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Abstract Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indica-

tions still focus on several types of tumors that are sensitive to the immune system. Therefore, effective

strategies that can expand its indications and enhance its efficiency become the key element for the

further development of cancer immunotherapy. Natural products are reported to have this effect on cancer

immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells

therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-

immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition

and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and con-

cludes the natural products that reportedly improve cancer immunotherapy and investigates the mecha-

nism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of
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natural products, which reflected significant effects combined with cancer immunotherapy through

reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the

studies about nano-technology used to improve the disadvantages of natural products. All of these studies

showed the great potential of natural products in cancer immunotherapy.

ª 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer immunotherapy has become an irreversible trend herald in
the field of cancer therapy and is regarded as the fourth type of
anti-tumor treatment after surgery, radiotherapy, and chemo-
therapy due to the obvious efficacy and low side effects1,2. This
kind of breakthrough therapy is defined that regulates immuno-
logical response through activating the organism’s immune de-
fense system or action of biological compounds to suppress and
prevent tumor growth2. Up to now, 7 types of immune-checkpoint
inhibitors, 2 kinds of adoptive immune-cell immunotherapies, and
4 types of cancer vaccines for anti-cancer treatments have been
approved by the US Food and Drug Administration (FDA,
Fig. 1)3e9.

Despite cancer immunotherapy has achieved numerous
remarkable advances so far, its indications still focus on several
types of tumors that are sensitive to the immune system (also
named as “hot tumor”), such as metastatic melanoma, urothelial
carcinoma, and prostate cancer10e12. For the tumor with poor
immunogenicities (also named as “cold tumor”) like triple-
negative breast cancer, colorectal cancer, and lung cancer, there
is almost no significant efficiency of cancer immunotherapy13.
And the main reason resulting in this limitation is the immuno-
suppressive microenvironment within tumor sites (Fig. 2A), which
can assist tumor cells in immune escape and even promote its
growth14,15. As shown in Fig. 2B, the hot tumors can normally
express tumor-specific antigens and the immune system can
distinguish these antigens and then effectively kill tumor cells
with the assistance of immunotherapy16. But for cold tumors, they
will establish their unique immunosuppressive microenvironment
against the recognition and attack from the immune sys-
tem13,14,17e19. And this microenvironment can effectively
passivate cancer immunotherapy. For example, although the
number and activity of effective T cells (Teffs) can be increased
and improved by cancer vaccines or immune-checkpoint in-
hibitors, the cold tumor cells still can weaken Teffs’ activities
through immunosuppressive cells like regulatory T cells (Tregs)
and immunosuppressive factors, such as interleukin-10 (IL-10),
IL-13, IL-16, prostaglandin E2 (PGE-2) and so on16,19. Therefore,
effective strategies that can reverse and remodel the complex
immunosuppressive microenvironment within tumors become the
key element for cancer immunotherapy to expand its indications.

Natural products, which refer to the compounds extracted and/
or optimized from nature, have shown great potential in the field
of cancer immunotherapy due to their multi-target regulated
abilities in recent years20e23. It has been found that they can
effectively enhance the therapeutic outcome and expand in-
dications of all kinds of cancer immunotherapies, including cancer
vaccines, immune-checkpoint inhibitors, and adoptive immune-
cells transfer therapy24e26. In addition, there are also some clin-
ical trials about natural products combined with immunotherapy
that have been approved by the FDA (Table 1). Besides, natural
products have achieved huge success in the discovery of anti-
tumor agents27e32. About 47% of anti-tumor agents are derived
from naturally occurring compounds33e35. Because of the multi-
benefits of natural products on anti-tumor and immunomodula-
tory fields, it has shown great potential to become qualified ad-
juvants for tumor immunotherapy.

This review collects and generalizes the newly obtained studies
about how natural products expand indications and enhance the
efficiency of cancer immunotherapies through remodeling tumor
immunosuppressive microenvironment. Firstly, the antagonistic
relationship between tumor immunosuppressive microenviron-
ment and current cancer immunotherapies has been elaborated.
Next, as for the three types of tumor immunotherapies approved
by the FDA, the information about how natural products improve
these three treatments through multi-cells and multi-pathways
moderating effects have been provided in this part. Then, the
effective nano-drug delivery system designed to overcome the
shortages of natural products also are exhibited and discussed.
And this multi-targeted immune sensitized effect of natural
products is summarized in the last part.

2. Tumor immunosuppressive microenvironment

For the current cancer immunotherapies, their efficiencies mainly
depend on the function of Teffs, which play the central role in the
anti-tumor effect of the immune system. However, the existence of
the tumor immunosuppressive microenvironment weakens the
Teffs’ activities. Therefore, a deep understanding of the immuno-
suppressive microenvironment will help to find the key elements
for improving the efficiency of cancer immunotherapy. And this
inhibition of Teffs induced by the immunosuppressive microenvi-
ronment in tumors can be concluded into three main aspects: poor
immunogenicity, Immunological checkpoints, and immunosup-
pressive factors and cells12.

2.1. Poor immunogenicity

The most significant basis for the elimination of tumor cells by the
immune system is enough immunogenicity, which mainly depends
on the number of tumor-specific antigens (TSA) that express on
the surface of tumor cells (Fig. 2B). It is also the straightforward
reason that results in limited clinical benefits of cancer immuno-
therapy for poorly immunogenic (cold) tumors compares to
immunogenic (hot) tumors36,37. TSAs are usually induced by
tumor-specific mutations. The lack of antigenic mutations will
cause the lack of recognition by T cells for tumor cells38.

Moreover, tumor cells can also prevent the TSAs-presenting
process to the surface of tumor cells by the restriction of major
histocompatibility complex class (MHC) through altering some
elements in the TSAs presenting procedure, including

http://creativecommons.org/licenses/by-nc-nd/4.0/
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proteasomes and transporters related to antigen processing (TAP),
beta-2-microglobulin (B2M) or MHC39. Either lack of antigenic
mutations or alternations in the antigen-presenting process may
result in the “off-target” effect of T cell-based cancer
immunotherapy.

2.2. Immunological checkpoints

Even though Teffs can recognize and bind to tumor cells, tumor
cells still can utilize the immunological checkpoints (ICTs) to
avoid the attack of Teffs (Fig. 2C). The ICT is the other important
aspect of tumor cells for interrupting Teffs’ function40. The
cytotoxic T lymphocyte antigen-4 (CTLA-4) is the first explored
immunological checkpoint in previous studies and named as the
“brake” of Teffs responses. The affinity between it and B7 cos-
timulatory molecules is much higher than that between CD28 and
Teffs, and thus it can effectively terminate the activation of
Teffs

41e44. The other immunological checkpoints, programmed
death-1 (PD-1) and programmed death receptor ligand 1 (PD-L1),
also can inhibit the activity of Teffs for tumor cells40. The PD-L1
overexpression in tumor cells will also passivate the therapeutic
outcomes of immunotherapy45. And there are increasing the
number of immune-check points, such as T-cell immunoglobulin
and mucin-domain containing-3 (TIM-3), B- and T-lymphocyte
attenuator (BTLA), and Killer-cell immunoglobulin-like receptors
(KIRs) have been reported in these years.

2.3. Immunosuppressive cells and factors

Besides poor immunogenicity and the inhibition of ICTs, the
immunosuppressive cells and factors also limit the efficiency of
cancer immunotherapy (Fig. 2D). Immunosuppressive cells
mainly consist of tumor-associated macrophages (TAMs),
myeloid-derived suppressor cells (MDSCs), regulatory T cells
(Tregs), dendritic cells (DCs), natural killer T cells (NKTs), mast
cells, and tumor invading lymphocytes (Fig. 4). And these cells
can weave an immunosuppressive network through the secretion
of immunosuppressive factors, such as IL-10, PGE2, and
Figure 1 Cancer immunother
transforming growth factor-b (TGF-b). Besides, some compounds
in TME also can induce immunosuppression, such as Hþ, NO, and
polyamine oxide.

Tumor cells can induce the non-degranulated mode of mast
cells through secretion of Hþ, NO, chondroitin sulfate, and
oxidized polyamines46e49. And this mode can make mast cells
promote the growth of the tumor and induce immunosuppres-
sion50. In addition, the histamine, TGF-b, and IL-10 secreted from
mast cells will inhibit activities of Teffs

51e53. Besides, mast cells
also can affect the migration and function of DCs through
secreting PGE2, indirectly enhancing the immunosuppression of
tumors54. In addition, MDSCs in tumor also will secret TGF-b and
IL-10 to inhibit Teffs’ activities

51,53.
Moreover, tumor cells also secret macrophage-derived che-

mokines, CeC motif chemokine 22 (CCL22), to recruit mono-
cytes into tumors and these monocytes will finally differentiate
into TAMs under the condition of immunosuppressive factors55,56.
TAMs are also an important part of solid tumors and almost 40%
of non-malignant cells are TAMs in some kind of tumors55. These
cells will transform into M2 immunosuppressive phenotype under
the function of tumor-derived cytokines, including vascular
endothelial growth factor (VEGF), galectin-1, gangliosides, TGF-
b, PGE2, and IL-1057,58. Meanwhile, IL-10, TGF-b, and VEGF
will inhibit the antigen presentation process of DCs. Then, the IL-
10 also can recruit Tregs, which is a key factor to maintain im-
mune tolerance, and Tregs will induce Teffs lymphocyte lysis
through several ways like secreting TGF-b59. In addition, IL-13
secreted from NKTs within TME will also promote the secre-
tion of TGF-b, thereby inhibiting the function of Teffs60.

As mentioned above, it can be concluded that the tumor
immunosuppressive microenvironment is a complex network
within tumor sites to help tumor cells escape from the recognition
and attack of the immune system, especially for the Teffs. There-
fore, finding effective agents to remodel this unique microenvi-
ronment and reactivate Teffs’ function become the key element for
cancer immunotherapy. Natural products have shown great poten-
tial in remodeling tumor immunosuppressive microenvironment to
improve the therapeutic outcome of cancer immunotherapy.
apies approved by the FDA.



Figure 2 Tumor-associated immunosuppressive microenvironments and immunotherapy: (A) tumor immunosuppressive microenvironment.

(B) tumor associated-agents presenting process. (C) Immunological checkpoints and (D) immunosuppressive factors and cells.
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3. Natural products expand indications and enhance the
efficiency of cancer vaccines

The cancer vaccines, including cancer-preventive vaccines and
cancer-therapeutic vaccines, belong to one of the cancer-specific
active immunotherapies. Cancer-preventive vaccines mainly
fight virus infection through the induction of specific antibodies
and long-lived memory B lymphocyte cells. Some of them,
especially for those containing attenuated pathogens, also can
trigger cellular immunity61. Except for HPV vaccines
(GRADASIL� and CERVARIX�) are cancer-preventive vac-
cines, most cancer vaccines belong to therapeutic vaccines, such
as PROVENGE�62. These vaccines kill malignant cells mainly
through inducing CD8þ cytotoxic T lymphocytes induced by
TSAs63,64.

The presenting processes of TSAs in cancer vaccines is a
complex process, and the effect of cancer vaccines depends on the
optimized combination of antigens, adjuvant, carrier, and vacci-
nation routes. In addition to effectively activating CD8þ cytotoxic
T lymphocytes, cancer vaccines must face the following two
challenges: poor immunogenicity and tumor-associated
immunosuppression65,66.

3.1. Natural products enhance the tumor immunogenicity by
inducing the immunogenic cell death (ICD) effect

Immunogenic cell death (ICD) effect is a kind of cell apoptotic
pathways, which can induce cancer cell death routine mainly
depend on damage-associated molecular patterns (DAMPs), such
as calreticulin (CRT), heat shock proteins (HSPs), and high-
mobility group box 1 (HMGB1), and markedly enhance the
immunogenicity of these dying tumor cells67,68 (Fig. 3). ICD ef-
fect can make cancer cells into “therapeutic vaccines” that can
induce anti-tumor immunity without any additional adjuvants69.
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Up to now, only a limited number of agents can induce ICD70.
Capsaicin, the pungent alkaloid of chili pepper, reportedly could
trigger the ICD effect in primary effusion lymphoma (PEL) cells
through the induction of DAMPs exposure, including HSP90 and
calreticulin71 (Fig. 3A). Besides, it also could activate the DCs
through binding to vanilloid receptor 1 (VR1)72. And this coun-
teraction effect of immune suppression on DCs in PEL microen-
vironments has been proved in this study. Moreover, capsaicin
could induce apoptotic and pro-survival autophagy through
reducing signal transducer and activator of transcription 3
(STAT3) phosphorylation, which depends on down-regulating the
expression of Induced myeloid leukemia cell differentiation pro-
tein 1 (MCL-1), a kind of anti-apoptosis molecules. And similar
results were also be found in several solid and hematological
tumors73e76.

Ginsenoside Rg3, a saponin from ginseng, is reported that
could induce the significance of ICD both in immunogenic tumor-
like melanoma (B16F10) and non-immunogenic tumor-like Lewis
lung cancer (LLC, Fig. 3B)77. The ICD effect induced by Rg3
could increase the expression of CRT and HSP60, which are
Figure 3 Immunogenic cell death (ICD) effect induced by natural

Resveratrol; D. Quercetin: AlantolactoneZ1:4; E. Shikonin) induce immu

patterns (DAMPs), including calreticulin (CRT), heat shock proteins (HS

immunogenicity and make the tumor cells into “therapeutic vaccines”.
chaperone proteins and ICD markers, on the surface of B16F10
and LLC cells. In addition, within the “eat me” signal of CRT,
DCs took up the decries of dead tumor cells treated by Rg3 more
easily than normal tumor cells. Furthermore, the Rg3-induced ICD
effect could enhance interferon g (IFN-g) secretion to inhibit
tumor growth.

Resveratrol, a non-flavonoid polyphenol widely distributed in
the leaves and skins of grapes, also be verified that could induce
ICD effect in ovarian carcinoma cells78 (Fig. 3C). And related
studies showed that the cell surface exposure of CRT and HMGB1
were markedly increased in this kind of cell line. Besides, the effect
of cancer vaccines of resveratrol has also been found in tumor rat
models, in which subcutaneous injection of ID8 cells pre-treated by
resveratrol could dramatically decrease the volume of tumors.
Moreover, resveratrol also significantly inhibited the secretion of
TGF-b while promotes the numbers of IL12 and IFN-g.

Zhang et al.79 found the injection of quercetin and alanto-
lactone at a molar ratio of 1:4 could induce ICD in the
microsatellite-stable colorectal cancer (CRC) model (Fig. 3D).
Their results showed this combination could induce the number of
products. Natural products (A. Capsaicin; B. Ginsenoside Rg3; C.

nogenic cell death (ICD) effect through damage-associated molecular

Ps), and high-mobility group box 1 (HMGB1), to increase the tumor



Figure 4 Saponins improve the therapeutic effect of cancer vaccines as adjuvants.
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CRT exposed on the tumor cells member and HMGB1 release. In
this combination, they found the injection of alantolactone alone
could induce the ICD effect and quercetin could enhance this
effect through modulating the production of reactive oxygen
species (ROS) and interfering with protein kinase (also known as
“AKT”) and nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-kB) pathways80. Moreover, it also could inhibit
the secretion of IL-10, TGF-b, IL-1b, and CCL2. And the long-
term anti-tumor immune-memory effects of this combination
also were found in this study.

Besides making tumor cells be “therapeutic cancer vaccines”,
the ICD effect also can enhance the curative effect of DCs-based
tumor vaccines. Shikonin, a natural tea quinone pigment from
Lithospermum erythrorhizon, has been reported to be an adjuvant
for DCs-based cancer vaccines via the induction of ICD effect81

(Fig. 3E). It can effectively trigger mitochondria-associated
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apoptosis and promote the release of HSP70, HSP78, HSP90,
CRT, and HMGB1 in melanoma cells. Besides, shikonin also
improves the expressions of CD86 and MHC II and finally
enhanced tumor immunogenicity to promote the efficacy of
shikonin-treated B16 tumor cells- or doxorubicin-treated B16
tumor cells-loaded DCs vaccines82. In addition, Lin et al.82 also
reported shikonin would enhance tumor-immunogenicity of tumor
vaccines by ICD.

Therefore, the ICD effect induced by natural products not only
can enhance the immunogenicity of tumor cells, which makes
tumor cells into “therapeutic vaccines”, but also improve the
curative effect of DCs-based tumor vaccines. Meanwhile, these
natural products also can downregulate the secretion of immu-
nosuppressive factors, such as IL-10, TGF-b, IL-1b, and CCL2,
and upregulate the secretion of anti-tumor factors, like IFN-g and
IL12.

3.2. Natural products improve the therapeutic effect of cancer
vaccines as adjuvants

Most the cancer vaccines, especially peptide-based and gene-
based vaccines, have poor immune-stimulate effects and should
combine with rational adjuvants to achieve ideal effects. And
immunosuppressive factors and cells will also inhibit the thera-
peutic effects of cancer vaccines. However, in previous studies,
natural products as adjuvants for vaccines could effectively
enhance the immune-stimulate effect and reverse the immuno-
suppression induced by associated factors and cells.

Saponins may be the most extensively reporting vaccine-
adjuvants (Fig. 4), which could punch pores on cell membranes
Table 1 List of clinical trials about natural products combined with

NCT number Natural product Caner immunotherapy

NCT03192059 Curcumin Pembrolizumab

NCT00470574 QS-21 Sialyl lewisa-keyhole limp

hemocyanin conjugate

vaccine

NCT00036933 QS-21 MUC-2-Globo H-KLH

conjugate vaccine

NCT00004929 QS-21 MUC-2-KLH vaccine

NCT00005632 QS-21 MUC1-KLH vaccine

NCT00003357 OS-21 GM2-KLH vaccine

NCT00003819 QS-21 TF(c)-KLH conjugate

vaccine

NCT00004156 QS-21 MUC1-KLH vaccine

NCT00030823 QS-21 Globo-H-GM2-Lewis-y-

MUC1-32(aa)-sTn(c)-

Tn(c)-KLH conjugate

vaccine

NCT00006041 QS-21 MUC1-KLH vaccine

NCT00006387 QS-21 Ras-peptide cancer vaccin

NCT00001572 QS-21 Id-KLH vaccine

NCT00004052 QS-21 BCR‒ABL peptide vaccin

NCT00857545 Saponin-based

immunoadjuvant

OBI-821

Polyvalent antigen-KLH

conjugate vaccine

‒Not applicable.
that allow antigens to access into cells, presented by MHC I, and
finally increase the number of Teffs

83. QS-21, an active compound
from Quillaja Saponaria Molina, is the most promising saponin
immunological adjuvant for cancer vaccines. It can promote the
antigen presentation process and enhance the production of Teffs.
It also can remodel the immunosuppression through regulating
Th1 cytokines, including IL-2 and IFN-g. Up to now, a series of
phase I‒III clinical trials investigate the therapeutic outcomes of
utilizing QS-21 as immunological adjuvants of cancer vaccines
designed for lymphoma, leukemia, carcinoma, and cancers of
breast, prostate, ovary, or lung84e92. As Fig. 4A shown, QS-21
consists of two principal isomeric molecular constituents and
the immunological effect of it mainly attributed to its aldehyde
groups and acyl chains. Its aldehyde groups can stimulate the
adjuvant activity because they may format Schiff bases with free
amino groups on the cell membrane of related immune cells93.
And the acyl chains can induce cytotoxic T-cell proliferation94.
Besides, three new QS-21 derivatives (SQS-0101, SQS-0102, and
SQS-0103) also been reported to improve the stability and potent
adjuvant activity of natural QS-2195e97. According to the advan-
tages of saponins in tumor-vaccines adjuvant, more natural sa-
ponins had been investigated for the adjuvant of cancer vaccines.
Castro-Dı́az et al.98 demonstrated CS5, a new kind of saponins
from Crocus sativus corms, which could enhance the production
of specific antibodies of protein-based cancer vaccines. They also
found the co-stimulatory immunity of CS5 is mainly attributed to
its unique acyl group, which also could form Schiff bases with
amino groups of immune cells membrane. Zhang et al.99 used
Astragalus saponins as an adjuvant for protein-based vaccines and
they found it was efficient in stimulating both humoral and
cancer immunotherapy.

Disease Status Phase

Cervical cancer/Endometrial

cancer/Uterine cancer

Recruiting II

et Breast cancer Completed e

Prostate cancer Completed I

Prostate cancer Completed I

Prostate cancer Completed I

Breast cancer Completed I

Prostate cancer Completed I

Breast cancer Completed I

Breast cancer Completed e

Fallopian tube cancer/

Ovarian cancer/Primary

peritoneal cavity cancer

Completed I

e Colorectal cancer/Pancreatic

cancer

Completed I

B cell lymphoma/Follicular

lymphoma/Neoplasm

Completed I

e Leukemia Completed II

Ovarian epithelial cancer/

Fallopian tube cancer/

Peritoneal cancer

Completed II
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cellular immune responses, especially for cellular immune. And
the levels of IFN-g and IL-4 were significantly enhanced by these
saponins to improve the antitumor immunity. Ginsenoside Rg1,
the well-known saponins from ginseng, was reported to activate
the PBMC-derived DCs through promoting the tumor necrosis
factor a (TNF-a), IL-1b, IL-8, and IL-6100. And the mechanism of
Rg1 in promoting the activation of DCs was probably through
modulating the NF-kB pathway in DCs. This activation is often
correlated with the vaccine adjuvants’ action. Wu et al.101 reported
that RelB‒/‒ mice could not develop DC cells due to the genetic
defect of NF-kB, which revealed the importance of this pathway
for DCs. Then, O’Sullivan et al.102 indicated the importance of
NF-kB activation in Teffs activation by DCs and this function
would be enhanced if NF-kB activation in DCs is prolonged.
Therefore, the regulation of NF-kB plays a critical role in the
induction of mature DCs and that is the key point for the adjuvant
activation of Rg1.

Besides, some natural products, which can down-regulate the
NF-kB signaling pathway, have also been reported that can
sensitize cancer vaccines, but the target issues mainly focus on
tumor cells. Kamat et al.103 found curcumin has the potential to
improve the therapeutic outcome of bacillus Calmette-Guerin
vaccines, which is the golden standard immune therapy of
bladder cancer, through inhibiting NF-kB and TRAIL pathways in
cancer cells (Fig. 5A). Lu et al.104 also reported that curcumin
could significantly enhance the effect of the TRP2 peptide vaccine
for melanoma. Besides, they found curcumin would decrease the
number of immune-suppressive cells (MDSCs and Tregs) in TME
by inhibiting the Janus kinase (JAK)-STAT3 signal pathway. In
addition, curcumin has been reported could suppress the expres-
sion of IDO by blocking the JAK‒STAT1 signaling pathway and it
sensitizes the FAPac vaccine for melanoma through this mecha-
nism105,106. Wei et al.107 found the adjuvant effect of low dosages
(1 mg/mL) of Dioscorea polysaccharides for DNA vaccines. Their
results showed Dioscorea. polysaccharides could effectively
enhance the anti-tumor effect of DNA vaccines for melanoma
through the NF-kB inhibition of tumor cells.

Polysaccharides is the other category of natural products that
reportedly sensitize cancer vaccines (Fig. 5B). b-Glucans, the
glucose polymers linked together by a 1/3 linear b-glycosidic
chain core, is an active compound of polysaccharides for the im-
mune sensitized effect108. It could bind to some immune receptors,
such as dectin-1, complement receptor 3, and Toll-like receptor
(TLR) -2/6, and activate various immune cells. Some poly-
saccharides, which rich in b-glucans like Dioscorea poly-
saccharides, have been reported as potential adjuvants for cancer
vaccines. Chang et al.109 evaluated two polysaccharides extracted
from Astragalus membranaceus and Codonopsis pilosella for the
adjuvant effect of DC-based cancer vaccines for 4T1 mammary
carcinoma in mice. They found this combination could significantly
enhance the numbers of CD40, CD80, and CD86 markers in
DCs110. And their data also showed it could up-regulate the
secretion of IL-6, TNF-a, and IL-1b. More importantly, this com-
bination would not generate the “cytokine storm”, which is an
excessive expression of vaccine adjuvant. Lv et al.111 investigated
the adjuvant effect of basil polysaccharide on DC vaccines for
SKOV3 cells. And the results showed that BPS could significantly
inhibit the growth of SKOV3 cells and promote the mature of DCs
through modulating the expressions of osteopontin, CD44, and
matrix metalloprotein-9 (MMP-9). Therefore, it may be a suitable
candidate for DC-based vaccines. Mannose and galactose also are
two types of polysaccharides that can induce an immune response,
but the mechanism is not clear. Ganoderma polysaccharides, which
rich in mannose and galactose, can stimulate the maturation of bone
marrow dendritic cells (BMDCs) and enhance the secretion of IFN-
g to produce Teffs. Besides, it also could induce DCs maturation.
And Ganoderma polysaccharides-adjuvanted ovalbumin (OVA)
immunization promoted the production of specific antibodies and
enhanced the OVA-specific T helper type 1 (Th1) cells and cyto-
toxic T cell (CTL) responses, which could both protect mice from
OVA-expressing tumor cells. Their data also showed that the im-
munization of Ganoderma polysaccharides mainly contribute to
engaging pattern-recognition receptors families like TLR4112.

TLR4 may be the most important member of the TLR protein
for adjuvants of vaccines (Fig. 5C). And it is the only TLR that
could activate both MyD88-dependent and -independent (TRIF-
dependent) pathways113. As one of the TLR4 agonists, mono-
phosphoryl lipid A is approved as a kind of vaccine adjuvant and
has shown immunogenic properties without severe side effects. l-
Carrageenan, which is extracted from marine red algae, could
effectively enhance E7-specific immune responses induced by E7-
peptide vaccines via TLR4 pathway114, and thus enhance its
therapeutic outcomes. In addition, the injection of l-carrageenan
significantly up-regulated the proportion of M1 macrophages and
DCs in TME and it also increased the numbers of activated
lymphocytes and Th17 cells in mice spleens115. Uncarinic acid C
(URC), an active compound from Uncaria hynchophylla, has been
demonstrated could activate DCs in a fashion that favors Th1
polarization via the TLR4 pathway, and may be suited for DC-
based vaccines116. Rutin, extracted from Hedyotis diffusa Willd,
could induce cytokines production of immune cells through the
TLR4 signaling pathway and enhance the antitumor effect of
peptide-based cancer vaccines in HPV-related tumor models117.

Flavonoid is another type of natural product that reportedly
adjuvants potential for cancer vaccines (Fig. 6A). Procyanidin, the
biological flavonoid widely distributed in fruit, was evaluated
adjuvant effects with B16F10 cancer vaccine for melanoma can-
cer118. The results showed it could significantly enhance T cell-
mediated immune responses and promote the secretion of
various molecules like perforin, IFN-g, and TNF-a. They also
showed procyanidin could enhance the production of memory T
cells induced by cancer vaccines, and then prolonged the survival
rate of model rats. Naringenin, one of the most abundant flavo-
noids in diets, can improve the efficacy of OVA antitumor thera-
peutic vaccines by increasing intracellular ROS119. ROS has been
reported to enhance MHC-I antigen cross-presentation through
either regulation of the pH in the internalization compartments or
antigen oxidation for the MHC-I antigen processing120,121.
Naringenin-enhanced antigen cross-presentation is dependent on a
moderate level of lipid peroxidation that increases antigen leakage
from endosomes/lysosomes without impairing DC activation.

Moreover, there are some other types of natural products that
have been explored the adjuvants’ potential for cancer vaccines
(Fig. 6B). Neem leaf glycoprotein could effectively up-regulate
the expression of CD40, CD80, CD83, CD86, and MHCs on the
surface of DCs and these matured DCs also could induce a high
amount secretion of IFN-g by T cells122. Besides, neem leaf
glycoprotein would help to induce specific immune responses of
TSAs through the antigen presentation modulated by macro-
phage123. More importantly, it also could increase the numbers of
both central and effector memory CD8þ T cells to generate anti-
tumor immunity of cancer vaccines124. Carthamus tinctorius
could promote the production of IFN-g and IL-10 of T cells in the
spleen and stimulate DCs maturation through the up-regulation of



Figure 5 Natural products improve the therapeutic effect of cancer vaccines as adjuvants. (A) Curcumin and dioscorea polysaccharides

sensitize cancer vaccines by down-regulating NF-kB signaling pathway in tumor cells. (B) Polysaccharides enhance the efficiency of cancer

vaccines. (C) l-Carrageenan, rutin, and uncarinic acid C sensitive cancer vaccines through TLR4 pathway.
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immunological molecule expressions125. When DC-based vac-
cines were injected with antigens and C. tinctorius, this combi-
nation effectively enhances the numbers of TNF-a and IL-1b and
stimulate many immunologic molecules that were mainly
expressed on the cell membrane of DCs. In addition, C. tinctorius
also could increase Teffs production and enhance the therapeutic
outcome of cancer vaccines. Antrodia camphorate, a kind of
promising adjuvants of human epidermal growth factor receptor-2
(HER-2)/neu DNA vaccines for MBT-2 tumor therapy126, could
significantly enhance the Th1-like cellular immune responses and
then promoted the production of IFN-g and HER-2/neu-specific
Teffs. Therefore, antrodia camphorate could enhance the anti-
tumor effect of the HER-2/neu DNA vaccine.
As mentioned above, saponins, polysaccharides, and flavonoids
are three main categories that showed the potential of being
qualified adjuvants for cancer vaccines. And the mechanisms of
these three categories are different. Saponins mainly rely on its
unique chemical structure to punch pores on cell membranes that
allow antigens to access into cells. Polysaccharides mainly depend
on its compositions that have the immune-stimulating ability.
For flavonoid, its effect on cancer vaccines mainly contributes to
the unique regulating effect on immune-associated processes,
such as ROS and lipid peroxidation. In addition, the NF-kB and
TLR4 signaling pathways are two important pathways that are
modulated by natural products to sensitize the efficiencies of
cancer vaccines.
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4. Natural products enhance the therapeutic effect of
immune-check points inhibitors

Immune-check point is the other important way for tumor cells to
inhibit the Teffs’ activities. Seven types of immune-checkpoint
antibodies have been applied to clinical anti-tumor therapy. And
the PD-1/PD-L1 pathway has stood out among ICTs due to the
excellent therapeutic outcomes in many studies and clinical tri-
als127. However, the existence of immunosuppressive microenvi-
ronments in tumors limits the application of anti-ICTs antibodies.
And natural products have been reported to show the ability to
regulate the expression of PD-1 and PD-L1 and reverse the
immunosuppression.

4.1. Natural products inhibit the expressions of PD-1 and PD-
L1 and reverse the immunosuppression

For PD-1 ligand, there are several natural products have been re-
ported to inhibit its expression (Fig. 7A). A kind of triterpenoid
saponin isolated from Anemone flaccida inhibited hepatocellular
carcinoma (HCC) cell growth by blocking the activation of PD-1
and PD-L1 through the downregulation of STAT3 signaling path-
ways128. And these triterpenoid saponins also could reduce Tregs
production and increased the number of splenic immune cells in
H22 tumor-bearing mice. Liang et al.129 investigated the pharma-
codynamic of Dendrobium officinale polysaccharides (DOPS) in
colorectal cancer, which showed it could effectively improve
infiltrating CD8þ cytotoxicity T lymphocyte activity through
reducing PD-1 expression and enhance tumor immune response.
Ganoderma lucidum polysaccharide combined with paclitaxel
(PTX) could reserve the exhausted state of tumor infiltration
lymphocytes (TILs) via down-regulating the expressions of PD-
1130. Besides, G. lucidum polysaccharide also sensitized the ther-
apeutic effect of PTX and restored the gut dysbiosis induced by
PTX. Delphinidin-3-O-glucoside (D3G) and cyanidin-3-O-gluco-
side (C3G), which active metabolites of anthocyanins (ANC), both
can inhibit the expression of PD-1 and PD-L1 in tumor microen-
vironments of colon cancer cells and induce cancer cell death131.

For PD-L1 ligand, its expression is controlled by several
pathways, such as JAK-STAT pathway132 and NF-kB pathway133

(Fig. 7B and C), and several reviews have summarized the func-
tions of these signaling pathways in regulating the expressions of
PD-L1 ligand134e136. Some natural products have been explored
the capacity for the down-regulation of PD-L1 through these
pathways.

The JAK-STAT signaling pathway is related to the PD-L1
mRNA expression. It has been reported that increasing the
Figure 6 Natural products improve the therapeutic effect of cancer
activities of JAK and STAT signal transducers will upregulate the
expression of PD-L1137, and thus the agents that can inhibit the
JAK-STAT pathway have the ability to downregulate the PD-L1
expression. Zhang et al.138 found that berberine, an isoquinoline
alkaloid extracted from Coptidis rhizomes, can reduce the ex-
pressions of PD-L1 through the JAK‒STAT signaling pathway and
reverse the resistance induced by doxorubicin in the ovarian
cancer cell. Silibinin, a type of flavonoid, has been shown to
significantly downregulated PD-L1 expression through the JAK‒
STAT pathway and increased the immunogenicity of non-small
cell lung cancer (NSCLC)139. Baicalein and its conjugate baica-
lin, which are active flavonoids of Scutellaria baicalensis Georgi,
could downregulate the PD-L1 expression through suppressing
STAT3 activity and then reactivate T cells sensitivity to kill tumor
cells140. A triterpenoid sapogenin monomeric compound extracted
from Panax ginseng, panaxadiol reportedly enhanced the activity
of CTLs of tumor-cells killing capacity by the suppression of
STAT3 activity through JAK1 and JAK2 pathway. And their re-
sults also showed panaxadiol downregulated hypoxia-inducible
factor-1a (HIF-1a), which also could affect PD-L1 expres-
sion141. Han et al.142 investigated tanshinone in hepatocellular
carcinoma showed that it can induce apoptosis through the JAK2‒
STAT3 signaling pathway and simultaneously down-regulate the
PD-1 expression caused by TNF-g, thereby enhancing the
immunotherapy effect. Apigenin, a bioavailable flavonoid found
in nature, has been reported that could inhibit the high-level
expression of PD-L1 induced by IFN-g through inhibiting phos-
phorylation of STAT1 in breast cancer cells and melanoma
cells143,144.

The NF-kB pathway is the other pathway that can effectively
modulate the expression of PD-L1. The mutated or hyperactivated
NF-kB can significantly promote the PD-L1 expression145. Gin-
senoside Rk1, an active compound extracted from ginseng, was
reported that could inhibit PD-L1 expression in human lung
adenocarcinoma (A549 and PC9) cells through inhibiting the NF-
kB pathway146. In addition, inhibiting NF-kB transcription also
could directly induce the apoptosis of A549 and PC9 cancer cells.
Ginsenoside Rg3, the other active compound from ginseng, was
identified that could reduce the expression of PD-L1 induced by
cisplatin through inhibiting the activation of NF-kB in
A549 cells147. And it also reported that Rg3 could evaluate the
proportion of T cells in NSCLC patients148. A novel natural
polysaccharide from Cordyceps militaris, CMPB90-1, reportedly
restrained the PD-L1-PD-1 axis by downregulating AKT/NF-kB
pathway149. And then, it also could reverse the inhibitory effects
of TAMs on T cells by regulating the secretion of cytokines from
M2 macrophages through this pathway. Moreover, Hsu et al.150
vaccines as adjuvants. (A) Flavonoids; (B) other natural products.



Figure 7 Natural products down-regulate the expressions of PD-1 and PD-L1.
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also found that C. militaris could reduce the expression of PD-L1
through modulating the secretions of IFN-g and TNF-a in oral
cancer cells and decrease the secretion of IL-17A. Hesperidin, a
flavonoid compound from orange peel, has been reported that
could strongly inhibit the mRNA expression and protein activity
of PD-L1 through the inhibition of AKT/NF-kB signaling in
triple-negative breast cancer151.
Besides the natural products mentioned above, there are still
some natural products that have been shown could regulate PD-L1
expressions. Buzhong Yiqi Decoction (BYD) is a kind of com-
pound preparation made from Astragali (Radix Astragali),
Codonopsis (Radix Codonopsis Pilosella), Trigonal (Rhizoma
Sparganii), and other main drugs. Xu et al.152 found this tradi-
tional Chinese decoction could down-regulate the expression of
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PD-1 and PD-L1 in gastric cancer cells to promote CTLs activities
through the phosphoinositide 3-kinase (PI3K)/AKT/mechanistic
target of rapamycin (mTOR) pathway. Besides, this down-
regulation effect is further enhanced after the combination with 5-
fluorouracil152. SA-49, an active compound extracted from
Sophora alopecuroides L., was found could induce melanogenesis
associated transcription factor by activating protein kinase Ca and
subsequently suppressing glycogen synthase kinase 3b, accord-
ingly triggered lysosome-based degradation of PD-L1153. Yao
et al.154 found that chaenomeles speciose nakai has the anti-tumor
activity of down-regulating the expression of PD-L1 in a dose-
dependent manner, thereby inhibiting tumor growth and
enhancing its immune activity.

Therefore, it can be found that the mechanism of inhibition of
PD-1/PD-L1 by natural products are mainly attributed to the
regulation of the related signaling pathways, which have a com-
mon modulated effect of ICTs on almost all kinds of tumors. This
mechanism can also remodel the immunosuppression in tumors
through these signaling pathways, such as CMPB90-1 reversing
the inhibition of TAMs and decreasing the secretion of IL-17A,
which is the main difference from that of anti-ICTs antibodies.
And this is a unique advantage of natural products in the modu-
lation of ICTs.

4.2. Combination of natural products with anti-PD-1/PD-L1
antibodies

Besides the down-regulation of PD-1 and PD-L1 expressions,
natural products also showed outstanding therapeutic outcomes of
the combination with anti-PD-1/PD-L1 antibodies (Fig. 8).

Andrographolide, a compound extracted from Andrographis
paniculata, plays an important role in Chinese traditional medi-
cine for nearly 100 years (Fig. 8A). Liu et al.155 found it combined
with anti-PD-1 antibody (CD279, BP0146) reflected better ther-
apeutic outcomes than single-drug treatment for CT26 colon
cancer. And this combination could enhance the activities of Teffs,
increase IFN-g secretion, and promote the expressions of FASL,
perforin, and granzyme B, which are all Teffs-associated mole-
cules. And the mechanism of this combined therapy is to inhibit
the activity of cyclooxygenase-2 (COX-2) and release of PGE2,
which is a key element for keeping the immunosuppression in
tumors155.

Diosgenin, a natural steroidal saponin from Acacia concinna,
can enhance the activity of anti-PD-1 antibodies by increasing the
number of T infiltrated cells156 (Fig. 8B). Dong et al.157 proved
that the combination of diosgenin with anti-PD-1 antibody (clone
29F.1A12) could effectively promote necrosis and apoptosis of
melanoma cells. And they also found that this combined admin-
istration promoted the Teffs infiltration and expression of IFN-g.
Besides, their results showed the mechanism of diosgenin sensi-
tizes the anti-PD-1 antibody mainly contributes to the regulation
function of intestinal microbiota. It could increase the number of
clostridiales orders, which represents the better sensitivity of anti-
PD-1 antibodies therapy.

Cryptotanshinone, an agent purified from Salvia miltiorrhiza,
has extremely high medicinal value in China. Liu et al.158

discovered the therapeutic effect of cryptotanshinone at low
doses (10 mg/mouse) combined with the anti-PD-L1 antibody
(clone 10F.9G2) in LLC-bearing mice (Fig. 8C). The results
showed that LLC tumors were cued by this novel combination.
And it also reflected the resultant tumor-free mice had resistance
to LLC or not B16 melanoma, which illustrated that this
combination enhanced the generation of antitumor immune re-
sponses and immunological memory of LLC. Besides, they also
explore the mechanism of cryptotanshinone-induced DC matura-
tion. Cryptotanshinone could effectively downregulate I-kBa
expression and upregulate phosphorylated P65 in DCs, which
activate NF-kB pathway and promote the secretion of cytokine
genes including TNFa, IL-1b, and IL-12159,160. In addition,
cryptotanshinone also enhanced phosphorylated p38 and c-Jun N-
terminal kinase (JNK) of DCs that could upregulate the expression
of surface costimulatory and MHC molecules159,161.

The cancer-associated fibroblasts (CAFs) is also an important
factor that induces the immunosuppression in tumors162. Puerarin,
a flavonoid extracted from the kudzu root, is widely used in China
as the anti-fibrosis agent in multiple organs, such as the lung,
heart, and liver. Xu et al.162 reported that puerarin could sensitize
anti-PD-L1 antibody therapy through regulating the ROS level to
decrease the number of CAFs (Fig. 8D). ROS is an important
factor that can induce immunosuppression and enhance the CAFs
proliferation163e165. Xu et al.162 found that puerarin could
significantly inhibits ROS production, which results in the
reversing of immunosuppression. The low ROS level also de-
creases the number of CAFs and this can remove the physical
barrier in the 4T1 tumor model, which increases the infiltration of
T cells by 2-fold compare to the control group. And the high level
of infiltrated T cells enhances the therapeutic outcomes of anti-
PD-L1 antibodies.

Although there is no clear conclusion about how to efficiently
enhance the therapeutic outcomes of anti-ICTs antibodies, reversing
immunosuppression and increasing tumor-infiltrated T cells’ number
are two important points that have been commonly accepted. As
mention above, the inhibition of COX2 and PGE2 induced by
andrographolide and activation of NF-kB in immune cells induced
by cryptotanshinone both reverse the immunosuppression in tumor
and finally improve the anti-ICTs therapy. In addition, the gut
microbiome is also an important factor that modulates responses to
anti-PD-L1 therapy166. And its mechanism also focuses on the
modulation of immunosuppression and enhancement of Teffs’ func-
tion, and thus the regulation function of intestinal microbiota
induced by diosgenin enhances the outcome of anti-PD-L1 therapy.
For increasing the infiltrated T cells in tumors, Xu et al.162 found that
puerarin could achieve it through downregulation of CAFs, which
open the physical barrier of these T cells. In addition, the low ROS
level induced by puerarin also reversing the immunosuppression in
the tumor. Therefore, natural products have their unique advantages
in the combination of anti-ICTs therapy.
5. Natural products sensitize the adoptive cell
immunotherapy

Adoptive cell immunotherapy, especially T-cell-based adoptive
immunotherapy, is a promising anti-cancer immunotherapy and
has shown excellent therapeutic outcomes in the patients
(Fig. 9A)167. Briefly, the process of this immunotherapy consists
of three steps: 1) tumor fragments extracted from patient are
cultured in vitro under the exaction of IL-2; 2) lymphocytes are
overgrown under this condition and tumor cells will be killed after
2e3 weeks; 3) the pure lymphocytes are expanded to about
1011 cells and then adoptive back into patients. Therefore, the
number and activity of the target lymphocytes cultured in vitro is
the key point for adoptive cell immunotherapy. However, this
approach remains challenging due to a series of reasons, including



Figure 8 Natural products combine with anti-PD-1 and anti-PD-L1 antibodies to enhance the therapeutic outcomes of these antibodies. (A)

Andrographolide improve the efficiency of anti-PD-1 antibodies (CD279, BP0146) by reducing PGE2 secretion; (B)Diosgenin enhance the

therapeutic outcomes of anti-PD-1 antibodies (Clone 29F.1A12) by modulating intestinal microbiota; (C) Crytotanshinone improve the efficiency

of anti-PD-L1 antibodies (Clone 10F.9G2) through activation of NF-kB pathway; (D) Puerarin improve the efficiency of anti-PD-L1 antibodies

through inhibiting the CAFs activities.
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the restriction of antitumor effect by immunosuppressive mecha-
nism, the insufficient anti-tumor effect of T-cells cultured in vitro,
and expensive therapeutic cost. As the in-depth investigation of
the immune-mediated function of natural products, these obstacles
reportedly could be conquered by some natural agents.

First of all, natural products can efficiently expand the target
lymphocytes in vitro and it also can keep the activities of these
cells. Ma et al.168 reported the therapeutic effect of H. diffusa
polysaccharides (HDP) on the adoptive treatment of cytokine-
induced killer cells (CIKs), which is a kind of safety and feasi-
bility adoptive cells therapy in anti-tumor treatment (Fig. 9B).
Their results showed that HDP could up-regulate the percentage of
CD3þ and CD56þ CIK cells. And it also had great anti-tumor
ability due to the promotion of IFN-g and TNF-a productions.
Besides, there is a lower ratio of apoptosis in CIK cells treated by
HDP. Ju et al.169 proved that 6-gingerol, the major active compound
of ginger (Zingiber officinale), could effectively enhance the Teffs
production in tumors (Fig. 9C). After the treatment with 3.0 mg/mL
of 6-gingerol, they found it could effectively inhibit tumor growth
due to the increased number of Teffs. Then, they inject CD8þ T
cells, which were purified from the 6-gingerol pretreated tumor-
bearing mice, into EG7 tumor-bearing mice. And they found
more CD8þ T-cells infiltrated in tumors and more cells undergoing
division in the 6-gingerol-treated group compared to the control
group. Moreover, they treated CD8 T cells with 6-gingerol in vitro
and transferred them into EGE7 tumor-bearing RAG2�/� mice.
And these 6-gingerol-treated CD8 T-cells also showed outstanding
anti-tumor activity. These results showed the great potential of
natural products in adoptive cell therapy for cell expansion in vitro
and this may reduce the cost of this immunotherapy.

Then, natural products also can enhance the therapeutic out-
comes of adoptive cell therapy by improving the Teffs’ activities,



Figure 9 Natural products enhance the therapeutic effect of adoptive cell transfer therapy. (A) The generation of anti-tumor immune cells used

for adoptive cell therapy. Reprinted with the permission from Ref. 170. Copyright ª 2008, nature publishing group. (B) Hedyotis diffusa poly-

saccharides improve the efficiency of adoptive treatment of cytokine-induced killer (CIK) cells; (C) 6-gingeral expand the number of T cells in vitro

for adoptive therapy; (D) neem leaf glycoprotein (NLGP) can significantly enhance the activity of immune cells in spleen; (E) Fucosylation can

enhance the anti-tumor activity of T cells of adoptive therapy; (F) Curcumin improve the efficiency of adoptive T cells treatment.
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enhancing the infiltration of lymphocytes, and remodeling tumor
immunosuppressive microenvironments. Alatrash et al.170 reported
fucosylation could enhance the homing of antigen-specific CTLs to
malignant niches and increase its anti-tumor activity (Fig. 9D).
Besides, fucosylation would not increase the homing of CTL in
normal tissues. Their results showed fucosylation could alter CTL
trafficking, cytolytic machinery, synapse formation, and expression
of distinct activating surface molecules. And their method could
effectively enhance the therapeutic effect of T-cells-based adoptive
immunotherapy. Banerjee et al.171 found that neem leaf glycopro-
tein (NLGP) could significantly restrict the growth of melanoma
through vascular normalization by regulating cell-mediated im-
munity to enhance the infiltration of immune cells (Fig. 9E). Their
results showed the adoptive splenic immune cells therapy treated
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by NLGP could effectively normalize the angiogenesis, which is
mainly induced by tumor-associated microenvironments. Besides,
they also analyzed the expression of VEGF, VEGFR2, and CD31 in
adoptive transfer immune cells pretreated by NLGP and their ex-
pressions all were down-regulated. Thus, NLGP may be suitable
sensitize for adoptive immune cells therapy. In addition, Chang
et al.172 investigated that curcumin could enhance adoptive T cells
therapy through reversing the immunosuppression in tumors
(Fig. 9F). They found that the curcumin could enhance the activity
of Teffs, which could alter the tumor immunosuppression environ-
ment. And curcumin could increase the accumulation and function
of T-cells by blocking various immunosuppressive factors and cells,
including TGF-b, indoleamine-pyrrole 2,3-dioxygenase (IDO), and
Tregs. In addition, the treatment of curcumin also would affect
granzyme B promoter-conjugated optical reporter to improve the
cytotoxicity of Teffs. And these results suggested that adoptive
therapy with curcumin, a kind of multitargeting drug, has the po-
tential for clinical application.

As mention above, natural products not only can expand the
target immune cells in vitro, but also enhance the therapeutic ef-
fects of this immunotherapy, which shows great potential in
adoptive immune-cells therapy.

6. Nano-drug delivery system enhance the therapeutic
outcomes of natural products in cancer immunotherapies

After so many advantages have been explored in natural products
in cancer immunotherapies, the shortages of natural products were
Figure 10 Nano-drug delivery system design for natural products. (A)

anti-PD-1 antibodies on its surface through pH sensitivity linker and e

Copyright ª 2020, American Association for the Advancement of Science

DSPE-PEG2000 and TPGS. Reprinted with the permission of Ref. 79. Cop

sulfide nanoparticles (BiNP) and conjugated with immunoactive Ganod

polysaccharide-conjugated bismuth sulfide nanoparticles. Reprinted with

Society. (D) Structure of angelica sinensis polysaccharide PLGA nanoparti

antigen). Reprinted with the permission of Ref. 175. Copyrightª 2018, Els

which can self-assemble to nanoparticles, showed combination effect wit

Ref. 174. Copyright ª 2016, The American Society of Gene & Cell Ther
also been emphasized in these studies and limited its further
application, including low solubility, low bioavailability, and low
tumor targeting. Because of these limitations, most the natural
products have to apply to patients with a huge dosage, which may
increase the risk of inducing side effects. Therefore, advanced
drug-delivery systems should be designed for natural products to
overcome these limitations. And the nano-drug delivery system,
such as liposomes, micelles, and nano-particles, stands out due to
the better outcomes of tumor-targeting, anti-tumor activities,
immune-sensitization, stability, and safety.

Xiao et al.173 reported a novel nanoparticle-linked anti-PD-1
antibodies on its surface and encapsulating curcumin. And this
kind of nanoparticle was designed with dual pH sensitivity
(Fig. 10A). Compare to curcumin solution, this kind of nano-
particles enhances the cellular uptake of curcumin. Besides the
enhanced permeability and retention effect (EPR) effect, the
decoration of anti-PD-1 antibodies will also help nanoparticles
binding to PD-1þ T cells. Owing to the pH sensitivity, these
nanoparticles showed higher targeting for tumor cells. Then, more
curcumin was delivered into the tumor area to inhibit the NF-kB
pathway, which significantly inhibits the production of CCL-22,
TGF-b, and IL-10. And it will decrease the number of Treg cells
and enhance the activities of Teffs. This nanoparticle effectively
co-delivery anti-PD-1 antibodies and curcumin into tumors and
showed excellent therapeutic outcomes in vivo and in vitro.

Zhang et al.79 designed a novel nanoparticle encapsulating
quercetin (Q) and alantolactone (A), which promoted antitumor
responses through the ICD effect for microsatellite-stable
Scheme image of CUR@PPC-aPD-1. This novel nanoparticle linked

ncapsulating curcumin. Reprinted with the permission of Ref. 173.

. (B) Nano-formulated codelivery of quercetin and alantolactone with

yright ª 2019, American Chemical Society. (C) Synthesized bismuth

erma lucidum polysaccharide (GLP) to form Ganoderma lucidum

the permission of Ref. 174. Copyright ª 2019, American Chemical

cles encapsulating ASP (immunopotentiator) and OVA (model protein
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Table 2 List of natural products that improve cancer immunotherapy, including cancer vaccines, immune-check points inhibitors and

adoptive cell transfer therapy.

Category Source Natural product Key points of sensitizing immunotherapy Ref.

Saponins Ginseng Ginsenoside Rg3 � Trigger “ICD” effect

� Down-regulate the expression of PD-L1

74,141,142

Ginsenoside Rg1 � Enhance the anti-cancer effect of cancer DC-based

vaccines through NF-kB pathway

97

Ginsenoside Rk1 � Down-regulate the expression of PD-L1 through NF-

kB pathway

140

Astragalus Astragalus saponins � Enhance the anti-cancer effect of cancer protein-

based vaccines

96

Quillaja saponaria

Molina

QS-21 � Enhance the anti-cancer effect of cancer vaccines 165

Crocus sativus corme CS5 � Enhance the anti-cancer effect of cancer protein-

based vaccines

95

Anemone flaccida Anemone flaccida

saponins
� Down-regulate the expression of PD-1 and PD-L1

through STAT3 pathway

125

Panax ginseng Sapogenin � Down-regulate the expression of PD-1 and PD-L1

through STAT3 pathway

136

Acacia concinna Diosgenin � Enhance the anti-cancer effect of anti-PD-1 antibody

(CD279, BP0146)

151

Polysaccharides Dioscorea Dioscrorea

polysaccharides
� Enhance the anti-cancer effect of cancer DNA

vaccines

104

Astragalus

membranaceus

Astragalus

polysaccharides
� Enhance the anti-cancer effect of cancer DC-based

vaccines with Codonopsis polysaccharide

106

Codonopsis pilosulae Codonopsis

polysaccharides
� Enhance the anti-cancer effect of cancer DC-based

vaccines with Astragalus polysaccharide

106

Basil Basil polysaccharides � Enhance the anti-cancer effect of cancer DC-based

vaccines

108

Ganodema Ganodema

polysaccharides
� Enhance the anti-cancer effect of cancer vaccines

� Down-regulate the expression of PD-1 and PD-L1

through STAT3 pathway

109

Dendrobium officinale Dendrobium officinale

polysaccharides
� Down-regulate the expression of PD-1 and PD-L1

through STAT3 pathway

126

Cordyceps militaris CMPB90-1 � Down-regulate the expression of PD-L1 through NF-

kB pathway

143

Hedyotis diffusa Hedyotis diffusa

polysaccharides
� Enhance the anti-cancer effect of adoptive CIK cells

immunotherapy

157

Flavonoids Onion Quercetin � Trigger “ICD” effect (with alantolactone at 1:4 ratio) 76

H. Diffusa Wild Rutin � Enhance the anti-cancer effect of cancer peptide-

based vaccines

114

Fruits Procyanidin � Enhance the anti-cancer effect of cancer peptide-

based vaccines

115

Pomelo Naringenin � Enhance the anti-cancer effect of cancer vaccines 116

Silybum marianum

(L.) Gaertn.

Silibinin � Down-regulate the expression of PD-L1 through JAK-

STAT pathway

134

Scutellaria

baicalensis

Baicalein

Baicalin
� Down-regulate the expression of PD-L1 through JAK-

STAT pathway

135

Celery Apigenin � Down-regulate the expression of PD-L1 through

JAK‒STAT pathway

138

Orange peel Hesperidin � Down-regulate the expression of PD-L1 through NF-

kB pathway

145

Kudzu root Puerarin � Enhance the therapeutic outcome of anti-PD-L1

antibody through regulation of CAFs

165

Others Chili pepper Capsaicin � Trigger “ICD” effect 68

Grapes Resveratrol � Trigger “ICD” effect 75

Ginger Curcumin � Enhance the anti-cancer effect of cancer peptide-

based vaccines

� Enhance the anti-cancer effect of adoptive T cells

immunotherapy

101,158

6-Gingerol � Enhance the anti-cancer effect of adoptive T cells

immunotherapy

161
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Table 2 (continued )

Category Source Natural product Key points of sensitizing immunotherapy Ref.

Inula racemosa Alantolactone � Trigger “ICD” effect (with quercetin at 1:4 ratio) 76

Lithospermum

erythrothizon

Shikonin � Trigger “ICD” effect 79

Marine red algae l-Carrageenan � Enhance the anti-cancer effect of cancer peptide-

based vaccines

166

Anthocyanin Dephinidin-3-O-

glucoside (D3G)

Cyanidin-3-O-

glucoside (C3G)

� Down-regulate the expression of PD-1 and PD-L1

through STAT3 pathway

128

Coptidis rhizomes Berberine � Down-regulate the expression of PD-L1 through

JAK‒STAT pathway

133

Salvia miltiorrhiza Tanshinone � Down-regulate the expression of PD-L1 through

JAK‒STAT pathway

152

Crytotanshinone � Enhance the anti-cancer effect of anti-PD-L1

antibody (clone 10F.9G2)

152

Sophora

alopecuroides L.

SA-49 � Down-regulate the expression of PD-L1 147

Andrographis

paniculata

Andrographolide � Enhance the anti-cancer effect of anti-PD-1 antibody

(CD279, BP0146)

149

Seaweed Fucose � Enhance the effect of adoptive T cells immunotherapy 159

Neem leaf Neem leaf

glycoprotein
� Enhance the anti-cancer effect of adoptive cells

immunotherapy

160
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colorectal cancer (Fig. 10B). They found the synergistic effect of
quercetin and alantolactone at ICD effect and the anti-tumor ac-
tivities were maximized at the molar ratio of 1:4. To deliver this
effective molar ratio into the target area, they developed a new
micelle encapsulated with Q and A, which was prepared with
DSPE-PEG2000 and D-a-tocopherol polyethylene glycol succi-
nate (TPGS) through the ethanol injection method. And they also
found the drug release ratio of these Q-A micelles was also
approximately 1:4, which is the optimal molar ratio. After various
treatments of these Q-A micelles, a dramatic increase of CRTþ

cells induced by the ICD effect and a significant decrease of Tregs
and MDSCs also were reported. Moreover, the tumor-promoting
inflammation was also inhibited by the G-M micelles treatment.

Yu et al.174 developed a kind of gold nanoparticle (Au-NP)
containing Ganoderma lucidum polysaccharide (GLP) to over-
come the drawbacks of GLP solutions, such as the short half-life,
instability, and low tumor targeting (Fig. 10C). And the results
also showed the good characteristics of the GLP-AuNP including
increased instability, enhanced tumor targeting, and long-
circulating time. Meanwhile, these GLP-AuNPs also kept the
immunomodulated function of GLP like inducing dendritic cell
(DC) activation and promoting the production of Teffs in the
spleen. Besides, GLP-AuNPs exhibited strong inhibitory effects
on 4T1 tumor growth and pulmonary metastasis when combined
with doxorubicin. This work suggests that polysaccharides from
natural herbs can be incorporated into nanocomposites with
immunoregulatory characteristics for enhanced efficacy in tumor
therapy.

Gu et al.175 successfully encapsulated the immunopotentiator
Angelica Sinensis polysaccharide (ASP) and OVA into poly (lac-
tic-co-glycolic acid, PLGA) to formulate the novel NPs-based
vaccine delivery system (Fig. 10D). This kind of NPs showed
good stability at 4 �C. And the OVA in the core of NPs could
effectively release at 37 �C. Besides, these NPs also could enhance
the cellular immune response through improve the activity and
proliferation of Teffs. Furthermore, a strong specific antibody
response induced by OVA and ASP is observed in this study. All
of these results proved that the NPs vaccine delivery system could
induce longer immune responses compared to the traditional
vaccine preparations.

The Liposome is another vesicle to deliver antigen protein into
the target area. Zhang et al.99 developed a liposome delivery
system of A. saponins and basic fibroblast growth factor (bFGF)
antigen to maximize the anti-tumor immune responses induced by
these antigens. Through the adjuvant function of A. saponins and
bFGF antigen protein, this liposome delivery system could induce
lots of specific antibodies and enhance the production of IFN-g in
BALB/c mice. They also found this system could effectively
inhibit the angiogenesis in TME, which is an additional anti-tumor
function of this novel-designed liposome.

Lu et al.104 reported a kind of curcumin micelles that can
remodel the suppressive immune microenvironment to improve
the activity of a lipid-based the TRP2 peptide vaccine (Fig. 10E).
The combination of curcumin-polyethylene glycol conjugate
(CUR-PEG) micelles and TRP2 peptide vaccine showed an
outstanding therapeutic effect compared to individual treatments.
Moreover, it significantly boosted cytotoxic T-lymphocyte re-
sponses and IFN-g secretion. Besides, this combination therapy
also inhibited the production of immunosuppressive factors (such
as IL-6 and chemokine ligand 2) and enhanced the number of
proinflammatory cytokines (such as TNF-a and IFN-g). A
phenotype switch of M2 to M1 of this kind of micelles has also
been reported in this study. These results all showed the great
potential of CUR-PEG micelle as a novel adjuvant for peptide
cancer vaccines.

Above all, there are some unique advantages of nano-drug
delivery systems about improving the therapeutic effect of natural
products. First of all, it can efficiently keep the activities and
sensitized effect of cancer therapy and increase the circulation
time of natural products. Then, it also enhances the tumor-
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targeting through the modification of some tumor-specific species
and decreases the dosage of natural products. Thirdly, the nano-
sized particles of natural products reported by previous studies
also showed good stability and safety. Therefore, the nano-drug
delivery system is an ideal strategy for natural products.

7. Summary and conclusions

After concluding and investigating the previous studies about
natural products sensitizing cancer immunotherapy, we find that
natural products can effectively enhance the therapeutic effects of
all these immunotherapies, including cancer vaccines, immune-
check points inhibitors antibodies, and adoptive cells immuno-
therapy. In addition, natural products successfully expand the in-
dications of immunotherapy into “cold tumor”, such as triple-
negative breast tumor, Lewis lung tumor, colorectal tumor
model, and so on.

As the review is shown, natural products can enhance the
specific cancer immunotherapy through modification of the cor-
responding mechanisms, such as the induction of ICD effect for
cancer vaccines, the increase of infiltrated T cells for anti-ICDs
antibodies, and the expansion of the target immune cells in vitro
for adoptive immune-cells transfer therapy. More importantly, as
for the immunosuppressive factors and cells in tumors, which is
also the key element for passivating all kinds of cancer immu-
notherapies, natural products also have shown outstanding effects
on it, such as inhibition of secretion of immunosuppressive factors
(TGF-b, PGE2, IL-10 and so on), promotion of secretion of anti-
tumor immune factors (IFN-g, TNF-a, IL-1b and so on), down-
regulation of the number of immunosuppressive cells (Tregs,
MDSCs, M1 macrophage cells, and so on) and enhancement of the
activities and number of Teffs. All of these effects of natural
products can contribute to the reversion of tumor-associated
immunosuppressive microenvironment.

According to Table 2, saponins, polysaccharides, and flavo-
noids are three main categories that can improve immunotherapy.
Some of them even could sensitize two or more kinds of immu-
notherapy, such as ginsenoside Rg3, ganoderma polysaccharides,
and curcumin. And the mechanism mainly depends on the regu-
lation of associated signaling pathways. Some pathways even can
improve the therapeutic effects of different immunotherapies, such
as the NF-kB pathway for cancer vaccines and anti-PD-L1 anti-
bodies. The reason for that mainly contributes to the connection
between these pathways and immunosuppression with tumors. As
mentioned in part 1, tumor cells can “hijack” (upregulate or
downregulate) some signaling pathways, which associate with the
immune system, to induce immunosuppression. Therefore, the
agents that can regulate these pathways to a normal level
will reverse the immunosuppression and sensitize cancer immu-
notherapy. Natural products are such agents. And this is also their
biggest advantage compared to other agents. According to this
unique mechanism, as mentioned above, some natural products
even can sensitize two or more kinds of cancer immunotherapies.

Besides the significant sensitized effect of natural products into
immunotherapy, there are many advantages of application natural
products as sensitizers compared to the investigation of new
agents. Firstly, most of them mentioned in this review have been
approved by the FDA, the cost of increasing indications to them is
much lower than developing whole new agents. Then, most the
natural products have wide treatment windows and high security.
More important, natural products still have other functions like
anti-viral, anti-bacterial, anti-inflammatory, anti-fungal, and anti-
cancer properties. And these functions could further help the anti-
tumor treatments.

Moreover, there are several studies that investigated how to use
nanotechnology to overcome the shortages of natural products,
such as low solubility, low bioavailability, and low tumor target-
ing. And these new nanoparticles of natural products not only
showed higher tumor targeting and long-term circulation, but also
further enhance the anti-tumor effect of immunotherapy. Nano-
technology promotes natural products to be the better sensitizer of
cancer immunotherapy.

However, there are still some problems that should be solved
to make natural products apply to cancer immunotherapy better.
First of all, as for so many natural products combined with cancer
immunotherapies, it should be screened for the most suitable one
based on the specific cancer immunotherapy. For example, for
peptide vaccines or mRNA vaccines with poor immune-stimulate
effects, the suitable natural products should have the ability to
improve this aspect, such as enhancing the antigen-presenting
process, but for anti-ICTs therapy, the effect of increasing T
infiltrated cells’ number is the most important character for the
suitable natural products. Secondly, the signaling pathways
related to the immune system and cancer immunotherapy should
be explored more deeply and comprehensively. It can be found
that the sensitization of natural products on cancer immuno-
therapy mainly depends on the specific signaling pathways
associated with the immune system, and thus a comprehensive
understanding of these signaling pathways will be a beneficial to
selecting the more effective natural products. Thirdly, there
should be more data to provide information about the function of
natural products in cancer immunotherapy. Although various
natural products that can sensitize cancer immunotherapy have
been discussed in this review and some of them even have been
applied into clinical trials, the data of this field is still too little
compare to that of natural products used in chemotherapy and
radiotherapy.

Above all, this review collects andconcludes the emerging studies
about natural products sensitizing cancer immunotherapies. And
there is a clear conclusion that natural products have positive effects
on cancer immunotherapies, which mainly depends on their unique
modification of tumor immunosuppressive microenvironment. The
emerging role of natural products in cancer immunotherapy still has
more possible and is worthy to be paid more attention.
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65. Sahin U, Tureci Ö. Personalized vaccines for cancer immunotherapy.

Science 2018;359:1355e60.

66. Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, ther-

apeutic vaccines for cancer. Nat Rev Immunol 2018;18:168e82.

67. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death

in cancer therapy. Annu Rev Immunol 2013;31:51e72.

68. Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P,

et al. Consensus guidelines for the detection of immunogenic cell

death. OncoImmunology 2014;3:e955691.
69. Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buqué A, Senovilla L,
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