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1  | INTRODUC TION

Ovary cancer (OV) is one of the most common gynaecological tumours 
with the fourth highest morbidity and the third highest mortality 

worldwide.1 In China, the mortality rate of OV ranks second in gy-
naecological tumours and shows an upward trend while the incidence 
rate keeps declining.2 Due to poor prognosis, the proportion of female 
deaths caused by OV is greater than that of female cancers caused 
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Abstract
Ovarian cancer (OV) is one of the leading causes of cancer deaths in women world-
wide. Late diagnosis and heterogeneous treatment result to poor survival outcomes 
for patients with OV. Therefore, we aimed to develop novel biomarkers for prog-
nosis prediction from the potential molecular mechanism of tumorigenesis. Eight 
eligible data sets related to OV in GEO database were integrated to identify dif-
ferential expression genes (DEGs) between tumour tissues and normal. Enrichment 
analyses discovered DEGs were most significantly enriched in G2/M checkpoint 
signalling pathway. Subsequently, we constructed a multi-gene signature based on 
the LASSO Cox regression model in the TCGA database and time-dependent ROC 
curves showed good predictive accuracy for 1-, 3- and 5-year overall survival. Utility 
in various types of OV was validated through subgroup survival analysis. Risk scores 
formulated by the multi-gene signature stratified patients into high-risk and low-risk, 
and the former inclined worse overall survival than the latter. By incorporating this 
signature with age and pathological tumour stage, a visual predictive nomogram was 
established, which was useful for clinicians to predict survival outcome of patients. 
Furthermore, SNRPD1 and EFNA5 were selected from the multi-gene signature as 
simplified prognostic indicators. Higher EFNA5 expression or lower SNRPD1 indi-
cated poorer outcome. The correlation between signature gene expression and clini-
cal characteristics was observed through WGCNA. Drug-gene interaction was used 
to identify 16 potentially targeted drugs for OV treatment. In conclusion, we estab-
lished novel gene signatures as independent prognostic factors to stratify the risk of 
OV patients and facilitate the implementation of personalized therapies.
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by OV in all malignancies in the United States.3 The main reason for 
these observations is that more than 70% cases with OV are not di-
agnosed until the tumour has progressed to advanced stages (stage 
III–IV; International Federation of Gynecology and Obstetrics, FIGO).4

At present, effective screening test for early OV detection has 
not been accessible. Biological markers such as the carbohydrate an-
tigen 125 (CA125) and human epididymis protein (HE4) are widely 
used in clinical diagnosis.5-7 However, the serum CA125 level is not 
specific for OV because its elevation may result from menstrua-
tion, benign gynaecological diseases and other cancers in spite of 
high sensitivity.8 On the other hand, HE4 has reliable specificity but 
poor sensitivity.5,9 What's more, the prognosis cannot be predicted 
although the combination of these biomarker levels improves diag-
nostic accuracy. Therefore, it is necessary to explore gene signatures 
associated with prognostic prediction from the potential mechanism 
of OV progression.

The G2/M DNA damage checkpoint serves to prevent the cell 
with DNA damage from entering mitosis (M-phase) during cell cycle.10 
In most tumours, upstream G1/S checkpoint is inactivated due to 
the loss of function of tumour suppressor genes, which strengthens 
their survival ability. Meanwhile, it means that tumour cells mainly 
rely on the G2/M checkpoint to avoid factors that disrupt genome 
stability. Furthermore, previous researches have shown robust cor-
relations between G2/M cell cycle arrest and prognosis for multiple 
cancers, including OV.11-13

Nevertheless, survival varies by category of OV. Epithelial can-
cers are the most common OV types.3 Serous carcinoma, the most 
common epithelial subtype by histological classification, is mainly 
diagnosed at late stage and possesses aggressive nature of high 
grade.14 Both advanced stage and high grade are important factors 
associated with worse prognosis.15,16 Prognostic predictors need to 
be further developed, especially for patients with these poor out-
come indicators. Previous studies have identified several potential 
genes for predicting the prognosis of OV but their comprehensive-
ness and clinical application remain limited.17-19 In this study, we 
discovered that differential expression genes (DEGs) between tu-
mour and normal tissues were most significantly enriched in G2/M 
checkpoint signalling pathway based on the several data sets in the 
Gene Expression Omnibus (GEO) and The Cancer Genome Atlas 
(TCGA) data sets. The multi-gene and single-gene signatures were 
constructed on genes related to G2/M checkpoint and validated in 
cohorts of OV patients.

2  | MATERIAL S AND METHODS

2.1 | Data collection

We searched for data sets related to OV from the GEO database 
(http://www.ncbi.nlm.nih.gov/geo/) with the Mesh terms ‘ovary 
neoplasms’ and ‘human’. A further filter was performed with or-
ganism ‘Homo sapiens’, study type ‘Expression profiling by array’ 
and samples count ‘Higher than ten’. According to the systematic 

screening strategy, a total of eleven data sets were eventually in-
cluded in this study. Eight data sets were used to screen DEGs, in-
cluding GSE105437, GSE54388, GSE69428, GSE14407, GSE12470, 
GSE4122, GSE10971 and GSE26712. GSE23554, GSE14764 and 
GSE63885 were applied at the validation stage. Twenty-six sam-
ples from GSE63885 with incomplete survival data were removed. 
Detailed information was shown in Table 1. Raw data were pro-
cessed with robust multi-array average expression measure (RMA) 
background correction, log2 transformation and normalization. 
Moreover, expression profiling and clinical information of the sam-
ples with complete prognostic data were downloaded from the 
TCGA-OV data set (https://cance rgeno me.nih.gov/). The gene list 
of hallmark gene sets ‘HALLMARK G2M CHECKPOINT’ was down-
loaded from the Gene Set Enrichment Analysis (GSEA) database 
(http://softw are.broad insti tute.org).

2.2 | DEGs identification

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) was used to de-
tect DEGs in each GEO data set. P values and log fold change (FC) of 
duplicate genes were averaged based on the ‘limma’ package in R.20 
Significant DEGs were defined as those with adjusted P < .05 and 
|log FC| ≥ 1 and were ranked by the logFC in each microarray data 
set. The results of eight series accessions were integrated through 
the ‘RobustRankAggreg (RRA)’ R package to select the most signifi-
cant DEGs.21

2.3 | Enrichment analyses

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Gene 
and Genomes (KEGG) pathway analyses were conducted using 
Metascape (http://www.metas cape.org/), a powerful annotation 

TA B L E  1   Characteristics of GEO data sets included in the study

Data set ID
Platform 
ID Country

Number of samples

Tumour Normal

GSE105437 GPL570 South Korea 10 5

GSE54388 GPL570 USA 16 6

GSE69428 GPL570 USA 10 10

GSE14407 GPL570 USA 12 12

GSE12470 GPL887 Japan 43 10

GSE4122 GPL201 USA 32 14

GSE10971 GPL570 Canada 13 24

GSE26712 GPL96 USA 185 10

GSE23554 GPL96 USA 28 -

GSE14764 GPL96 Germany 80 -

GSE63885 GPL570 Poland 101 -

Abbreviations: GPL, Gene Expression Omnibus Platform; GSE, Gene 
Expression Omnibus Series.

http://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
http://software.broadinstitute.org
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.metascape.org/
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tool for gene function analyses.22 We also performed enrichment 
analysis using the hallmark gene sets as the reference gene set. In 
addition, protein-protein interaction (PPI) enrichment analysis was 
carried out. The Molecular Complex Detection (MCODE) algorithm 
was applied to identify densely network components.

2.4 | Gene set enrichment analysis (GSEA)

We utilized javaGSEA 4.0.3 to perform GSEA within the above mi-
croarray data to analyse the difference between tumour and normal 
tissues. The most significant hallmark gene set in the enrichment 
analysis was selected as the reference gene set.

2.5 | Construction of the prognostic gene signature

The genes in the hallmark gene set ‘HALLMARK G2M CHECKPOINT’ 
in which the DEGs were enriched most significantly were considered 
as candidate biomarkers. LASSO (least absolute shrinkage and selec-
tion operator) Cox regression model was used to construct multi-
gene signature for predicting OV prognosis from these candidate 
biomarkers.23 Based on the ‘glmnet’ R package, the model was ap-
plied to the expression matrix of candidate genes and the optimal 
value of the penalty parameter λ was selected to calculate the coef-
ficient of each gene constituting prognostic signature. The sum of 
the product of these coefficients and gene expression for each sam-
ple, defined as the risk score of the prognostic gene signature, was 
used to evaluate the prognostic risks.

2.6 | Prognostic value estimation of the multi-
gene signature

TCGA-OV cohort was considered internal set, and GSE26712, 
GSE63885 and GSE14764 were deemed external sets for prognos-
tic value estimation. The samples from each data set were divided 
into high-risk and low-risk groups according to the median risk 
score. Then, Kaplan-Meier (KM) survival analysis was performed 
to estimate prognostic value of the gene signature. The prediction 
accuracy was assessed through time-dependent receiver operat-
ing characteristic (ROC) curves and area under the curve (AUC) for 
1-year, 3-year and 5-year overall survival.24 Furthermore, subgroup 
analysis was conducted to determine independence of prognostic 
model from other clinicopathological features. The samples from 
GSE14764, GSE23554, GSE26712 and GSE63885 were integrated 
and stratified into various subgroups according to clinicopathologi-
cal characteristics. In terms of residual tumour, patients were di-
vided into residual tumour <1 cm and residual tumour ≥1 cm. Given 
the pathological grade, histology and chemotherapy, we selected 
the most common subtypes: high grade, serous carcinoma and re-
sponse to chemotherapy. KM survival analysis was performed to 
examine prognostic significance in each subgroup. Comparisons 

between our G2/M checkpoint-related multi-gene signatures and 
other biomarker-based models19,25 were conducted with univariate 
Cox regression analysis and were assessed by the concordance index 
(C-index) in the internal and external sets. The average C-indices 
weighted by sample sizes were regarded as the representative ones 
of three external sets. The larger C-index indicated the more accu-
rate prognostic prediction.

2.7 | Multivariate Cox regression analysis

Clinicopathological variables and risk score were included in mul-
tivariate Cox regression to determine which were significant prog-
nostic factors. The result was shown in a forest plot using the 
‘forestplot’ package in R. According to the regression coefficient, 
every independent variable corresponded to a point at each value. 
A total point was equal to the sum of the points of all independ-
ent variables for each patient. The relationship between the total 
points and the probability of the outcome event was visualized on 
the nomogram to predict 1-year, 3-year and 5-year overall survival 
through the ‘rms’ and ‘regplot’ R package. The performance of the 
nomogram was measured by C-index with 1000 bootstrap resa-
mpling for a relative correction. Calibration curves for 3-year and 
5-year survival were subsequently drawn to investigate the close-
ness between nomogram-predicted overall survival and the actual 
outcome. Diagonal considered as a reference represents the best 
prediction.

2.8 | Prognostic values estimation of single-
gene signatures

From the multi-gene signature, we selected the genes with prognos-
tic significance and closely related to risk stratification in the TCGA 
cohort as simplified signatures for prognosis prediction. Differences 
in expression levels between OV and normal tissues were investi-
gated based on the Gene Expression Profiling Interactive Analysis 
(GEPIA) (http://gepia.cance r-pku.cn/index.html), an online database 
that included enormous samples across 33 different types of can-
cer.26 Analysis of gene expression in different subtypes of OV was 
further performed on the Oncomine database (https://www.oncom 
ine.org/resou rce/login.html). Then, overall survival and disease-free 
survival analysis were carried out to validate prognostic value of sin-
gle-gene signatures for prognosis prediction in the GEPIA database.

2.9 | Correlation between signature genes and 
clinical characteristics

To further investigate the correlation between signature genes 
and clinical characteristics, we combined expression profiles of 
robust DEGs from RRA analysis and clinical data in TCGA to per-
form weighted gene co-expression network analysis (WGCNA).27 

http://gepia.cancer-pku.cn/index.html
https://www.oncomine.org/resource/login.html
https://www.oncomine.org/resource/login.html
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‘WGCNA’ R package was used to establish the topological overlap ma-
trix based on the adjacent matrix composed of gene expression and 
clinical traits. Genes were classified into several modules associated 
with clinical traits according to dissimilarity measure. The correlations 
between genes in each module and clinical characteristics were iden-
tified by gene significance (GS) and module membership (MM).

2.10 | Drug-signature gene interaction

We searched for potential drugs response to promising tar-
gets G2/M checkpoint signalling pathway to which all genes in 
the multi-gene signature were related. Drug-Gene Interaction 
Database (DGIdb; http://www.dgidb.org) was used to explore in-
teractions between drugs and eight signature genes. The interac-
tion network was constructed by the online tool STITCH (http://
stitch.embl.de).

2.11 | Statistical analysis

Statistical analyses were conducted by online resources and R 
software 3.6.1. In brief, limma procedure was used to investigate 
differences in gene expression in GEO2R and the accumulative 
hypergeometric distribution was applied to carry out pathway and 

process enrichment analysis in Metascape. Terms with a P-value 
<.01, a minimum count of 3 and an enrichment factor >1.5 (the en-
richment factor was the ratio between the observed counts and the 
counts expected by chance) were collected and grouped into clus-
ters based on their membership similarities. The P values obtained 
in the above two steps were adjusted by the Benjamini-Hochberg 
procedure. Student's t test or one-way ANOVA was performed to 
compare mRNA expression if the data were normally distributed; 
otherwise, Wilcoxon or Kruskal-Wallis test was conducted for com-
parisons. The two-sided log-rank tests were performed to analyse 
survival differences between the high-risk and low-risk groups when 
KM survival curves were drawn based on the ‘survival’ and ‘sur-
vminer’ package in R. Univariate and multivariate Cox proportional 
hazard models were built to estimate the hazard ratios of prognostic 
factors. P < .05 was considered as statistical significance (*, P < .05).

3  | RESULTS

3.1 | Identification of integrated DEGs by the RRA 
method

The workflow for construction and validation of novel gene signa-
tures for prognosis prediction in OV was shown in Figure S1. Eight 
eligible GEO data sets were included in the subsequent RRA analysis. 

F I G U R E  1   Identification of robust DEGs by RRA method. Heatmap shows the top 20 up-regulated and down-regulated DEGs in GEO 
series accessions. Each row denotes one DEG, and each column represents one data set. The colour changes from red to green indicates 
regulation from up to down. The numbers in the box stand for logarithmic fold change

http://www.dgidb.org
http://stitch.embl.de
http://stitch.embl.de
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The DEGs of each data set were sorted by logFC. The RRA method 
synthesized the ranking of genes across all data sets to determine 
which were selected for integrated DEGs based on the assumption 
that each gene in each data set was randomly arranged. In accord-
ance with the results of RRA analysis, a total of 478 significant DEGs 
were identified. The top 20 up-regulated and down-regulated DEGs 
were depicted on a heatmap (Figure 1).

3.2 | Enrichment analyses of DEGs

GO annotation and KEGG pathway enrichment analysis were per-
formed on the overall integrated DEGs. We detected that GO 

terms (such as cell division, regulation of mitotic cell cycle and 
muscle structure development) were most significantly enriched. 
Additionally, DEGs were significantly enriched in KEGG pathways, 
including pathways in cancer, cell cycle and fluid shear stress and 
atherosclerosis. In terms of the hallmark gene set as a reference 
gene set, DEGs were most significantly enriched in the following 
hallmark signalling pathways: ‘HALLMARK G2M CHECKPOINT’, 
‘HALLMARK EPITHELIAL MESENCHYMAL TRANSITION’ and 
‘HALLMARK ESTROGEN RESPONSE LATE’. The heatmaps showed 
top 20 significant terms of the above pathways and processes, re-
spectively (Figure 2A). Moreover, the results of enrichment analyses 
were applied to each MCODE network component independently. 
ZWINT, ESPL1 and CDC20 were identified as hub genes in the most 

F I G U R E  2   Enrichment analyses. A, Heatmaps of top 20 enriched terms across integrated DEGs, coloured by P-values. B, Protein-protein 
interaction network, coloured by MCODE components. Circles represent genes, and lines denote interaction between gene-encoded 
proteins. C, GSEA plot of ‘HALLMARK_G2/M_CHECKPOINT’ in GSE4122, GSE105437, GSE69428, GSE54388, GSE26712, GSE14407, 
GSE12470 and GSE10971. The G2/M checkpoint signalling pathway is significantly suppressed in the tumour tissues compared with normal
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important modules during the process of GO and KEGG analyses, 
while BIRC5 replaced ZWINT as one of hub genes during the hall-
mark signalling pathway enrichment analysis (Figure 2B). The GSEA 
performance of the ‘HALLMARK G2M CHECKPOINT’ gene set re-
vealed that it was negatively enriched in all GEO data sets when 

tumour tissues were compared to normal tissues (Figure 2C). In sum-
mary, G2/M checkpoint signalling pathway was most likely the vital 
molecular mechanism of tumorigenesis. Therefore, the genes in the 
hallmark gene set ‘HALLMARK G2M CHECKPOINT’ were consid-
ered as candidate biomarkers.

F I G U R E  3   Prognostic values and predictive accuracy of the multi-gene signature in A, TCGA-OV data set. B, GSE26712 data set. C, 
GSE63885 data set. D, GSE14764 data set. a. KM survival curve (high-risk vs low-risk patients) for overall survival. b. Time-dependent ROC 
curve for overall survival at 1, 3, 5 y. c. Risk score distribution sorted by risk rank and classified by status. d. Survival time distribution sorted 
by risk rank and classified by status
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3.3 | Development of the multi-gene signature

Genes that made up the multi-gene signature were selected from 
the hallmark gene set ‘HALLMARK G2M CHECKPOINT’ in the 
TCGA-OV cohort by using LASSO Cox regression model. Changes 
in LASSO partial likelihood deviance and coefficients with log λ 
were shown in Figure S2. As a result, the multi-gene signature 
consisted of eight genes that were highly related to prognosis in 
OV patients. Then, a formula was derived from coefficients and 
expression of genes to calculate the risk score. It was as follows: 
risk score = (0.0600 * CDKN1B expression) + (0.0776 * EFNA5 
expression) − (0.0983 * HMGB3 expression) + (0.0072 * KATNA1 
expression) − (0.0073 * MCM3 expression) + (0.0260 * PDS5B 
expression) + (0.0243 * SLC7A1 expression) − (0.1035 * SNRPD1 
expression). Samples were subsequently divided into low-risk and 
high-risk two groups according to the median risk score.

3.4 | Prognostic values of the multi-gene signature

The risk score was ranked from low to high. In the internal data 
set, the distribution of risk score and survival time revealed that 
the patients with lower risk generally showed better survival sta-
tus and longer survival time. The patients in the high-risk group 
were observed poorer overall survival on the KM survival curve 
(P < .0001), which suggesting that the multi-gene signature 

possessed significant prognostic value. Time-dependent ROC 
analysis indicated the prognostic accuracies were 0.624 at 1 year, 
0.634 at 3 year and 0.693 at 5 year, respectively (Figure 3A). 
In the external data set, the distribution of risk score and sur-
vival time indicated that the lower patients ranking, the better 
the overall survival. The result of KM survival analysis indicated 
overall survival was higher in low-risk group than in high-risk 
group (P < .0001). The prognostic accuracies at 1, 3 and 5 year in 
the external data sets were close to those in the internal data set 
(Figure 3B-D). What's more, univariate Cox regression analysis 
revealed the C-indices of our multi-gene signature were higher 
than those of other biomarker-based models in the internal 
and external sets, indicating better performance of our model 
(Table S2).

3.5 | Validation of prognostic value in subgroups

Subgroup analysis was performed to explore the applicability of 
our multi-gene signature in predicting survival outcomes for pa-
tients with specific clinicopathological characteristics. GSE14764, 
GSE23554, GSE26712 and GSE63885 were integrated into a whole. 
Notably, all tumour samples from GSE23554 and GSE26712 were 
diagnosed at the advanced stage. Other detailed information of pa-
tients from these data sets was described in Table S1. According to 
residual tumour, patients were stratified into residual tumour <1 cm 

F I G U R E  4   KM survival curves (high-risk vs low-risk patients) for overall survival in multiple subgroups. A, Residual tumour < 1 cm. B, 
Residual tumour ≥ 1 cm. C, High grade. D, Serous carcinoma. E, Response to chemotherapy
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and residual tumour ≥1 cm. High grade, serous carcinoma and re-
sponse to chemotherapy were the three most common subtypes of 
OV and the basis for categorizing other subgroups. The results of 
survival analysis in all subgroups showed significant differences in 
prognosis between low-risk and high-risk patients, which suggested 
that our prognostic model was applicable to different subtypes of 
OV (Figure 4).

3.6 | Multivariate Cox regression analysis

The result of multivariate Cox regression analysis revealed age, 
stage and risk score was independent factors for prognosis pre-
diction (Figure S3). A nomogram was constructed to visualize 
the relationship between these independent prognostic factors 
and survival probability (Figure 5A). Clinicians were able to pre-
dict prognosis of patients based on their total points. Patients 
with higher number of total points had poorer survival outcomes. 
The C-index of the nomogram was 0.695 (95% CI, 0.670-0.727) 
and corrected to be 0.689 through bootstrapping validation. 
Furthermore, calibration curves also showed a good predictive 
power of the nomogram for 3-year and 5-year overall survival 
(Figure 5B,C).

3.7 | Prognostic values of single-gene signatures

It could be inferred from the high ranking of LASSO coefficients 
that SNRPD1 and EFNA5 played important roles in the multi-gene 
signature. The most robust correlations between their expression 
and risk stratification among all eight members of the multi-gene 
signature were observed (Figure 6A-C). In addition, the patients 
were divided into two groups by the median expression. Survival 
analysis showed that patients with lower expression of SNRPD1 had 
significantly poorer overall survival and higher EFNA5 expression 
indicated poorer outcome (Figure 6D,E). Significant differences in 
prognosis between high and low expression patients revealed prog-
nostic value of the gene expression. Therefore, two single-gene 
signatures were built based on SNRPD1 expression and EFNA5 
expression as simplified supplements to the multi-gene signature 
in clinical applications. We conducted differential expression and 
KM survival analyses to further assess prognostic value of single-
gene signatures. As a result, the expression of SNRPD1 in tumour 
tissues was higher than that in normal tissues. Significant increase 
of SNRPD1 expression in different subtypes of OV was also ob-
served based on the Oncomine database (Figure S4). In the GEPIA 
set, SNRPD1 expression showed significant association with overall 
survival and disease-free survival (Figure 7A,B), which confirmed its 

F I G U R E  5   Nomogram for predicting 
survival probability in the TCGA data 
set. A, Nomogram to predict survival 
probability at 1, 3, 5 y. B, Calibration curve 
for the nomogram predicting 3-y overall 
survival. C, Calibration curve for the 
nomogram predicting 5-y overall survival
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prognostic value. Similar results were obtained from performance of 
the same analyses on EFNA5 expression, and the prognostic value 
was validated (Figure 7C,D and Figure S5). Notably, it was higher 
EFNA5 expression and lower SNRPD1 that predicted poorer prog-
nosis. At last, univariate and multivariable Cox regression model 
identified both single-gene signatures as independent prognostic 
factors for patients with OV (Table 2).

3.8 | Correlations between signature genes 
expression and clinical traits

Clinical information of OV samples, such as stage, age, living sta-
tus and survival time, was incorporated with expression of DEGs 
selected from RRA analysis. A total of eight clinical traits-related 
modules were generated with a soft-thresholding power of 9 and 
a cut height of 0.25. The majority of genes in ‘Hallmark G2/M 
checkpoint’ gene set were divided into black modules that was 

significantly associated with tumour stage. Among them, five genes 
with high levels of MM and GS were the members of multi-gene sig-
natures, including SNRPD1, SLC7A1, PDS5B, MCM3 and HMGB3. 
Besides, EFNA5, CDKN1B and KATNA1 were identified as members 
of turquoise module which was significantly related to living status 
(Figure S6).

3.9 | Drug-gene interaction

CDKN1B and SLC7A1 were identified as promising targets for 
potential drug reactions based on the results of drug-gene in-
teraction exploration using DGIdb (Table 3). A total of sixteen 
candidate drugs were searched out, eleven of which had been ap-
proved by the Food and Drug Administration (FDA). The majority 
of potential drugs were likely to interact with the CDKN1B, as 
shown on the network of signature genes performance. CDKN1B 
might have downstream effects on minichromosome maintenance 

F I G U R E  6   The correlation between signature gene expression and survival outcome of patients. A, Scatterplot depicts the distribution 
of risk scores. Each red dot indicates one high-risk patient, and each blue dot indicates one low-risk patient. B, Survival time distribution 
classified by status. C, Heatmap of gene expression. D, KM survival curve (high SNRPD1 expression vs low SNRPD1 expression patients) for 
overall survival. E, KM survival curve (high EFNA5 expression vs low EFNA5 expression patients) for overall survival
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complex component family, phosphate, bortezomib and rapamy-
cin (Figure S7).

4  | DISCUSSION

A multi-gene signature was constructed through multi-step bioin-
formatic analysis. First, we identified DEGs between tumour and 
normal tissues in several GEO databases and integrated the results 
using the RRA method. Next, G2/M checkpoint ranked the top sig-
nificant hallmark gene set in which DEGs were enriched according to 
enrichment analyses. Moreover, a correlation between G2/M check-
point signalling pathway and tumour progression was observed 
based on the performance of GSEA. Consequently, the genes related 
to G2/M checkpoint were selected as candidate biomarkers. Finally, 
the LASSO Cox regression model was applied to build a multi-gene 
signature and its prognostic value was further validated in different 
databases and common subtypes of OV.

OV is a common gynaecological tumour with a heterogeneous 
category. The specific cell of origin divides OV into epithelial and 
non-epithelial cancers and the former type accounts for approx-
imately ninety per cent of OV.28 Epithelial OVs (EOC) are further 
categorized as four main histologic subtypes: serous, endometrioid, 
mucinous and clear cell, with minority classified as rare and undif-
ferentiable subtypes.14 Serous and endometrioid EOCs share an 
additional stratification of tumour grade according to the apparent 

degree of cytological aberration.29 Modes of carcinogenesis, molec-
ular-genetic features and sites of origin distinguish between high-
grade and low-grade serous carcinomas.30-32 Recent classification 
on the basis of the dualistic model segregates EOCs into type I and 
type II from the clinicopathological and molecular prospective.16 
Type II tumours are considered high grade, diagnosis at advanced 
stage and low survival, wherefore result in the major fraction of OV 
deaths. One of the important factors in elevating the mortality of 
OV patients is that effective screening tests remain blank to date. 
A recent large randomized trial combining transvaginal ultrasound 
with changes in CA125 has observed a reduction in mortality after 
long-term follow-up but screening strategies based on secondary 
analysis remain controversial.33,34

In addition, current treatment of OV is limited to radical surgery 
and chemotherapy, which prolongs the interval between recurrences 
but does not benefit overall survival.35 A variety of approaches to 
management of OV should be developed to target different sub-
types with varying survival rates. It is of vital importance to estab-
lish effective prognostic predictors to guide treatment choices for 
patients. Although a few standard phenotypes, such as tumour stage 
and grade, have been applied to decide whether a patient should 
be recommended to undergo adjuvant chemotherapy after cytore-
ductive surgery, it is not enough to distinguish patients at increased 
risks of tumour progression.28 Therefore, more emphasis should be 
placed on molecular mechanisms to reveal the main factors associ-
ated with clinical outcomes.

F I G U R E  7   Overall survival and 
disease-free survival analysis in high and 
low SNRPD1 and EFNA5 expression 
samples in the GEPIA database
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Fortunately, rapid advances in genome sequencing and inte-
grated bioinformatics have provided opportunities to discover mo-
lecular biomarkers with prognostic value for OV. The predictive 
value of multi-gene signatures has been highlighted in many other 
cancer types.36-39 Nevertheless, recent researches on prognosis 

prediction are limited to the most common types of OV, namely 
high-grade serous OV.17 Therefore, there is an urgent need for a 
more widely used model. In our study, the included data sets con-
tained samples of all categories so that robust integrated DEGs 
covered the differences between various types of tumours and 

Characteristics

Univariate model Multivariate model

HR (95% CI) P-value HR (95% CI)
P-
value

Age 1.021 (1.009-1.034) <.001 1.022 (1.010-1.035) <.001

FIGO_stage

I/II Reference .060 Reference .064

III/IV 2.183 (0.969-4.919) 2.161 (0.956-4.884)

SNRPD1 expression

Low Reference .026 Reference .013

High 0.745 (0.575-0.965) 0.715 (0.548-0.932)

EFNA5 expression

Low Reference .022 Reference .002

High 1.355 (1.044-1.759) 1.532 (1.170-2.006)

Abbreviations: CI, confidence interval; FIGO, International Federation of Gynecology and 
Obstetrics; HR, hazard ratio.

TA B L E  2   Univariate and multivariate 
Cox regression model in predicting overall 
survival of ovarian cancer

Gene Drug Sources PMIDs
FDA 
approval

CDKN1B METHOTREXATE NCI 14512390 No

CDKN1B EPOETIN ALFA NCI 15122318 Yes

CDKN1B RALTITREXED NCI 10047461 Yes

CDKN1B CHEMBL35482 NCI 11031257 No

CDKN1B EPOETIN BETA NCI 11023508 Yes

CDKN1B TRETINOIN NCI 10837916 Yes

CDKN1B PROXYPHYLLINE NCI 12097373 Yes

CDKN1B DOXORUBICIN NCI 12576455 Yes

CDKN1B CELECOXIB PharmGKB No

CDKN1B STREPTOZOTOCIN NCI 11978652 Yes

CDKN1B VINCRISTINE NCI 12576455 Yes

CDKN1B LAPATINIB CIViC 25587029 Yes

CDKN1B PROGESTERONE NCI 11590147 Yes

SLC7A1 LYSINE DrugBank 17042743; 
9614060; 
14523001; 
17139284; 
17016423

No

SLC7A1 ORNITHINE DrugBank 15491978; 
16703566; 
17065601

Yes

SLC7A1 ARGININE DrugBank 17329401; 
17427197; 
17363779; 
17325243; 
17065601

No

Abbreviation: FDA, Food and Drug Administration.

TA B L E  3   Potential drugs interacted 
with the signature genes
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normal tissues. Consequently, the multi-gene signature constructed 
on the basis of these DEGs has more extensive applications in clin-
ical practice. By incorporating the multi-gene signature and clinical 
prognostic variables, a visual nomogram was established for quanti-
tatively predicting 1-, 3- and 5-year overall survival of OV patients. 
Additionally, the prognostic value of the multi-gene signature was 
validated in all subgroups, indicating the independence from clinico-
pathological factors. The larger C-indices of our multi-gene signature 
demonstrated better performance for survival prediction than other 
biomarker-based predictors.

However, applying the multi-gene signature for prognosis pre-
diction costs more medical expenses. Since it has been reported 
that many single-molecule biomarkers are also related to clinical 
outcomes, we simplified the model into two single-gene mark-
ers at the cost of prediction accuracy to improve practicality. 
Both SNRPD1 and EFNA5 are members of the ‘HALLMARK G2M 
CHECKPOINT’ gene set, so they participate in cell proliferation 
and tumour progression via cell cycle arrest at the G2/M-phase. 
Furthermore, SNRPD1 plays an important role in manipulating the 
regulation of pluripotency-specific spliceosome assembly and the 
acquisition and maintenance of pluripotency.40 SNRPD1 has also 
been reported to be involved in osteogenic differentiation of mes-
enchymal stem cell.41 Regarding the function of EFNA5, recent 
studies have shown its significant expression alterations in pros-
tate cancer, gastric cancer and colorectal cancer compared to con-
ventional normal tissues.42-44 Notably, EFNA5 is likely to be one of 
novel candidate genes that contribute to human Mendelian disor-
ders.45 The above findings also indicate that the change in EFNA5 
expression seems to be applicable to a variety of genetic diseases 
and has low specificity for OV.

Previous studies have applied pathological stage as an indica-
tor to guide treatment choice but little direct evidence suggested 
it could be regarded as an accurate factor for predicting the prog-
nosis of OV patients.16,28 Nevertheless, tumour stage was identi-
fied as an independent predictor in our nomogram. Interestingly, 
the prognostic prediction ability of tumour stage decreased in the 
multivariate Cox regression combined with two single-gene sig-
natures, which possibly resulted from the correlation between 
SNRPD1 expression and tumour stage, as revealed by the process 
of WGCNA.

In conclusion, our study constructed novel gene signatures for 
prognosis prediction in OV based on the G2/M checkpoint signalling 
pathway enrichment. Prognostic value of the multi-gene signature 
was validated in the internal, external and entire sets. Independence 
from other clinical factors was determined through subgroup anal-
ysis. By incorporating this signature with age and pathological tu-
mour stage, a visual predictive nomogram was established, which 
was convenient for predicting survival outcomes of OV patients. 
Two single-gene signatures were also built as simplified indepen-
dent prognostic factors to satisfy diversified clinical requirements. 
However, these models require further verification in different clin-
ical centres in the future.
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