
predictive framework including RF (Breiman, 2001) (Random
Forest) and LSVM (Cortes and Vapnik, 1995) (Linear Support
Vector Machine). See Supplementary Appendix Section SA1.1
for more details and case studies.

Illustrative Case-studies: SNF is applied to different multi-
omics data integration studies. In the 1st application (2018) (Chiu
et al., 2018), it is applied on a cohort of triple-negative breast
cancers (TNBC) patients from TCGA (including CNV, miRNA,
and mRNA expressions) to identify the different sub-groups of
cancer patients. Results revealed a new TNBC classification
scheme with three different clusters of patients. One of the
clusters, interestingly, was enriched in the “non-basal” subtype
(by PAM50), whereas PAM50 obtained themost common “basal-
like” subtype. This nan-basal cluster showed more aggressive
clinical characteristics and distinctive oncogenic features
(including 38% basal-like2 and 50% luminal androgen receptor
subtypes).

(Non-negative) Matrix Factorization-based Clustering
Method
Standard factorization methods commonly use singular value
decomposition (SVD), such as PCA. However, for some data
types, such as genotypes, the original matrices are non-negative.
SVD-based factorizations contain negative entries, making it
difficult to interpret their results in some applications. In
contrast, NMF (Nonnegative Matrix Factorization) (Lee and
Seung, 2001) restricts the entries in matrix factors to be non-
negative.

iCluster (Shen et al., 2009) simultaneously considers the
association between different data types and the covariance
structure within each datatype. It employs the principles of
two methods, including probabilistic PCA(Tipping and Bishop,
1999) and a (spectral) relaxed version of k -means (Zha et al.,
2001). It first uses the Gaussian latent variable model to compute
the posterior mean of the (latent variable) components (T). It
then calculates the class membership by employing the standard k
-means algorithm. The integrative model can be written as
follows:

X(b) � W(b)′T + ε(b), for b

� 1, . . . , B, T ~ N(0, I), ε(b) ~ N(0, σ(b)),

where W(b) is the (c − 1) × pb matrix of coefficient (also called
loading matrix), c is the number of the clusters, and T is the
(c − 1) × n matrix of latent variable components that are
shared between the data tables and explains the correlation

between the different data types (n is the sample size); ε(b)
indicates the remaining (unexplained) variances for each data
type. Therefore, the final data matrix will become as
X � (X(1), . . . , X(B)) ~ N(0,WW′ + σ). Authors have applied
a lasso-based penalty on W in the final likelihood function.
Cluster memberships are then calculated by applying k -means
clustering on the posterior mean of the latent variable
components (E(T|X)). iNMF (integrative Non-negative
Matrix Factorization) (Yang and Michailidis, 2016) is a
multi-table extension of NMF to account for heterogeneity
between the multiple datasets by providing heterogenous
estimations/combinations (VbTb) via minimizing the
following loss function (using partitioned factorization
structure):

argminW,Vb,Tb
∑
B

b�1
‖X − (W + Vb)Tb‖2F + λ∑

B

b�1
‖VbTb‖2F, for b

� 1, . . . , B

s.t.W≥ 0, Tb ≥ 0, Vb ≥ 0,

where V is a homogeneity parameter and enables to account for
different degrees of heterogeneity in the multiple datasets (since
larger values of V result in smaller heterogeneous components
VbTb). ‖.‖F is the Frobenius norm (Lee and Seung, 1999). The
authors also adopted the sparse version of the iNMF by applying
L1 − norm to Tb. Whereas iCluster-based methods, NMF-based
methods do not rely on any model assumptions and allow each
sample to fall in more than one class or be excluded from the
classification (see Supplementary Appendix Section SA1.2 for
more NMF-based and iCluster-based methods and illustrative
case-studies).

Illustrative Case-studies: iCluster is applied in different
studies, mainly for cancer subtyping. It is recently applied
to a cohort of ovarian carcinoma patients (including CNV,
DNA methylation, and mRNA expression) to identify
prognostic biomarkers (Zheng et al., 2019). The results
revealed three distinct clusters of samples and identified
UBB (ubiquitin B) and IL18BP (interleukin 18 binding
protein) genes as the most prognostic biomarkers. The
results suggested that lower expression of these two genes
may result in higher methylation and lower CNV. Therefore,
evaluating the expression of these two genes can help in early
tumor diagnosis. In another study, iCluster is applied to multi-
Omics data of adult soft tissue sarcomas (Lazar et al., 2017).
iCluster showed that SS-subtype (synovial sarcoma) was the
most distinct sarcoma with partial/complete loss of
chromosome 3p (45% of cases), high expression of FGFR3
and miR-183, and methylation of the PDE4A promoter.
Another cluster identified by iCluster mainly included LMS
(Leiomyosarcoma) cases with high expression of MYLK,
MYH11, ACTG2, miR-143, miR-145, lower inferred activity
of the apoptosis pathway, and higher hormone receptor (ER/
PR) levels. It inferred PI3K/AKT pathway activity. The authors
also concluded that copy number changes were the most
informatics Omics in characterizing these sarcomas
(except SS).
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Bayesian Clustering Method
In the Bayesian framework of a clustering task, class memberships
are calculated using a probability model (such as a Dirichlet
Process Mixture (DPM) model (MacEachern and Müller, 2000))
subject to a priori assumption about what the true relationship
between the data might be, which is expressed as a probability
distribution. This probability is then updated as new observations
become available (which is captured by a posterior distribution).
This approach enables the use of prior information informing the
clusters (sub-samples, sub-disease, or sub-features). The DPM
model is one of the most widely used Bayesian nonparametric
methods in the multi-Omics (multitype) clustering-based data
integration. For a tutorial on DPM models, refer to (Li et al.,
2019).

LRAcluster (Low-Rank-Approximation) (Wu et al., 2015) is a
low-rank probabilistic method (similar to iClusterPlus) for
molecular classification that takes both continuous and
categorical data as input. LRAcluster first models each
datatype using a probabilistic model and combine them as
L(Θ) � ∑B

b�1L(Θ(b), X(b)), for b � 1, . . . , B, where Θ(b) is the
parameter matrix for datatype b. Θ is the overall parameter
matrix and is assumed to be a low-rank matrix that leads to
the following optimization problem:

argminΘL(Θ) + λ
∣∣∣∣Θ
∣∣∣∣p,

where λ is the tuning parameter and |Θ|p indicates the nuclear
norm of Θ. An iterative, fast LRA of the parameter matrix is then
applied to solve this optimization problem. The final clustering
task is applied to the low-dimension subspace (using k -means) to
find feature subtypes (refer to (Subramanian et al., 2020) for more
details and examples). MDI (Multiple Dataset Integration) (Kirk
et al., 2012), TMD (Transcriptional Modules Discovery) (Savage
et al., 2010), PSDF (Patient-Specific Data Fusion) (Yuan et al.,
2011), and BCC (Bayesian Consensus Clustering) (Lock and
Dunson, 2013) are four closely related integrative methods
that all adopt a DPM. However, MDI and BCC have the same
objective (clustering and subtyping), and all can integrate more
than two data types (for more details, see Supplementary
Appendix Section SA1.3).

Illustrative Case-studies: LRAcluster is applied in a study of
hepatocellular carcinoma (HCC) as themajor subtype of liver cancer
(Wang et al., 2019) to characterize the molecular alternation of the
metastatic HCCs. The results identified a list of individualized
molecules (including TNC, LAMA2, LAMC3, PDGFRA, CYP2E1,
CYP3A4, CYP2C8, CYP1B1, CPS1, TAT, and HPD) significantly
expressed between the primary tumor compare and portal vein
tumor thrombosis. Therefore, an individualized differential analysis
for sequencing data was proposed to automate the process of finding
these individualized genes.

Multivariate and Other Clustering Method
COCA (Cluster-Of-Cluster Assignment) (Hoadley et al., 2014)
integrates the single-Omics clusters using hierarchical clustering
based on pairwise concordance between different Omics
platforms (including mRNA, miRNA, DNA methylation, and
mutation). PINS (Perturbation clustering for data INtegration

and disease Subtyping) (Nguyen et al., 2017) is a disease sub-
typing method. It first partitions the samples into k
(k ∈ [2 . . .K]) clusters, then builds the patient connectivity
matrices based on the pairwise connectivity for each possible
cluster (see Supplementary Appendix Section SA1.4 for more
information).

Illustrative Case-studies: COCA has recently been applied to
a cohort of Ugandan cervical carcinoma patients (bothHIV+ and
HIV−) that is the first comprehensive profiling (genomic,
transcriptomic, epigenomic) of sub-Saharan African patients
(Gagliardi et al., 2020). They could identify human
papillomavirus (HPV)-clade-specific (clade A7 and A9)
patterns of multiple Omics features, including DNA
methylation and gene expression. For instance, upregulated
genes in clade A7-samples (such as PXDN) are also
upregulated in cancers that progress through the epithelial-
mesenchymal transition; and DNA methylation is closely
regulated through cell differentiation. The clustering result
showed the loss of E2 expression in the A7-enriched cluster
due to HPV integration in clade A7-samples. However, the A9-
enriched cluster showed partial HPV integration supporting the
higher expression of episomal HPV genes (due to E2 expression)
in these patients. Therefore, the authors hypothesized that clade
A9-infected samples might have a more active HPV infection. In
another application on glioblastoma cancer patients (Yuan et al.,
2020), COCA could identify two novel subtypes, including HX-1
and HX-2 categorized by three CpG regions (~DUSP1, PHOX2,
HOXA7) and 15 gene mutations, including PCDH1, CYP27B1,
LPIN3, GPR32, BCL6, OR4Q3, MAGI3, SKIV2L, PCSK5,
AKAP12, UBE3B, MAP4, TP53BP1, F5, RHOBTB1.

Network-Based Integration Methods
Some of the fundamental tasks of biological research are to
prioritize the features (or groups of features) that exhibit
similar profiles and tend to be functionally related/co-
regulated (such as gene modules) and to identify the
functional relationships between different biological features
(such as gene co-expression and signaling pathways).
Network-based approaches do not rely solely on statistical
models, but also leverage information about functional
relationships and interactions available in biological knowledge
databases, when integrating multi-Omics data. A network is a
graphical representation (including nodes and edges) of the
relationships between discrete entities. In computational
network biology, nodes usually represent different features
(such as SNPs, CpGs, genes, proteins, metabolites, and or
phenotypes, e.g., diseases), and edges represent the relationship
between pairs of nodes.When two nodes are sharing an edge, they
are called neighbors, adjacent, or directly connected. The
adjacency matrix of a network is then an i × j matrix with
elements Wij where Wij � 1 if and only if the pair of nodes
(wi, wj) are directly connected (neighbors). Degree matrix is a
diagonal matrix where diagonal elements indicate the degrees of
each node (i.e., number of neighbors). Biological network-based
methods aim to describe the global topology of disease and
biomarker/module discovery. We grouped unsupervised multi-
Omics network methods into four distinct categories based on
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TABLE 4 | Low-level: Network-based unsupervised integration methods.

Approach Model Macro
category*

Author Omics
data**

Objective Software***

Matrix Factorization-
based (MF-based)
Networks

• CMF/CMF-W (Collective Matrix
Factorization)

ModE Liany et al. (2020) Any Omics Outcome/
Interaction-
prediction

• Python code (https://github.
com/lianyh)

• NBS (Network-Based
Stratification)

ModE Hofree et al.
(2013)

MiE, CNV,
DM, GE, PE

Patient-
subtyping

• pyNBS Python code (https://
github.com/idekerlab/pyNBS)

• DFMF (Data Fusion by Matrix
Factorization)

ModE Žitnik and Zupan,
(2014)

GE, GO-
terms, MeSH-
descriptor

Gene function-
prediction

• -

• FUSENET ModE Žitnik and Zupan,
(2015)

GE, Mutation Disease-insight
(Gene-Disease
association-
prediction)

• Python code (https://github.
com/mims-harvard/fusenet)

• Medusa ModE Zitnik and Zupan,
(2016)

Any Omics Module-
discovery,
Gene-Disease
association-
prediction

• Python code (https://github.
com/mims-harvard/medusa)

• MAE (Multi-view factorization
AutoEncoder)

ModE Ma and Zhang,
(2019)

MiE, DM, GE,
PE, PPIs

Disease-
prediction

PyTorch code (https://github.com/
BeautyOfWeb/Multiview-
AutoEncoder)

• DisoFun
(Differentiate isoform Functions
with collaborative matrix
factorization)

ModE Wang et al. (2020) GE, IE Disease-
function
Prediction

MATLAB code (http://mlda.swu.
edu.cn/codes.php?%20name=
DisoFun)

• IMCDriver DatE Zhang et al. (2021) GE, Mutation,
PPIs

Gene-discovery Python code (https://github.com/
NWPU-903PR/IMCDriver)

• RAIMC (RBP-AS Target Prediction
Based on Inductive Matrix
Completion)

ModE Qiu et al. (2021) AS, RBPs Protein-
prediction

MATLAB code (https://github.
com/yushanqiu/RAIMC)

Bayesian Networks
(Pearl, 2014) (BNs)

• PARADIGM (PAthway Recognition
Algorithm using Data Integration
on Genomic Models)

ModE Vaske et al. (2010) CNV, GE, PE Disease-
subtyping,
Disease-insight

• GIANT interface (http://giant.
princeton.edu/)

• CONEXIC ModE Akavia et al.
(2010)

GE, CNV Gene-discovery • -

Network
Propagation-based
Networks (Random
walk-, and Network
Fusion-based
Methods)

• GeneticInterPred ModE You et al. (2010) GE, PE Interaction-
prediction

• -

• RWRM (Random Walk with
Restart on Multigraphs)

ModE Li and Li, (2012) GE, PPIs Gene-prioritizing • -

• TieDIE (Tied Diffusion through
Interacting Events)

ModE Paull et al. (2013) GE, TF, PPIs Module/sub-
network
detection

• Python code (https://sysbiowiki.
soe.ucsc.edu/tiedie)

• SNF (Similarity Network Fusion) ModE Wang et al. (2014) MiE, DM, GE Patient-
subtyping

• SNFtool (https://cran.r-project.
org/web/packages/SNFtool/
index.html)

• HotNet2 ModE Leiserson et al.
(2015)

SNV, CNA,
GE, PPIs

Sub-network
detection

• HotNet software (http://
compbio.cs.brown.edu/
projects/hotnet/)

• NetICS ModE Dimitrakopoulos
et al. (2018)

MiE, CNV, GE Biomarker-
prediction

• Matlab code (https://github.
com/cbg-ethz/netics)

• RWR-M (Random Walk with
Restart for Multiplex networks)

ModE Valdeolivas et al.
(2019)

GE, Co-
expression,
PPIs

Gene-prediction • R code (https://github.com/
alberto-valdeolivas/RWR-MH)

• RWR-MH (RWR for Multiplex-
Heterogeneous networks)

ModE Valdeolivas et al.
(2019)

GE, Co-
expression,
PPIs

Gene-prediction • RandomWalkRestartMH (http://
bioconductor.org/packages/
release/bioc/html/
RandomWalkRestartMH.html)

• MSNE (Multiple Similarity Network
Embedding)

ModE Xu et al. (2020) CNV, DM, GE Disease-
subtyping

• Python code (https://github.
com/GaoLabXDU/MSNE)

• RWRF (Random Walk with Restart
for multi-dimensional data Fusion)

ModE Wen et al. (2021) MiE, DM, GE Disease-
subtyping

• R code (https://github.com/
Sepstar/RWRF/)

Correlation-based
and Other Networks

• WGCNA (Weighted Gene Co-
expression Network Analysis)

DatE Langfelder and
Horvath, (2008)

GE (from
multiple

Gene-prioritizing • WGCNA (https://horvath.
genetics.ucla.edu/html/
(Continued on following page)
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their statistical approaches, including 1) matrix factorization-
based, 2) Bayesian, 3) network propagation-based, and 4)
correlation-based and other networks (see Table 4 for
complementary details for each method). Descriptions of and
case studies for the key methods are provided in the proceeding
sub-sections. For more detailed information, model description,
and case studies, refer to Supplementary Appendix Section SA2.

Matrix Factorization-Based (MF-Based) Networks
NBS (Network-Based Stratification) (Hofree et al., 2013) is a
sample-stratification method that uses both network propagation
algorithm andmatrix factorization to construct the final subtypes.
Therefore, it can be categorized under either of these categories.
NBS integrates genome-scale somatic mutations with a gene-
interaction network. It first maps the mutations for each sample
onto a gene-interaction network from STRING (https://string-db.
org/), Pathway Commons (https://www.pathwaycommons.org/),
and HumanNet (https://www.inetbio.org/humannet/download.
php), and constructs the patient-by-gene matrix (M0). Then
network propagation is used to smooth the sample-mutation-
gene network as follows:

Mt+1 � αMt A + (1 − α)M0,

where A is a normalized adjacency matric of the gene-
interaction network, α is a tuning parameter controlling the
mutation diffusion. The smoothing (propagation) function
runs iteratively till convergence. The result of this step is a
network-smoothed profile where the elements indicate the
network proximity of each gene to the mutated genes for a
specific sample. FUSENET (Žitnik and Zupan, 2015) and
DFMF (Žitnik and Zupan, 2014) are flexible about input
data and their distributions. The latter does not treat the
entire input data as a single matrix and therefore, enables
the identification of data-specific factors. Medusa (Zitnik and

Zupan, 2016) is a module-discovery method that partly uses
the same methodology as DFMF (Data Fusion by Matrix
Factorization) (Žitnik and Zupan, 2014) to construct a
fused network (see Supplementary Appendix Section
SA2.1 for more information). MAE (Multi-view
factorization AutoEncoder) (Ma and Zhang, 2019) is a
combination of matrix factorization and an autoencoder
that enables the simultaneous embedding of both features
(Omics) and samples via more complex nonlinear
transformations. It first constructs an interaction graph for
each datatype. To do so, the interactions among the feature in
each datatype are represented as a network (N ∈ Rp×p

+ ). For
instance, for proteome datatype, network N will be protein-
protein interaction networks (PPIs) that are publicly available
(such as Reactome https://reactome.org/). Note that MAE can
also be categorized as a supervised (deep) neural networks
method. RAIMC (RBP-AS Target Prediction Based on
Inductive Matrix Completion) (Qiu et al., 2021) is based on
inductive matrix completion (IMC), where integrated RNA-
binding proteins (RBP) similarities were calculated based on
RBP-regulating similarity and integrated alternative splicing
(AS) event similarities were computed based on AS module-
similarity. Then Gaussian interaction profiles (GIP) for RBPs
and AS events are computed and combined using the fast
kernel learning (FKL). Before completing the association
matrix with IMC, a top-kk nearest neighbor model is
applied to denoise the integrated similarity matrix. See (Ou-
Yang et al., 2022) for a comprehensive review of matrix
factorization methods for biomedical link prediction,
including, IMCDriver (Zhang et al., 2021) and DisoFun
(Wang et al., 2020).

Illustrative Case-studies: NBS is applied for patient-subtype
identification and discriminating the somatic mutation
profiles in uterine, ovarian, and lung cancer studies
obtained from TCGA. The survival result based on the

TABLE 4 | (Continued) Low-level: Network-based unsupervised integration methods.

Approach Model Macro
category*

Author Omics
data**

Objective Software***

platforms/
species)

CoexpressionNetwork/
Rpackages/WGCNA/)

• GGM (Gaussian Graphical Model) ModE Krumsiek et al.
(2011)

SNP, GE, Met Metabolite-
pathway
reactions

• -

• GEM (GEnome scale Metabolic
models)

ModE Shoaie et al.
(2013)

GE, Met Metabolite-
subnetwork

• -

• DBN (Deep Belief Network) ModE Liang et al. (2014) MiE, DM, GE Disease-
subtyping

• Python code (https://github.
com/glgerard/MDBN)

• Lemon-Tree ModE Bonnet et al.
(2015)

CNV, GE Biomarker-
discovery

• JAVA command (https://github.
com/erbon7/lemon-tree)

• TransNet (Transkingdom Network) ModE Rodrigues et al.
(2018)

Any Omics Causal network • TransNetDemo R code (https://
github.com/richrr/
TransNetDemo)

*Main categories include (A) Multi-step and Sequential Analysis (MS-SA), (B) Data-ensemble (DatE), (C) Model-ensemble (ModE). ** CNV: copy number variation, CAN: copy number
alternation, SNV: single nucleotide variation, DM: DNA methylation, AS: alternative splicing, MiE: Micro RNA expression, GE: gene expression, TF: transcriptional factor, IE: isoform
expression, PE: protein expression, RBPs: RNA-Binding Proteins, PPI: Protein-protein interactions, Met: Metabolite. ***R packages, unless otherwise stated.
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identified subtypes showed that ovarian cancer patients with
the most aggressive tumor had a mean survival of 32 months
compared to others (~80 months). The fibroblast growth
factor (FGF) signaling pathway was enriched for this sub-
network of patients with the worst survival in concordance
with previous studies indicating the FGF signaling pathway as
a driver of tumor progression resistant to anti-VEGF therapy
(Cole et al., 2010). The next subtype of patients with relatively
better (higher) survival was mainly enriched in DNA
damage–response genes (including ATM, ATR, BRCA1,
BRCA2, RAD51, and CHEK2) that have been referred to as
BRCAness in previous studies (Konstantinopoulos et al.,
2010).

Bayesian Networks (BNs)
Bayesian networks (BNs) are a combination of (directed acyclic)
graph/network theory and probability models. Suppose N �
(V, E) is a network where V is a vector of nodes and E is the
set of edges. The structure ofN in BNs is a directed acyclic graph
(DAG) that defines the factorization of the joint probability of
V � {X(1), . . . , X(B)} into a set of local probability distributions
(one for each X(b)) via Markov property (Korb and Nicholson,
2010) of BNs:

P(X(1), . . . , X(B)) � ∏
B

b�1
P(X(b)∣∣∣∣πX(b)),

showing that each node (random variable X(b)) directly depends
only on its parents πX(b) (Scutari, 2009). Themain disadvantage of
BNs is their computational complexity since the number of
network structures grows exponentially with the number of
nodes. However, using the Monte Carlo Markov Chain
(MCMC) approach can partially help the situation (Lin and
Lane, 2017). PARADIGM (PAthway Recognition Algorithm
using Data Integration on Genomic Models) (Vaske et al.,
2010) can also be categorized as a BN approach. It uses the
prior knowledge of the given pathways to model the nodes
(Omics data). CONEXIC (Akavia et al., 2010) is another BN
that aims to find cancer-driver mutations by integrating gene
expression and CNVs.

Illustrative Case-studies: CONEXIC is applied to gene-
CNV paired data from melanoma patients (Lin et al., 2008) to
identify a list of cancer driver genes. First, a list of candidates was
generated using CNV data, and then the most likely drivers were
collected by integrating CNV and mRNA expression. It resulted in
several modulators that explain the behavior of 7869 genes. Many
of the top modulators were involved in melanoma-related
pathways and included known oncogenes and tumor
suppressors. CONEXIC could successfully pick known cancer-
related genes out of a large region with many underlying genes. For
instance, CCNB2 (cell-cycle regulator) was selected from a large,
amplified region. Finally, an automated literature-mining method
called LitVAn (literature vector analysis) was used to find
overrepresented terms in published studies. It resulted in a few
well-known activated features in melanoma (such as PI3K,MAPK)
and a novel process called “RAB” (Rabs regulate vesicular
trafficking).

Network Propagation-Based (NP-Based) Networks
Network Propagation (NP) (Cowen et al., 2017) is a stochastic
process that tracks each node’s flow and tries to amplify the
signals through prior information and pass them to its
neighborhoods over time. Suppose N � (V, E) is a network
with an adjacency matrix W. Suppose p0(v) indicates the
starting value of prior (known) information for node v ∈ V.
For instance, it can be a vector of 0 and 1, 1 indicating the
genes known to be related to the disease, and 0 otherwise. The
value of p0(v) is the amount of information that we want to flow
(diffuse) from each node to its neighborhoods. Therefore, the
amount of information of node v (also called the state of node v)
at time t (pt(v)) can be formulated as the sum of the information
of its neighbor (N(v)) at the previous time (t − 1):

pt(v) � ∑
u∈N(v)

pt−1(u)w(u, v), (1)

where w(u, v) indicates the (normalized) weights between nodes
u and v and is based on the relationship/interaction between these
two nodes. The result of this iterative propagation process (for t
times) is the gene-ranks (pt(v)). Eq. 1 can be re-written with
matrix notation as follows:

pt � Wppt−1,

where Wp is a transition matrix and calculated from the
adjacency matrix W. The random walk with restart—RWR
(Tong et al., 2008) is a propagation algorithm that allows a
walker (an imaginary particle) to start a walk (flow) from the
initial node v0 ∈ V (with prior probability p0) to node vt−1 at a
discrete-time step t − 1 (~ pt−1). It then walks from node vt−1 to
the next (randomly selected) neighbor vt by following a given
transition matrix. Therefore, pt can be written as:

pt � αp0 + (1 − α)Wp
t−1,

where α is called restart probability and controls the amount of
prior information considered in the network, and Wp is a
normalized transition matrix. Different algorithms may use
different transition matrices. RWRM (Random Walk with
Restart on Multigraphs) (Li and Li, 2012) is one of the first
extensions of network propagation for integrating multigraph
gene networks. It enables multiple edges between two nodes [see
Supplementary Appendix Section SA2.2 for extensions of RWR
algorithm, including RWR-M (Valdeolivas et al., 2019) and
RWR-MH (Valdeolivas et al., 2019)]. TieDIE (Tied Diffusion
through Interacting Events) (Paull et al., 2013) accepts a
biological graph/pathway (such as PPIs or gene interaction
networks) and a set of prior scores for each node indicating
the involvement of each node in the network. SNF (Wang et al.,
2014) can be considered as both a clustering and network-based
method. We have discussed SNF and its extensions in
Unsupervised Multi-omics Data Integration Methods.

Based on a benchmarking study (Picart-Armada et al., 2019)
for network propagation methods, selecting a prominent network
analysis method is not clear-cut. The authors concluded that
network propagation methods enable the biomarker discovery,
but their efficiency greatly depends on the input biological
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network and the nodesʼ initial score (see Supplementary
Appendix Section SA2.2 for more information).

Illustrative Case-studies: SNF is applied to identify GBM
subtypes vis integrating DNA methylation, mRNA, and miRNA
expressions (Wang et al., 2014). The results indicated that most
edges in the similarity network (patientsʼ similarities) were only
detectable when two or more types of Omics information has
applied. SNF could successfully distinguish the previously
reported IDH subtype (Sturm et al., 2012) consisting of
younger patients with an IDH1 mutation. SNF could further
identify a subtype of patients who were more responsive to
temozolomide, TMZ (a common GBM treatment), whereas
another distinct subtype of patients with overexpressed CTSD
and less responsive to TMZ [which is consistent with an in vitro
study (Sun et al., 2012)]. SNF has recently been applied to TNBC
(Chiu et al., 2018) and pancreatic cancers (Sinkala et al., 2020) to
identify disease subtypes.

Correlation-Based and Other Networks
WGCNA (Weighted Gene Co-expression Network Analysis)
(Langfelder and Horvath, 2008) is a gene-prioritizing correlation-
network-based method that also enables gene module identification.
Correlation networks are based on the correlation between a node
and an outcome. The significance of a node (such as a gene) is then
determined based on either the correlation coefficient or a
regression-based p-value. WGCNA can be employed to find gene
modules, sub-modules, and marker-prioritization. Lemon-Tree
(Bonnet et al., 2015) is a biomarker-discovery method that first
processes (normalize) the expression data (mRNA) and finds the co-
expressed clusters of genes via a model-based Gibbs sampler (Joshi
et al., 2008). It then employs ensemble methods (including spectral
edge clustering algorithm) to identify gene modules and regulatory
based on the co-expressed genes. Other Omics features (including
miRNA, CNV, DNA methylation, and genotype) are added to the
model as additional candidates and are combined to calculate the
regulatory scores. Lemon-Tree also enables the gene ontology
enrichment analysis for the modules. DBN (Deep Belief
Network) (Liang et al., 2014) is a sample-classification (deep-
learning, DL) method that integrates mRNA, miRNA, and DNA
methylation data. DL methods are initially constructed from multi-
layered (or deep) artificial neural networks (Bishop, 1995) (ANNs),
inspired by actual NNs in the brain. ANN is a parallel system that
accepts the input data in its first layer (input layer). It then passes the
data into one or more hidden layers that ultimately connect them to
an output layer. ANNs used for DL have more hidden layers where
each of them helps to refine its previous layer by running a feature
construction task. DBN applies a Gaussian restricted Boltzmann
machines (Gaussian RBM) (Hinton, 2012) model to obtain the
featuresʼ conditional distribution. An RBM consists of a visible layer
(a layer of p visible Omics features) and a hidden layer (a layer of g
hidden variable). The Gaussian RBM model assumes that the
conditional distributions of visible variables (Omics features)
given hidden variables follow a Gaussian distribution.

Illustrative Case-studies: Lemon-Tree has been applied to
TCGA glioblastoma expression and copy-number data (Bonnet
et al., 2015). It resulted in a module network composed of 121
clusters of co-expressed genes and a list of prioritized (high-

scored) genes, mostly associated with amplified/deleted regions.
Several of these high-scored genes were already reported as cancer
genes in glioblastoma (including EGFR, PDGFRA, FGFR3,
PIK3CA, MDM4, CDKN2A/B, and PTEN) where all involved
in glioblastoma driver pathways, including proliferation,
apoptosis, and angiogenesis pathways. Besides the well-known
genes, Lemon-Tree could also identify a few novel markers that
have rarely or never studied glioblastoma. For instance, INSR was
involved in several modules. It stimulates cell proliferation and is
aberrantly expressed in cancer cells (Belfiore et al., 2009);
therefore, amplification of INSR in glioblastoma may enhance
proliferation. PAOX (polyamine oxidase) is another novel marker
that might have tumor suppressor activity via amine oxidase
activity and their primary involvement in cancer growth
inhibition and progression (Guzeloglu-Kayisli et al., 2004).
Interestingly, PAOX was biologically relevant based on its
prognostic value via a survival analysis.

CONCLUSION

This paper reviews key methodologies to perform unsupervised
multi-Omics data integration. We grouped the methods into
three categories, including regression/association-based,
clustering-based, and network-based methods. In each
category, we then categorized the methods based on the
statistical approach employed. Each of the methods has also
been assigned to one of the following “macro” categories: (A)
multi-step and sequential analysis (MS-SA), (B) data-ensemble
(DatE), and (C) model-ensemble (ModE) (see Table 1 and
Figure 2).

The majority of multi-Omics integration methods were
applied to cancer data and mainly focused on genome and
transcriptome integration. Therefore, the community needs to
devote more efforts to make more publicly available data sources
with more diverse Omics profiles (such as metabolome) and
environmental/health factors. Many of the reviewed methods use
custom pipelines where combinations of multiple methods are
employed to answer the underlying biological question.
Therefore, many of these methods are highly dependent on
the input Omics data and prior information, making it
difficult to compare these methods.

There are a few benchmarking studies for some of the methods
we reviewed here (mostly clustering methods). For instance,
comparison and benchmarking of unsupervised multi-Omics
clustering algorithms (including, LRAcluster, MCCA, SNF,
PINS, MCIA, moCluster, iClusterPlus) have been performed
using both real data (multiple cancer from TCGA (Rappoport
and Shamir, 2018) and a dataset of kidney renal clear cell
carcinoma patients (Tepeli et al., 2020)), and simulated data
(Pierre-Jean et al., 2020). Network propagation methods have
been compared using multiple non-cancerous data (Picart-
Armada et al., 2019). Graph- and kernel-based integration
methods have been compared using cancer and hypertension
data (Yan et al., 2017).

Future efforts should be directed toward 1) integrating
more various types of data (including Omics, clinical, and
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environmental), 2) integrating into a universal pipeline, and 3)
integrating the a priori biological knowledge into the system.
For instance, in most cases, we have access to quantitative trait
information, which can help to improve the feature’s weight
assignment and prioritization and increase the accuracy of the
prediction/classification tasks. One of the key challenges in
integrating large-scale and heterogeneous Omics data is the
small sample size and, therefore, most of the methods are data-
hungry. One informative way around this issue is to leverage
this extra a priori biological information into the method.
Although it is beyond the scope of this review, many of the
reviewed methods can, in principle, leverage this extra
information. Unsupervised deep learning (DL) methods can
be a good solution for considering the biological structure
among the -Omics data, such as the hierarchical path from
DNA to RNA and further to protein. Therefore, more effort
should be devoted to utilizing DL for multi-Omics data
integration problems with limited (small) sample sizes.
Moreover, as noted in the Introduction, there might be
multiple outcome variables (such as time-to-cure, or cancer-
stage) which are mostly considered one-by-one in the available
methods. Multivariate modeling (i.e., with multiple outcome
variables) of multi-Omics profiles may provide a more realistic
picture than looking at a single outcome, and therefore

provides a more powerful test of significance. Lastly, most
of the reviewed methods are applied on two or three different
Omics modalities, however, in principle/theory, it is possible
to extend these methods for more than 2 modalities, although
the technical issues become more involved.
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