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Numerous gel-based and nongel-based technologies are used to detect protein changes potentially associated with disease. The
raw data, however, are abundant with technical and structural complexities, making statistical analysis a difficult task. Low-
level analysis issues (including normalization, background correction, gel and/or spectral alignment, feature detection, and
image registration) are substantial problems that need to be addressed, because any large-level data analyses are contingent on
appropriate and statistically sound low-level procedures. Feature detection approaches are particularly interesting due to the
increased computational speed associated with subsequent calculations. Such summary data corresponding to image features
provide a significant reduction in overall data size and structure while retaining key information. In this paper, we focus on recent
advances in feature detection as a tool for preprocessing proteomic data. This work highlights existing and newly developed feature
detection algorithms for proteomic datasets, particularly relating to time-of-flight mass spectrometry, and two-dimensional gel
electrophoresis. Note, however, that the associated data structures (i.e., spectral data, and images containing spots) used as input
for these methods are obtained via all gel-based and nongel-based methods discussed in this manuscript, and thus the discussed

methods are likewise applicable.

1. Introduction

One of the major goals for scientists is to identify biomarkers
for patients, thus ultimately providing them with person-
alized medicine. Personalized medicine provides a patient-
specific means by which to target one’s disposition to a
disease or condition. Recent developments in this area
include molecular profiling technologies which may include
metabolomic analysis, genomic expression analysis, and
proteomic profiling. Specifically, within proteomic profiling,
there are several different techniques used to isolate and
quantify the proteins within a subject’s proteome. The raw
data, however, are abundant with technical and structural
complexities, making statistical analysis a difficult task.
“Preprocessing” (including normalization, background cor-
rection, gel and/or spectral alignment, feature detection, and
image registration) is therefore often required to account for
the systematic biases present in the technology and to reduce
the noise in the data. Feature detection (i.e., the detection

and quantification of data features, such as peaks in spectral
data, or spots in two-dimensional images) is a particularly
important component of low-level analysis, because it works
to reduce data size and ease subsequent computations.
Feature detection falls under the general subject of
mathematical morphology (MM), which began in the 1960s
and encompasses methods from statistics, machine learning,
topology, set theory, and computer science [1-4]. MM is
the science of analyzing and processing geometric structures
(e.g., local maxima) in digital images. Examples of common
MM functions include opening, closing, thinning, binning,
thresholding, and watershed techniques. A key component
in MM is the structuring element, that is, the shape used
to interrogate the image. In digital images, the structuring
element scans the image and alters the pixels in the window
content using basic operators. The goal of processing images
with MM methods can be to preserve the global features of
the image, preserve large smooth objects in an image, denoise
images, and detect objects within an image. Situations where



MM methods are employed for detection include pedestrian
detection [5], tumor mass detection [6], and facial feature
detection [7, 8].

1.1. Outline of the Paper. This manuscript outlines feature
detection methods used via data preprocessing, specifically to
detect and quantify the data associated with peptides (or pro-
teins) in various technologies, particularly stemming from
gel electrophoresis or mass spectrometry. Section 2 provides
background regarding proteomic data analysis. Section 3
explains the general importance of low-level analysis proce-
dures to be performed on the raw data. With the focus for this
manuscript being on feature detection, Section 4 discusses
proposed approaches for time-of-flight mass spectrometry
data, while Section 5 discusses recent work with regard
to two-dimensional (2D) gel data. Section 6 concludes the
paper with discussion.

2. Proteomic Data Analysis

Proteomics is the study of the proteome, that is, the entire
complement of proteins expressed by a genome or organism.
From a developmental standpoint, high throughput analysis
in the realm of science began with gene expression microar-
rays [9, 10]. Following the advancements in microarrays,
researchers began to develop high-throughput techniques to
analyze the proteome.

There are strong similarities between microarray and
proteomic data analysis. The overarching biological research
goals are similar, namely, to detect statistically significant
differential expression (with regard to genes for microarrays,
and with regard to proteins in proteomic data) between
samples in different treatment groups. Further, there are
analogous technological ideas and image processing tech-
niques used to produce the image data. There exist, how-
ever, several significant differences that make preprocessing
proteomic data and subsequent proteomic data analysis
complex. Biologically, a major difference between a genome
and proteome is that the genome can be characterized by
the sum of sequences of genomic bases, while the proteome
requires knowledge of the structure of the proteins and the
functional interaction between the proteins. The primary
technical difference between these approaches is the means
by which the data are provided. While spots from microarray
images are arranged in a systematic matrix fashion, protein
spots in a gel image or peaks in protein spectra can be more
variable with regard to their location, given the procedure
that is used to separate proteins. As well, there is a poor
correlation between protein and mRNA abundance and,
while both methods address the question of differential
expression, only proteomic data analysis can also address
differential modification (i.e., where the protein is present in
both treatment groups, yet its makeup is slightly altered via
methylation or phosphorylation).

A nice overview of differential proteomic approaches
is provided in [11], with specific emphasis on mass spec-
trometry approaches and challenges discussed in [12]. In
this paper, we examine the most common approaches used
to analyze protein abundance, namely, two-dimensional gel
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electrophoresis (2-DE) and difference gel electrophoresis
(DIGE), and time-of-flight mass spectrometry (TOF-MS);
tandem mass spectrometry (MS/MS) is also growing in
prominence as a means for studying protein differentiation
and modification. Sections 2.1, 2.2, and 2.3, respectively,
provide further details surrounding these techniques. Mean-
while, nongel-based alternative methods exist for quantita-
tive protein analysis and also make use of MS or MS/MS
for feature detection and quantification. We discuss some of
these approaches in Section 2.4. Table 1 summarizes method
comparisons.

2.1. Two-Dimensional Gel Electrophoresis. Analysis of quan-
titative changes in a specific proteome (i.e., complement
of proteins expressed in a particular tissue or cell at a
given time) is commonly carried out using two-dimensional
gel electrophoresis (2-DE). O’Farrell [13] introduces two-
dimensional polyacrylamide gel electrophoresis (2D-PAGE),
where protein samples are respectively dyed with a cyanine
dye (e.g., Cy2, Cy3, or Cy5) and separated in two directions:
along the Cartesian x-axis by their isoelectric point (pI)
via isoelectric focusing, and along the Cartesian y-axis
by their molecular weight via sodium dodecyl sulphate
polyacrylamide gel electrophoresis (SDS-PAGE). The 2D-
PAGE technique can be very sensitive to experimental
conditions such as laboratory humidity, voltage fluctuations,
and gel matrix irregularities. Unlii et al. [14] suggest an
alternative design (namely, the two-dimensional difference
gel electrophoresis, or 2D-DIGE approach) to combat some
of the inherent data variability that exists in the 2D-PAGE
method. Here, after the respective samples are labeled with
a particular dye, the samples are then mixed together to
create one composite sample where the proteins are, in
turn, separated in both directions as described above. In
either case, the associated gel(s) is subsequently imaged via
a charged-couple device (CCD) camera or a variable mode
scanner to produce the raw image data, where the proteins
appear as spots; see, for example, Figure 1. These images are
then analyzed using an image analysis software tool (e.g.,
ImageMaster, PDQuest).

2-DE methods such as 2D-PAGE and 2D-DIGE are
popular techniques for protein separation because they
allow researchers to characterize quantitative protein changes
on a large scale. Thus, 2-DE is frequently used as an
initial screening procedure whereby results obtained generate
new/subsequent hypotheses and determine the direction of
ensuing studies. These technologies revolutionized the field
of proteomics in their ability to detect protein differences
via spot detection and quantification, either with respect to
protein expression or modification. Further, they are attrac-
tive because of their resolving power, sensitivity, and the low
equipment cost. 2-DE analyses, however, require personnel
with significant wet laboratory expertise and can be time-
consuming, thus potentially limiting the sample size for
gels. Furthermore, in some cases (e.g., aging studies, chronic
drug treatment, screening for biomarker), replication of
the study may be prohibitive. Heterogeneities in different
gels, the electric fields, pH gradients, thermal fluctuations,
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TaBLE 1: Comparison table of gel-based and non-gel-based methods for proteomic data analysis. This table highlights some benefits and
drawbacks to many popular technological approaches in analyzing protein samples. GB and NGB, respectively, denote the associated

technique as gel-based or non-gel-based.

Analysis Method Benefits

Drawbacks

1. DIGE minimizes gel-to-gel variation

[\

. DIGE produces better spot matching

1. low-abundant protein identification
2. sensitive to experimental and technological

2-DE-MS and DIGE-MS variation
(GB) 3. allows for study of protein change on large scale 3. laborious process
4. strong resolving power 4. difficulties automating procedure
5. high sensitivity 5. protein comigration
6. low equipment cost 6. study replication may be prohibitive
1. fast procedure 1. difficulty analyzing low-abundance proteins
2. easily automated high resolution 2. not quantitative

LC-MS and LC-MS/MS

(GB) measurements 3. Expensive machines
3. MS/MS improves the detection limits for some 4. MS/MS spectrum TIC decreased compared to
compounds MS spectrum TIC
4. MS/MS improves S/N ratio relative to MS >- lon activation methods affeF tspectra efficiency,
reproducibility, feature detection
1. accurate relative quantification 1 missed identiflicatior} of pr.oteins co.ntaining
. . . little to no cysteine residue (i.e., cysteine-content
2. reduces peptide mixture complexity biased)
ICAT (NGB) 3. compatible with various fractionation methods 2. posttranslational modifications missed
4 at least as sensitive as DIGE 3.. cqmplex interpretation of MS/MS spectra when
biotin group added
4. noise impacts peak detection for ICAT peaks
with low expression levels
5. compounds may dilute through LC column at
different speeds
e 1. occasional inherent problem due to timed-ion
iTRAQ (NGB) L. greater sensitivity than DIGE and ICAT selector resolution of tandem mass spectrometer

2. can perform relative or absolute quantification

in four phenotypes

2. compounds may dilute through LC column at
different speeds

1. orthogonality of the chromatographic phases in

the separation process
MudPIT (NGB)

peptides, from complex peptides

2. robust representation of separated proteins

1. does not allow for identification of the site at
which probe labeling occurs

2. since the proteins are broken down to their
component, any information about modifications
and isoforms is lost.

3. large computing power required to complete
database searching

4. the approach is generally limited to use with
organisms that have complete genome sequence
data available for searching

and so forth are all factors that make reproducible spot
matching between gels a difficult task. As well, scientists
are interested in better tools that allow for a completely
automated approach to detect protein changes, particularly
in low-abundance proteins. These factors not only make it
critically important to correctly analyze the 2-DE results,
but also to maximize the information obtained from an
experiment.

2.2. Mass Spectrometry. Mass spectrometry is an analytic tool
used to identify proteins, where the associated instrument
(a mass spectrometer) measures the masses of molecules
converted into ions via the mass-to-charge (m/z) ratio. This

technology can be used to profile protein markers from
tissue or bodily fluids, such as serum or plasma in order
to compare biological samples from different patients or
different conditions. Matrix assisted laser desorption and
ionization—time of flight (MALDI-TOF) is a popular tool
used by scientists, where a metal plate with the matrix
containing the sample is placed into a vacuum chamber
that is excited by a laser, causing the protein molecules to
travel (or “fly”) through the tube until they strike a detector
that records the time-of-flight for the various proteins under
study; surface enhanced laser desorption and ionization—
time of flight (SELDI-TOF) is an analog of MALDI-TOFE.
The interested reader is referred to [15] for discussion
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FIGURE 1: 2-DE Image: Example of a two-dimensional gel electrophoresis image associated with a particular cyanine dye and light source.
Various sources of noise can exist in this image, including general background noise, dust, streaks, and so forth. Further, issues such as
low-lying spots and overlapping spots can make spot detection and quantification difficult.
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FIGURE 2: Mass Spectrometry: The spectrum contains various kinds
of noise that must be addressed via low-level analysis techniques.
The focus of this paper addresses peak detection and quantification
from such spectra.

regarding the experimental design that creates the data,
and elaboration on the MALDI and SELDI constructs.
The resulting data are spectral functions containing the
m/z ratio and associated intensity, where the peaks in the
spectral plots correspond to proteins (or peptides) present
in the sample; see Figure2 for an example of a MALDI
spectrum. The appeal of mass spectrometry lies in its ability
to produce high-resolution measurements with reasonable
reproducibility. These procedures generate large amounts of
spectral data and can detect protein differential expression
and modification in different treatment groups. Noisy data,
however, can lead to a high rate of false positive peak
identification. This is a significant issue when working to
establish an unbiased, automated approach to detect protein
changes, particularly in low-abundance proteins.

2.3. Tandem Mass Spectrometry. Tandem MS (MS/MS) is
an extension of the MS procedure that allows for further
fragmentation of protein mixtures. The setup for such a
procedure can be physical where two mass spectrometers are
assembled in tandem, or the machine may have the ability to
store the ions of interest to run the subsequent separation.

As a result, the second arrangement allows for continued
subsequent operations to be performed. There are various
experiments that warrant the use of MS/MS, including
product-ion scans, precursor-ion scans, constant neutral-
loss scans, and selected reaction monitoring. Product-
ion scans determine the product ions that result from
decomposing the protein mixture. This experiment is the
most common MS/MS experiment [16]. The precursor-ion
scan can be thought of as solving the inverse equation,
namely, determining the original mixture that could produce
the specified product ions. This is useful for determining
the makeup of a protein mixture. Constant neutral-loss
scans searches for spectra pairs that differ by a constant.
This serves to help identify the characteristic mass associ-
ated with a protein mixture. Selected reaction monitoring
focuses on a preselected mass to identify the makeup of
a protein mixture via the use of the associated product
or precursor masses. Just as there are various uses for the
MS/MS technology, there exist a wide variety of tandem-
mass spectrometers, including reverse-geometry MS, triple
quadrupole MS, trapped-ion MS, and MALDI-TOF MS/MS;
see [16] for details.

MS/MS is valued by scientists for its ability to detect
compounds in mixtures. In particular, MS/MS improves the
detection limits for some compounds, and improves the
signal-to-noise ratio relative to MS. On the other hand,
however, the total ion current associated with an MS/MS
spectrum is decreased compared to that from a MS spectrum.
Further, various ion activation methods affect the efficiency,
reproducibility, and feature detection of the associated mass
spectra. For a detailed description of the MS/MS procedure
and associated technologies, see [16] or [17].

2.4. NonGel-Based Methods. Non-gel based methods exist as
an alternative for analyzing highly complex protein samples,
for example, Multidimensional Protein Identification Tech-
nology (MudPIT), isobaric Tag for Relative and Absolute
Quantitation (iTRAQ) and Isotope Coded Affinity Tags
(ICAT). All of these technologies incorporate the use of MS
or tandem MS (MS/MS) to analyze such mixtures.
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Multidimensional protein identification technology
(MudPIT) analyzes proteomic data by first separating
peptides via two-dimensional liquid chromatography,
and then detecting protein information using a tandem
mass spectrometer. Strengths of this methodology include
the orthogonality of the chromatographic phases in
the separation process, and its robust representation of
separated proteins from complex peptides. Thus, MudPIT
is used for a wide range of proteomics experiments, from
protein identification and protein cataloging, to quantitative
analysis of protein expression. See [18] for an overview of
this technology.

Isotope-coded affinity tag (ICAT) is a gel-free, LC-based
method for analyzing proteomic data that obtains accurate
measurements of protein change, and can analyze sufficient
amounts of low-abundance proteins. In the ICAT method,
two samples are respectively labeled with either a heavy (i.e.,
with isotope) or light (without isotope) reagent. The samples
are then mixed together and run through an MS or MS/MS
machine. The interested reader is referred to [19, 20] for
details regarding the ICAT procedure. While this technology
provides an accurate measure of relative quantification, it
has its share of drawbacks as well. Proteins with little to no
cysteine residue are not detected, information can be lost
regarding posttranslational modification, and interpreting
MS/MS spectra can be difficult because of the addition of
the biotin group [20]. Nonetheless, ICAT is a commonly
practiced method for analyzing proteomics data.

Isobaric Tag for Relative and Absolute Quantitation
(iTRAQ) is a nongel-based alternative to the ICAT method
for identifying and quantifying proteins from different
samples, having the ability to perform relative or absolute
quantification in four or eight phenotypes [21]. The samples
are pooled together, and analyzed via MS/MS. Wu et al. [20]
found that iTRAQ was more sensitive than DIGE and ICAT
with regard to quantitation, but also more prone to errors
when performing ion isolation. Gan et al. [21] argue for the
use of replicate and pooling samples in iTRAQ studies. By
decomposing the overall variation in iTRAQ experiments as
either technical or biological, they find that the biological
variation outweighs the technical variation in the data, and
propose including at least one biological replicate in any
iTRAQ experiment.

3. Low-Level Analysis

Various types of noise in the data make protein identification
and quantification a difficult problem. Several solutions
have been proposed to resolve these issues, yet they remain
open problems because of substantial limitations associated
with these approaches. Similar to the methods used to
analyze gene expression microarrays, the general steps in
preprocessing proteomic data include outlier detection,
baseline or background subtraction, signal distribution nor-
malization, protein (or peptide) alignment, feature (i.e., peak
or spot) detection and quantification, and biomarker eval-
uation. Concerns regarding these procedures are significant
because all subsequent analyses relating to the proteomics
data are contingent on these first steps being performed

appropriately and optimally. The implications from different
pre-processing pipelines are outlined in [22]. Thus, the goal
in preprocessing proteomic data is to create an unbiased,
reproducible, and automated approach toward identifying
differentially expressed and modified proteins, via either spot
or peak information differences.

Many of these low level analysis methods are directly
integrated into the software that accompanies the mass
spectrometer or gel imaging scanner. For example, the
DeCyder 2D Differential Analysis software and ImageMaster
2D softwares (all available through GE Healthcare) are
often purchased in combination with the 2D gel scanners.
Similarly, other commercial softwares available for gel image
analysis include PDQuest (Bio-Rad Laboratories), Progene-
sis SameSpots V3.0 (Nonlinear Dynamics), and Dymension
3 (Syngene). In [23, 24], these softwares are analyzed
and compared on several levels including consistency, spot
matching accuracy, and spot quantitation. Other softwares
and preprocessing methods such as Z3 and Melanie are
analyzed and compared in [25-27]. Note, all softwares
require user intervention to set parameters and filter settings
in order to obtain the optimal preprocessing of the gel image
data; this limits the ability for an automated procedure using
existing methods. Meanwhile, there are several softwares for
preprocessing MS data that are also generally combined with
the associated technology. The preprocessing methods in
these softwares are often specific to a particular MS structure
with algorithms that differ greatly in complexity. Recently,
many of the MS preprocessing algorithms have become
available to the statistics community through the Biocon-
ductor open source software of R libraries [28, 29]. For
example, the Bioconductor packages “MassSpecWavelet,”
“xcms,” “flagme”, and “TargetSearch” all offer various
methods to compare and analyze MS-based datasets
[30-33].

While the nongel procedures differ in their protocol,
the common denominator with all of these methods lies in
their subsequent analysis via MS (or MS/MS). Particularly
for ICAT and iTRAQ, they differ only in the number of
labeling reagents used, and the distance between and within
groups (i.e., peak pairs or groups, depending on the use
of the ICAT or iTRAQ method, resp.). Low-lying peaks,
however, still remain a problem in that (e.g., with ICAT
data) it hinders identification of peak pairs. For both ICAT
and iTRAQ data acquired via LC-MS, “different compounds
may dilute through the LC column at different speeds” [34],
thus hindering the ability to identify peak pairs/groups.
This further emphasizes the need for accurate and precise
peak/feature detection methods for data stemming from MS
and MS/MS technologies.

4. Recent Peak Detection in Mass Spectrometry

Proposed procedures for feature (peak) detection in MS data
range greatly in algorithm complexity. Although, parsimo-
nious methods should be favored, different variations of
the MS technology (e.g., SELDI-MS and MALDI-MS) can
require more complex methods to account for systematic
biases.



Methods described in [35, 36] take the maximum value
within the kth nearest neighbors to determine the location
of a peak. Yasui et al. [35] apply this approach to preprocess
the raw data into local peak/nonpeak binary data. In order
to diminish the number of false positives that arose from
their choice of k = 20, they further define a peak as having
an intensity value larger than the average intensity level over
a “broad neighborhood” as defined via the super-smoother
method with five percent of all data points as the associated
smoothing window. Fushiki et al. [36] instead use k =
10 after considerable data preprocessing (including baseline
correction, averaging the spectra, and spectral alignment via
peak matching). Their choice for a smaller k better aids in
their ability to select peaks that are detected across spectra.
Fushiki et al. approach the problem in this manner, because a
peak detected in only one spectrum could arguably represent
noise, while common peaks across patients may infer the
existence of a true biomarker of interest.

Coombes et al. [37] establish a simple peak finding
(SPF) algorithm for peak detection in one mass spectrum,
where they use a change in slope (via first differences)
to detect peaks in SELDI-TOF data. The median absolute
value of the first differences is then used to determine the
amount of noise in the data, and serves as a threshold for
determining what peaks appear to be small enough that they
actually represent noise as opposed to true signal. Nearby
peaks that fall within a nearness threshold are combined
to represent one peak, and the associated peak locations
are redefined as the nearest local minima surrounding
the local maximum. Finally, the upward and downward
slopes are computed for all peaks to quantify peak size and
remove small peaks that appear to represent noise. While
the SPF algorithm can identify peak location, Coombes
et al. [37] warn against solely using this algorithm for
peak quantitation as the resulting peak intensity values
are not baseline-corrected; however it is sufficient for
identifying peak locations. To address peak detection in
multiple spectra, they also build from the SPF algorithm to
define a simultaneous peak detection and baseline correction
(SPDBC) algorithm. The SPDBC algorithm, however does
not necessarily identify the same peaks across all spectra.
Further, while both algorithms adjust for noise, it still poten-
tially overestimates the number of real peaks in a spectrum
depending on the user’s determination of certain parameter
settings. See [37] for details regarding the SPF and SPDBC
algorithms.

Coombes et al. [38] and Morris et al. [39] advocate using
an undecimated discrete wavelet transform (UDWT) with
hard thresholding to perform peak detection. The UDWT
can efficiently separate the signal from noise in the wavelet
domain. Coombes et al. [38] perform the UDWT with hard
thresholding—transform the data from the time domain to
the wavelet domain, set all resulting wavelet coefficients equal
to zero that are less than some predetermined threshold, and
then transform back into the time domain. This preprocessed
data is then baseline-corrected and run through the SPF
algorithm described in [37] to locate all peaks in the
spectrum. This way, all local maxima are detected. Morris
etal. [39] also use a UDWT to perform peak detection but via
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the mean spectrum. Adapting the algorithm of [38], Morris
et al. [39] compute the mean spectrum over all calibrated
raw spectra, and apply the essence of the algorithm in [38]
to the mean spectrum to denoise, baseline correct, and find
peaks. Performing peak detection on the mean spectrum
implies increased sensitivity, particularly with regard to low-
lying peaks. This algorithm also detects and quantifies peaks
without the need for peak-matching algorithms to be applied
across samples, because this is addressed inherently through
the use of the mean spectrum.

Du et al. [30] create a one-dimensional feature detection
algorithm based on the one-dimensional continuous wavelet
transform (1D-CWT) to detect peaks in mass spectrometry
data. In [30], the 1D-CWT is applied to the raw spectral
data thus moving from the time to wavelet domain (using
the Mexican Hat wavelet as the mother wavelet), and CWT
coefficients are obtained associated with corresponding
scales, thus forming a coefficient matrix where, for each
scale level, the associated CWT coefficients are maximized
at the peak center. This matrix is then visualized via a
false color image, matching the ridges in the image to the
peaks in the mass spectrum to provide information on how
the associated coefficients change across scales. The false-
color image ridges correlate well with the spectral peaks,
thus providing an alternative approach and visualization
tool toward peak detection. The appeal of this approach
is its ability to reduce the false positive rate with regard
to peak detection and also its lack of dependence on any
previous or subsequent preprocessing steps, thus improving
the robustness of the results. Assuming a slow-changing,
locally monotonic baseline in the spectrum allows for the
1D-CWT to be applied directly to the raw spectrum, and thus
there is no need for additional preprocessing to be applied.

Statistical technologies have also been developed for
use with MS/MS data or other non-gel-based methods
described in Section 2.4, for example, prolCAT, SEQUEST,
INTERACT, or Hardklor [40]. See von Haller et al. [41], Wu
et al. [34], and Hoopmann et al. [40] for details on these
respective approaches.

5. Recent Spot Detection in
Two-Dimensional Gel Electrophoresis

A variety of low-level analysis algorithms exist to summarize
information from 2-DE data. Below we focus on three recent
algorithms that incorporate or focus on spot detection in gel
images.

Srinark et al. [42] have an elaborate, seven-step algorithm
for feature detection, including region segmentation, region
filtering, spot extraction, centroid estimation, spot merging
or splitting, spot filtering, and centroid reestimation. Using
the watershed algorithm for initial segmentation, the regions
are filtered to focus on regions of reasonable size or variabil-
ity. The authors then apply k-means clustering to each region
to differentiate foreground from background pixels, and
apply morphological closing to remove noise. The authors
then determine an initial spot center estimate for each region,
and then reevaluate the initially determined spots via spot
splitting and merging to address oversegmentation caused
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by the watershed procedure. Finally, the algorithm performs
another spot filtration procedure to remove features (e.g.,
dust) from future analysis, and spot centers are reestimated
via a 2D Gaussian function. The use of the 2D Gaussian for
spot center estimation can be disputed, given that it has long
disputed that protein spots are not accurately modeled by
a Gaussian distribution. While the algorithm is apparently
robust when applied to geometrically distorted simulated
images, it has difficulties when applied to real gels, due to
difficulty in handling images with differing illuminations,
noise, and irregular spot structures; see [42] for details.

Langella and Zivy [43] have established an interest-
ing algorithm that uses image topography to determine
spot location and size. In this algorithm, one envi-
sions beads placed at each pixel location within the
image, and tracks each bead’s progression in the direction
of maximal positive slope toward an associated spot’s
maximum. The associated computer code, available at
http://moulon.inra.fr/beads/beads.html, supplies the final
image illustrating spot boundaries, along with intermediate
grayscale images, including the paths of maximal slope for
each respective bead associated with pixel locations in the
original image (DIRECTIONS), the number of beads that
arrive at each respective location (BEADS), the number of
beads that travel through respective pixel locations (PATHS),
and possible spot center locations (SELECT). Further, the
PROBABILITIES image shows a bivariate normal distribu-
tion applied at every positive pixel in the SELECT image to
aid in final assessment of spot locations, and NUMBERS con-
tains number codes at pixel locations for spot identification
and size quantification. This algorithm seems to perform well
in simulated gels, but faces difficulties with regard to diffuse
or saturated spots. Further, this algorithm does not account
for spot matching and, thus, cannot be used for comparative
analysis across gels; see [43] for details.

Miecznikowski et al. [44] apply a (hyper-)crossical-
shaped structuring element (i.e., shaped like a multidimen-
sional cross) of varying size to an image (creating a “Smooth”
image), and use the smoothing decomposition, Data =
Smooth + Rough to determine the associated residual (i.e.,
“Rough”) image. This structuring element with arm-size c is
combined with a median operation over the pixels within
the cross shaped window. When the median operation is
applied to the preprocessed image (as described in [45]),
the associated residual image contains crosses whose centers
are the local maxima. Focusing our attention on the rough
image, [46] isolates the positive intensities and applies
mathematical morphology (erosion and dilation) to remove
the noise and heighten the presence of the crosses. The
nonlinear nature of the median operator allows this method
to detect proteins of low intensity as well as nearby proteins
within a gel. Thus, with this method we have a means to
identify spot centers and estimate spot sizes; see [44, 46] for
details.

Other spot detection procedures include modeling 2D-
Gaussians, applying diffusion equations, linear program-
ming, and wavelet modeling as described in [47]. The use
of 2D-Gaussians, however, is disputed due to the knowledge
that spots can be oddly shaped, and thus cannot be accurately

represented via a 2D-Gaussian model. Ultimately, it is
difficult to obtain the algorithm details for many of the
proprietary softwares that are marketed in the industry. This
severely limits the ability to understand exactly the feature
detection methods employed to locate and quantify spots in
a gel image.

6. Discussion

Experiments utilizing the described proteomic platforms
have the general goal of deriving knowledge of the biological
system. Through the experiments utilizing these platforms,
the formal hypotheses are tested on the basis of the
experimental data. Common hypotheses to examine include
differential expression, cluster analysis, association with a
phenotype, and correlation with survival (or other censored
variables). There are standard statistical methods designed
to handle each of these situations; for example, see [48] for
details. With all of these platforms, consideration should
be given to the issue of multiple testing. In proteomic
experiments, multiple testing can arise when (1) examining
thousands of peptides for differential expression, (2) testing
a peptide against several different contrasts, or (3) examining
the significance of groups of peptides for association with
a given phenotype. In these situations, scientists need to
choose a Type I error rate and a method to control it.
Guidance for these choices is provided in [49, 50]. The
statistical aspects and the assumptions underlying the choice
of error rate and control method are often critical to the
success of proteomic experiments.

Before we can tackle such high-level analyses, we must
first have sufficiently and satisfactorily determined the
appropriate data summary information to address these
problems. This matter, however, has not been addressed so
that a uniform procedure is established and accepted. This
demonstrates the significance of low-level analysis! Biological
and medical communities have not uniformly accepted a
low-level analysis procedure for preprocessing proteomics
data and thus have many available methods from which
to choose for performing low-level analysis of such data
structures. Proteomic technologies are not based on the
hybridization of complementary DNA strands, hence it is
not possible to engineer quality control experiments for
proteomic data as it is for microarrays. Further, sample
preparation, starting materials, and reagents and differences
in MS machines and gel imagers have contributed to the
wide variability in the data; for example, the sensitivity of the
techniques to specimen collection and handling is an issue
[51]. Similar to the situation with preprocessing algorithms,
inconsistent sample preparation and handling can lead to
spurious results and conclusions. Further confounding the
problem is that many of the methods to analyze MS and
gel data are proprietary, and thus not fully disclosed, while
the field lacks a suitable “gold standard” to fully evaluate
the available methods. These aspects of analyzing proteomic
data are difficult to simulate and thus there is a need for a
comprehensive set of experiments that can accurately assess
each aspect of the data analysis pipeline in gel-based and
non-gel-based experiments.



None of these procedures are fully automated as they
generally require additional user input to determine thresh-
olding parameters or local window ranges for consideration.
Further, these input parameters can influence each stage
in the sequence of preprocessing steps. Algorithm results
are generally inconsistent and unrecoverable, which causes
great concern on its impact on the determination of
scientifically significant proteins. As noted in [52] regarding
mass spectrometry data, different preprocessing algorithms
could severely affect downstream analyses, and so the choice
of procedure must be approached carefully; the same is true
for two-dimensional gel electrophoresis data, non-gel-based
data or, more generally, any image or spectral data.

Another challenge for scientists that further complicates
the field’s ability to establish a generally-accepted prepro-
cessing approach is its ability to detect “small” proteins,
that is, proteins that are present in low abundance but are
differentially expressed or modified. The high-abundance
proteins with large peaks are generally uninteresting as they
are already extensively studied for their ability to serve as
biomarkers. Currently, researchers are searching for the more
elusive, low-abundance proteins. For example, in cancer
biomarker research, studies commonly attempt to quantify
proteins or metabolites that are shed into the blood stream
by the tumor (see, e.g., [53, 54]). These proteins are present
in relatively low abundance, and thus are represented in mass
spectra by small or low-lying peaks, and analogously in gel
data as low-lying or faint spots; however, they represent a
promising set of biomarkers in cancer diagnosis. Many such
peaks are usually undetected because of the signal-to-noise
ratio, leading to larger false negatives. For example, in ICAT
studies, noisy data hinder low-lying peak detection, and thus
the identification of associated peak pairs [34]. This is a
significant problem for scientists since it limits their ability
to detect and evaluate potential biomarkers and peptides.

So, which approach is “best” for preprocessing proteomic
data according to the respective methodology? Model accu-
racy, false discovery rates, the ability to detect low abundance
protein peaks, and the user intervention required of the
procedures are significant factors that play a role in address-
ing this question. These significant and substantial factors
influencing preprocessing techniques for proteomic data
therefore make this question difficult (if not impossible) to
answer without a large, cohesive effort across the proteomics
and statistics communities. Only through such an endeavor
can we truly make significant forward movement toward a
generally accepted approach for data analysis.
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