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With the advent of high throughput sequencing technologies, genome-wide
association studies (GWAS) have become a powerful paradigm for dissecting
the genetic origins of the observed phenotypic variation. We recently
completely sequenced the genome of 1011 Saccharomyces cerevisiae isolates,
laying a strong foundation for GWAS. To assess the feasibility and the limits
of this approach, we performed extensive simulations using five selected sub-
populations as well as the total set of 1011 genomes. We measured the ability to
detect the causal genetic variants involved in Mendelian and more complex
traits using a linear mixed model approach. The results showed that population
structure is well accounted for and is not the main problem when the sample
size is high enough. While the genetic determinant of a Mendelian trait is easily
mapped in all studied subpopulations, discrepancies are seen between datasets
when performing GWAS on a complex trait in terms of detection, false positive
and false negative rate. Finally, we performed GWAS on the different defined
subpopulations using a real quantitative trait (resistance to copper sulfate)
and showed the feasibility of this approach. The performance of each dataset
depends simultaneously on several factors such as sample size, relatedness
and population evolutionary history.

This article is part of the theme issue ‘Genetic basis of adaptation and
speciation: from loci to causative mutations’.
1. Introduction
One key concern in biology is to understand what drives the phenotypic diversity
observed between individuals, populations and species. In this context, being able
to find genetic variants responsible for this diversity is an important step toward
the elucidation of the genetic architecture of traits. Due to the emergence of cost-
effective sequencing technologies, the generation of large-scale sequence datasets
for a large number of individuals of the same species no longer represents a
major bottleneck, in particular for model organisms. To this end, the last decade
has seen the initiation of several large-scale resequencing projects, enabling the
gathering of enough sequences to make high-throughput approaches possible.
Large-scale polymorphism surveys have been reported in humans [1,2], Arabidop-
sis thaliana [3], Saccharomyces cerevisiae [4] and Caenorhabditis elegans [5], for
example. Their principal goal was to gather a large number of genome sequences
to establish a catalogue of genetic variants, including rare ones.

There are multiple motivations for carrying out large-scale population geno-
mics projects. First, they are designed to enable a better understanding of the
demographic and evolutionary histories of populations. Second, such datasets
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provide insight into the processes by which genetic diversity
is generated and maintained. Third, they can help to dis-
tinguish effects acting on the entire genome (such as drift,
migration, inbreeding) and those acting on individual loci
(selection, mutation, recombination). Finally, one of the
major incentives of resequencing projects is to gain a better
understanding of the relationship between genotypes and
phenotypes, and more specifically to build genetic datasets
that would make it possible to map allelic variants
responsible for phenotypic diversity.

One way to access the genotype-phenotype relationship is
to conduct genome-wide association studies (GWAS). This
strategy has become an elegant approach to dissect natural
variation by associating phenotypes with genotypes at the
genome scale as it has the advantage of benefitting from
the historical recombination in wild populations to detect
non-random associations between phenotype of interest and
genetic variants distributed throughout the genome. To
date, many studies have already proven that GWAS is a
very effective way to find genetic determinants associated
with quantitative traits. These studies have been conducted
primarily on model organisms, and investigated traits
mostly focus on human genetic diseases [6,7], agronomy or
industrially relevant traits like resistance to chemical com-
pounds, production of oil for Arabidopsis thaliana [8–10],
grain yield under water deficit on Oryza sativa [11], or longev-
ity using the DGRP dataset for Drosophila melanogaster [12].
The power of these kind of studies comes with the integration
of multi-omics data [13]. However, this strategy has some
major limitations including the important multiple testing
burden, the modest proportion of the estimated heritability
explained by associated genetic variants, and the difficulty
in detecting common variants with small effects or rare
causal variants.

Despite being a widely used model organism for genetics,
yeasts, and more precisely S. cerevisiae, are under-represented
model organisms for GWAS. This is mainly due to the fact
that a large number of natural isolates have only recently
been sequenced [4]. They are nonetheless ideal to conduct
surveys of population genomics for several reasons. First,
their genomes are small and compact (around 12 Mb) and
are therefore relatively easy to sequence. Second, yeast can
be isolated from a broad range of ecological and geographical
origins, thus maximizing the genetic and phenotypic
diversity within the studied species. Finally, regarding the
dissection of the genotype–phenotype relationship, yeasts
have the advantage of forming clonal colonies, allowing phe-
notypic measurements to be replicated, enabling multiple
surveys and generating reproducible data. Until a few years
ago, only a hundred genome sequences were available, limit-
ing the possibility of conducting GWAS. However, several
studies aimed to evaluate the feasibility of genome-wide
association on S. cerevisiae and try to appreciate its limits
[14–16]. Some limitations were assessed, such as the inflated
type-I error (i.e. false positive) due to the population stratifi-
cation and the resulting challenges in separating signal from
noise, which highlighted the importance of efficiently correct-
ing this confounding factor when performing GWAS.
Although these studies laid the groundwork for further
associations within S. cerevisiae, they all suffered from the
lack of statistical power due to the limited size of the cohort
used. The genomic sequences of 100 strains associated with
49 phenotypes were used to perform GWAS and made it
possible to find associations representing proof of principle,
with a high probability of detecting large-effect loci, but
emphasizing that 100 genomic sequences still limit the
power of analyses, with little or no significant association
found for multiple phenotypes [17,18].

More recently, sequencing efforts have been carried out
and allowed for the availability of more than 2000 S. cerevisiae
genome sequences [4,17,19,20]. Of the different datasets, the
largest [4] aimed to obtain deep coverage sequenced gen-
omes for more than 1000 natural isolates of S. cerevisiae.
This survey highlighted differential genome evolution pat-
terns across 26 subpopulations with their own and unique
evolutionary history. In addition, the dataset was large
enough to overcome aforementioned statistical power issues
and was found to be suitable for performing GWAS, as gen-
etic variants were significantly associated with 14 traits, most
of them being complex (i.e. involving more than one locus)
[4]. To get a better idea of the variability of the performance
across subpopulations, we decided to test whether certain
subpopulations or subsets of genomes will reduce certain
biases in the parameters that influence the outcome of such
associations. Here, we simulated phenotypes based on differ-
ent genetic architectures, i.e. governed by one single
nucleotide polymorphism (SNP) for a Mendelian trait and
by 10 SNPs for a complex trait. We then measured our ability
to identify the causal variants via GWAS on five subsets of
the 1011 genomes as well as the full dataset (see Material
and methods). Our results suggest that associations are
easily found for Mendelian traits, with the exception of one
dataset showing a very high type-I error rate due to cryptic
relatedness. Regarding the association with more complex
phenotypes, performance varies considerably between the
cohorts used, with some causal variants left unidentified
due to their small effect size. Together, these results under-
score the need for careful selection of individuals from the
total dataset when running GWAS. The size of the population
is of great importance, as predicted by previous studies, but
the presence of confounding factors sometimes leads to unre-
liable results. Certain phenotypic properties also modify the
power of detection, such as the effect size or the complexity
of the phenotype. Finally, we present an example of an
association using the copper sulfate resistance phenotype, a
well-known simple trait in S. cerevisiae, to see if the results
follow our simulations.
2. Material and methods
(a) Saccharomyces cerevisiae isolates, sequencing data

and reads mapping
All the strains and sequencing data used for this study were
obtained from Peter et al. [4]. The individual cleaned VCF (var-
iant call format) files constructed in the context of this project
were directly used for further analyses.

(b) Subpopulations and datasets tested
For this study, we worked with six different datasets, based on
1011 previously sequenced isolates of S. cerevisiae [4]:

— the complete dataset, that gathers the 1011 isolates,
— a dataset named ‘sampled diversity’ that is composed of

133 isolates representative of the genetic diversity of the
S. cerevisiae species and for which the strains were selected



Table 1. Datasets description.

datasets individuals π
polymorphic
positions singletons

biallelic polymorphic
positions, no
missing

biallelic polymorphic
positions, no
missing, MAF > 5%

1011 strains 1011 0.0044 1 625 809 509 011 1 346 007 82 869

mixed origins 71 0.0032 142 093 3959 97 690 81 030

mosaic region 3 113 0.0042 496 841 174 079 365 433 72 807

sake 47 0.0008 100 257 14 548 84 197 21 489

sampled diversity 133 0.0049 935 060 506 761 720 709 66 299

European wine 323 0.001 284 342 105 123 218 789 14 164
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to avoid overrepresentation of some specific groups
(electronic supplementary material, table S1),

— four datasets selected according to the subpopulations
defined in Peter et al. [4] and composed of nearly 50 or
more isolates: the European wine dataset that gathers 323
strains related to winemaking, the sake dataset with 47 iso-
lates used for sake fermentation, the mosaic region 3 that
groups 113 isolates and the mixed origin cluster, which
brings together 71 wild and industrial—mostly bakery—
strains.

(c) Genome-wide association studies matrix preparation
The joint calling method of GATK [21] was run with the individ-
ual cleaned VCF files to create a complete genotyping matrix for
each of the six datasets used in this study.

For each of these, we used vcftools [22] to keep only the bial-
lelic SNPs, by setting the min-alleles and the max-alleles to 2. The
average pairwise nucleotide diversity π was estimated based on
this matrix with the –window-pi option, considering the whole
genome as window size.

We also used vcftools to filter missing genotypes as follows
with an arbitrary threshold to exclude all variants present in
less than 1000 individuals for the total matrix (–max-missing-
count option has been set to 11), and we excluded all sites with
missing calls for the subset matrices (–max-missing 1.0 to allow
only sites with 100% present calls). Finally, we excluded from
the matrices the sites that had a Minor Allele Frequency
(MAF) < 5%, using PLINK 1.9 with the –maf option set to
0.05 [23].

The size of the constructed matrices is recapitulated in
table 1.

Copy number variants (CNVs) detected in Peter et al. [4]
were added in the complete matrix. We first converted CNV
information using the plink recode12 option, which allowed us
to encode the CNVs with 1 corresponding to the presence of
the gene with one copy only, and 2 indicating that the gene is
amplified. This encoding allowed us to add 925 CNVs that
showed variation among the 1011 isolates.
(d) Phenotype simulation
For each of the six datasets, we simulated 1000 Mendelian traits
(governed by a single causal SNP) and 1000 complex traits (gov-
erned by 10 SNPs). Causal SNPs were randomly chosen in the
SNP matrix and a phenotype was generated accordingly using
GCTA [24]. The heritability of all the simulated traits was
chosen to be 0.8 for each dataset. The command executed for
the phenotype simulations was the following:
gcta –bfile $snp –maf $maf –simu-qt –simu-causal-loci $snplist
–simu-hsq 0.8 –simu-rep 1 -out $output

With the simulation of a complex trait, we used GCTA’s default
effect size assignation method, which comprises generating them
from a standard normal distribution among the 10 causal SNPs.

(e) Phenotyping on CuSO4
Quantitative high-throughput phenotyping was performed using
endpoint colony growth on solid media [25]. Strains were preg-
rown in flat bottom 96-well microplates containing liquid YPD
medium. The replicating ROTOR HDA© benchtop robot (Singer
instruments) was used to mix and pin strains onto a solid YPD
matrix plate at a density of 384 wells. The matrix plates were incu-
bated overnight at 30°C to allow sufficient growth and replicated
on CuSO4 10 mM as well as on YPD 30°C as pinning and
growth control. Each isolate was present in quadruplicates on
the corresponding matrix (interplate replicates) and at two differ-
ent positions (intraplate replicates). The plates were incubated at
30°C for 40 h and were scanned at a resolution of 600 dpi and
16-bit grayscale. Quantification of the colony size from plate
images was performed using the software package Gitter [26].
Each value was normalized using growth ratio between the
stress media and standard YPD medium 30°C.

( f ) Estimation of the genome-wide heritability
The estimation of genome-wide heritability was completed by
dividing the genetic variance of the null model by the total var-
iance of the null model (genetic variance and residual variance),
computed using FaST-LMM.

(g) Association
We performed mixed-model association analysis using FaST-
LMM [27]. The command used for association was the following:

fastlmmc -bfile $snp -bfileSim $snp -pheno $pheno -out $assoc_
file -verboseOutput

The mixed model adds a polygenic term to the standard linear
regression designed to circumvent the effects of relatedness
and population stratification. To quantify the extent of the bulk
inflation and the excess false positive rate, we computed the
genomic inflation factor λ for each run of simulation. This
factor is defined as the ratio between the median of the empiri-
cally observed distribution of the test statistic on the expected
median. For example, the λ for a standard allelic test for
association is based on the median (0.456) of the 1 d.f. χ2 distri-
bution. Under a null model of no association and unlinked
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Figure 1. Overview of the six datasets used in this study. (a) Phylogenetic relationships between the 1011 S. cerevisiae isolates, illustrated by a neighbour-joining
tree constructed with all biallelic SNPs in the population [4]. Branches of the four phylogenetic clusters are highlighted with different colours while the isolates from
the sampled diversity dataset are designed with a blue circle. (b) Distribution of the minor allele frequency of the polymorphic positions within the six considered
datasets.
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variants, the expectation is for the λ to be 1. A λ superior to 1
indicates inflated p-values of association, possibly due to a
confounding factor not accounted for.

(h) Permutations and simulations evaluation
We estimated a trait-specific p-value threshold for each condition
by permuting phenotypic values between individuals 100 times.
The significance threshold was the 5% quantile (the fifth lowest
p-value from the permutations). With that method, variants pas-
sing this threshold have a 5% family-wise error rate. In order to
evaluate and compare the power of our datasets to recover causal
SNP(s), we built a table of confusion for each run of simulation,
by measuring the number of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN), transposed
into rates with the following formulas:

— True positive rate (TPR) = TP/(TP + FN)
— True negative rate (TNR) = TN/(TN + FP)
— False positive rate (FPR) = FP/(FP + TN)
— False negative rate (FNR) = FN/(FN + TP)

3. Results
(a) Characteristics of subpopulations selected for

genome-wide associations
The performance of genome-wide association studies varies
greatly depending on the characteristics of the population
used to conduct the experiment. In order to evaluate the influ-
ence of parameters such as minor allele frequency, sample size
and relatedness, we used six different sets of individuals from
the 1011 sequenced isolates of S. cerevisiae. Among the different
clades identified though the analysis of phylogenetic relation-
ships between the isolates [4], four were directly selected as
subsets: European wine, sake, mosaic region 3 and the mixed
origin cluster (figure 1a). We have also included the complete
dataset with 1011 individuals and the sampled diversity
dataset composed of 133 individuals representing the genetic
diversity of the S. cerevisiae species. These datasets vary in
size, both in terms of number of individuals and polymorphic
sites (table 1), but their performance is probably not solely
related to these characteristics, as multiple factors are expected
to influence the results of the associations. As for other species
such as humans or A. thaliana, there is a bias toward low-fre-
quency variants in S. cerevisiae, which can be illustrated by
the 31.3% of singletons, i.e. variants that are only found in
one isolate, as observed in the 1011 strains [4]. Across the differ-
ent defined subsets, this value is highly variable, ranging from
2.8% for the mixed origins cluster to 54.2% for the sampled
diversity dataset, while the European wine and mosaic
region 3 datasets have a proportion of singletons close to the
entire population (table 1).

In order to avoid false associations, successive quality
control filtering steps were applied to the SNP matrices gen-
erated for each dataset. We kept only biallelic SNPs and
filtered out SNPs with missing genotypes for all matrices,
except for the 1011 strains dataset, for which we kept SNPs
with at least 1000 informed genotypes. The markers with a
MAF lower than 5% were also removed. The retained
matrices contain between 14 164 SNPs for the European
wine group and 82 869 SNPs for the 1011 strains and cover
the entire genome in each dataset (table 1). After these prun-
ing steps, the distribution of the MAF shows a rapid decrease,
with a strong bias toward the low frequency variants
(figure 1b). However, the distribution of the MAF is more uni-
form for the mixed origins dataset, and the sake dataset has
13% of the SNPs with a MAF of around 0.49. These latter
SNPs are distributed across the entire genome and this bias
is linked to the fact that half of the sake strains are clustered
on a thin branch of the tree, suggesting that they are very
close and share a recent common ancestor (figure 1a).

In order to test the ability of each dataset to map the
causal variants responsible for phenotypic variation,
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extensive simulations were performed. The causal genetic
determinants of two types of traits, Mendelian and complex
traits governed by one and a large number of genetic variants
of varying effect sizes respectively, were selected at random.
These simulated traits obviously do not summarize all the
complexity of the genetic architecture of the traits but give
an overview of the behaviour of the different populations
on the GWAS performance according to the type of trait. Phe-
notypic data were generated based on the genotype of each
strain. The association was run using FaST-LMM, which
adds a polygenic term to the standard linear regression
designed to circumvent the effects of kinship and population
stratification [27]. These steps were repeated 1000 times for
each type of trait and dataset. For each run, the phenotype
dataset was permuted 100 times and the lowest p-value of
each genome-wide test was recorded. And a genome-wide
specific significance threshold of 5% family-wise error rate
was estimated.

(b) Detection and mapping of Mendelian traits in the
different subpopulations

We first assessed the ability to detect an association between
the different matrices and a Mendelian trait, governed by one
genetic variant, on the basis of 1000 simulated Mendelian
traits for each dataset. Overall, the unique causal genetic var-
iant was identified as significant for all 1000 runs, with the
exception of seven runs performed with the sake subpopu-
lation, which clearly illustrates the high capacity of
identifying the causal SNP for all datasets in case of a Mende-
lian trait. Equally important is the ability of the dataset to
differentiate the causal variant from other markers. For the
evaluation of this parameter, we computed the genomic
inflation factor (λ), which quantifies the extent of the bulk
inflation and the excess of false positive cases. All datasets
except the sake one have λ close to the expected value of 1
for most runs, indicating that they are well suited for
detecting and mapping of Mendelian traits (electronic sup-
plementary material, figure S1). The sake dataset shows
much more scattered λ values, revealing a certain lack of
power to efficiently detect associations.

This observation leads us to determine the proportion of
false positives among the variants detected as associated.
The median value of the false positive rate (FPR) is very
low for all datasets (<2 × 10−3), but can vary a lot among a
run to another (figure 2a; electronic supplementary material,
table S2). The higher values are observed for the sake dataset,
for which 145 runs show a FPR of more than 10%, making the
results from this dataset unreliable. To a lesser extent, some
runs of the European wine dataset reach a value of 5%,
which is also much higher than expected for a high-
confidence dataset. However, these high FPRs can be
considered overestimated when there is linkage between
some markers and the causal genetic variant (electronic
supplementary material, figure S2).

Although the causal genetic variant governing a Mende-
lian trait is always found with the exception of a few runs,
false positives rates can vary between the datasets that were
tested. These results suggest that our datasets appear globally
suitable for performing GWAS in the case of a low genetic
complexity trait. Indeed, we do not notice any inflated
p-values due to the population structure, except for the sake
subpopulation, showing as a result a very large number of
false positives. The sample size is not the only factor influen-
cing the FPR, as the sampled diversity shows the best
performance, and the European wine cluster (second highest
sample size) performs poorly, which means that a careful
selection of strains to avoid the overrepresentation of some
closely related strains could be a good way to create an
effective dataset for GWAS.

(c) Relatedness and the mapping of Mendelian traits:
the example of the sake subpopulation

The population corresponding to the cluster of sake strains
shows relatively poor performance, even for a Mendelian
trait. Indeed, it corresponds to the only dataset for which the
causal genetic variant has not been associated for some runs
and, more importantly, it shows high FPR for many runs pre-
venting any conclusion to be drawn from association studies.
Several characteristics of this dataset can be attributed to this
failure. First, this dataset only contains 47 strains, but sample
size cannot be the only factor, as the performance of the dataset
does not seem to be related to the size for the other datasets.
We also observed that the global genetic diversity within
this cluster in very low (π = 0.0008). Moreover, 23 out of the
47 strains are clustered on a thin branch of the tree
(figure 1a), suggesting that they share a very recent common
ancestor that could be the source of a systematic bias in
allele frequency such as the overrepresentation of variants
with a MAF around 0.49 (figure 1b). Across the 1000 associ-
ations, we observed that these variants were overrepresented
in both the false negative and false positive categories
(figure 2b). Among the 135 simulated traits for which the
causal SNP had aMAF around 0.49, our test failed to associate
six and a higher number of FP was observed compared to the
others (electronic supplementary material, figure S3).

In general, it seems that the genetic variants with a MAF
around 0.49 will cause problems. If they are causal, it will be
more difficult to detect them by association or will lead to an
increase in the number of false positives. If they are not
causal, they will still be wrongly associated with the trait.
This case allowed us to measure the impact of relatedness
(i.e. sharing a recent common ancestor) on the mapping of
traits with GWAS, as the relationship will result in a MAF
bias of the genetic variants.

(d) Mapping of complex traits and the importance
of sample size

To further assess the performance of our datasets, we tested
their utility to map causal SNPs in the context of 1000 simu-
lated complex traits governed by 10 SNPs for each dataset
and estimated the fraction of heritability recovered. No data-
set could detect all the causal SNPs that were used to
simulate the phenotypes. The best results obtained are the
detection of eight causal SNPs for 15 runs of the 1011 strains
dataset. The median of the true positive rate (TPR) for this
dataset is also the best, with five true positive SNPs out of
10 detected (TPR = 0.5). It seems that the TPR increases
with the size of the sample, indicating that this parameter
probably plays an important role in the detection power for
a complex trait (electronic supplementary material, figure
S4). To further test this, we downsampled the mixed,
sampled diversity and wine datasets to match the number
of individuals composing the sake population. The genetic
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diversity of these new populations matched the original
populations, allowing us to assess only the effect of reduced
population size. The GWAS simulations performed very
poorly, with a median of the TPR of 0 for all three subpopu-
lations and a maximum of 0.2 for 10 out of 1000 runs for the
subsampled wine population (electronic supplementary
material, figure S5). These results suggest that sample size
correlates with performance of association studies, although
it is not the only factor influencing the outcome (electronic
supplementary material, figure S5).

The MAF of causal SNPs does not influence their detec-
tion propensity (figure 3a). Rather, detection propensity
increased with the effect size (figure 3b). This suggests that,
as the genetic contribution to the phenotype is distributed
over several SNPs, the smaller the effect size of a genetic
variant, the more difficult it will be to detect. In addition,
the p-values of the causal genetic variants are positively cor-
related with the effect sizes for all datasets, indicating that
variants with high effect sizes are more likely to have high
association scores (electronic supplementary material, figure
S6). Taken together, these results illustrate how the missing
heritability can be hidden behind a large number of variants
with small effects and that datasets with a larger sample size
are more likely to detect the causal variants.
(e) Dataset composition impacts the false positive rate
Interestingly, the median FPR in the case of complex traits is
lower than when we simulated a Mendelian trait (electronic
supplementary material, figure S7, table S3) and is less than
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Figure 3. Mapping of complex traits. (a) Distribution of the minor allele frequency (MAF) of the false negative (FN) and true positive (TP) variants detected by
GWAS among the 1000 simulated complex traits across the subpopulations. (b) Distribution of the absolute effect size of the FN and TP variants detected by GWAS
among the 1000 simulated complex traits across the subpopulations.
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4 × 10−4 for all datasets. Based on the FPR distribution, the
sampled diversity and the 1011 strains datasets are the least
likely to detect spurious associations. The sake dataset has
the most outliers, with 17 of them being above 10%. This pro-
portion is surprisingly better than for the mapping of a
Mendelian trait, but still very high. The distribution of the
genomic inflation factor λ of the 1000 runs per dataset (elec-
tronic supplementary material, figure S8) indicates that most
datasets have λ values closely centred on 1. The sake dataset
appears once again as an outlier with a much broadly distrib-
uted value of λ, confirming that a high proportion of false
positives can be expected with this dataset.

We observed a tendency for FPR to increase as the TPR
increases, illustrating the intuitive fact that causal variants
can be mapped by chance if there are many SNPs that
have been significantly identified. However, this tendency is
less marked as the sample size increases (electronic sup-
plementary material, figure S9), which is consistent with
the previous result showing that a large sample size will
reduce the false positive rate.

These results show that the sample size clearly influences
the GWAS result, in particular in the case of a complex trait
but also that this parameter is not the only one to influence
the GWAS result as the sampled diversity shows very good
results with only 133 individuals.
( f ) Association mapping using real data
To test associations with actual phenotypic values, we
measured growth for all our isolates on 10 mM copper sulfate
and normalized these sizes by growth on the standard YPD
medium at 30°C. These measures are a proxy for the fitness
of each isolate on stress induced by copper sulfate. This phe-
notype shows a high genome-wide heritability for the full
dataset (83.78%), which is of the same order of magnitude
as the heritability used to simulate the phenotypes in this
study. The gene CUP1-2 is the main copper-activated metal-
lothionine in S. cerevisiae. The protein Cup1p binds and
sequesters copper(I), Cu+, allowing the cell to control
copper ion homeostasis. This ion, although essential for the
survival of yeasts, is also an environmental heavy metal tox-
icant at high concentrations, which is used, for example, to
kill downy mildew in vineyards, where S. cerevisiae is often
found. Tandem duplications of the CUP1 gene are frequent
in budding yeasts, and the tolerance to copper ion is corre-
lated with the number of copies of this gene [17]. As the
copy number variation of the CUP1-2 gene is known to be
of major importance for this trait, it is expected that associ-
ation with well-suited datasets should easily detect this
genetic variant.

The association was performed with the same method as
that used for the simulations, with a dataset-specific threshold
determined by 100 runs of permutations. The copy number
variant of CUP1-2 was not detected in the sake, the mixed
origins and the mosaic regions 3 datasets (electronic sup-
plementary material, table S4). The mosaic region 3 and the
sake datasets also showed associations with other variants
that are not known to be involved in the resistance to copper
sulfate. While the involvement of these genes in this pheno-
type cannot be ruled out, one should also keep in mind that
these datasets had high FPR for some simulations, especially
the sake dataset. In the other datasets, the CUP1-2 gene was
significantly associated with the phenotype, with no other
significant association.
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The score of association is an indicator of the ease with
which a dataset is able to detect the causal variant. Here,
we see that the 1011 strains dataset shows the lowest p-value
(4.9 × 10−44), followed by the European wine dataset (6.03 ×
10−18) and the sampled diversity dataset (1.04 × 10−14). These
results are consistent with our simulations, as the 1011 strains
and the sampled diversity datasets were the ones that
showed the best results. The detection of the CUP1-2 gene for
the European wine subpopulation is attributed to the evol-
utionary history of this population, and its link with human
activity. Indeed, in that case, the acquisition of resistance to
copper sulfate is certainly reflecting convergent evolution due
to human selection for industrial processes [28], thus emphasiz-
ing the fact that dataset composition also depends on the
phenotype of interest.
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4. Discussion
In this work, we performed extensive GWAS simulations
by measuring the ability of linear mixed models to find a
significant association between causal genetic variants and
simulated phenotypes of each individual. These tests have
been performed on five subpopulations as well as the com-
plete dataset of the 1011 S. cerevisiae isolates [4]. While
variants are easily mapped for Mendelian traits regardless
the used dataset, variance in terms of type-1 error can be
observed. This variability might not only be related to
sample size, but to other variables such as close relatedness
between isolates. However, further simulations are needed
to explore this aspect. Regarding the mapping of complex
traits, a variation between datasets is observed in terms of
detection power. Indeed, while the 1011 strains dataset
shows the best performances, the sampled diversity dataset
shows a low type-1 error rate, even though its sample size
is small compared to the European wine cluster and the
1011 strains dataset, indicating that confounding factors can
also be handled with well-suited datasets. Finally, we tried
association mapping using a real phenotype, more specifi-
cally on the ability to grow in the presence of copper
sulfate, and checked if we could identify the already known
CUP1-2 gene responsible for the variation in fitness. This gen-
etic variant was successfully identified in three datasets
without any other association while it was missed in the
other three. The detection of the causal variant was consistent
with our simulations and showed us that specific populations
could represent good datasets to perform associations with
given phenotypes.

GWAS studies have been problematic in S. cerevisiae due
to the highly stratified populations, which led to high type-
1 error rates [14,15]. Here, we showed that structure is well
taken into account in most of the datasets by a LMM
approach because the type-1 error rates are low for most of
them. Our hypothesis is that sample size was the limiting
factor in the aforementioned studies. Indeed, the type-1
error rates of our datasets with the smallest sample sizes
were among the highest. But our results support the fact
that other parameters have an impact on the GWAS outcomes,
as the performance does not always correlate with the sample
size. For example, it seems that it is important to build datasets
with individuals that do not share a recent common ancestor,
as this kinship will introduce a bias in allele frequencies which
will also lead to false associations, as we have observed for
the sake and the European wine subpopulations. In fact,
additional simulations would be very useful in order to test
more precisely for other variables that could have an impact
on the results of the GWAS, such as genetic diversity, variation
in heritability and size effect distribution.

The results of our associations vary considerably from one
cohort to another, allowing us to evaluate the limits of GWAS
and present what would constitute an ideal dataset for associ-
ation studies. For mapping a Mendelian trait, the sampled
diversity set is the best, with the fewest false positives, and is
followed by the total dataset with 1011 strains. When the trait
is complex, the entire population has the advantage of map-
ping more causal variants than any other. In addition, the
false positive rate is close to that we observe for the sampled
diversity dataset, which has, as for a Mendelian trait, the
lowest value. It is now evident that the sake cluster is poorly
suited to perform GWAS. First, the number of sequences com-
posing this dataset is too low and therefore does not provide
sufficient statistical power for trustworthy associations.
Second, the strains composing this cluster are very close to
each other and all share large parts of the genome due to the
fact that the common ancestor is very recent compared to
other datasets. We initially thought that the European wine
subpopulation, being a clear lineage and composed of a high
number of strains (n = 323), would constitute a good set to per-
form GWAS because the population is not stratified. The
number of false positives by run is very high for a Mendelian
and complex trait and the results obtained with this dataset
should therefore be taken with caution.

To go further, it would be interesting to test whether larger
sample sizes would improve the detection of causal loci.
Indeed, since there is a skew toward low-frequency alleles in
the yeast population, a dataset with a larger sample size
might be able to identify rarer genetic variants, and therefore
increase the proportion of phenotypic variation explained.
Increasing the sample size will also allow more subsets to be
created, while maintaining a high sample size, and could be
of great help when association is tested with a specific pheno-
type. Another solution is to perform GWAS on an inbred
population resulting from a diallel cross [29], i.e. all the pair-
wise crosses between parental accessions for which the
genomic sequence is known. This strategy offers several
advantages that may be worth to consider for further study.
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