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A B S T R A C T   

Introduction: Coronavirus disease 2019 (COVID-19) outbreak has overwhelmed many healthcare systems 
worldwide and put them at the edge of collapsing. As intensive care unit (ICU) capacities are limited, deciding on 
the proper allocation of required resources is crucial. This study aimed to develop and compare models for early 
predicting ICU admission in COVID-19 patients at the point of hospital admission. 
Materials and methods: Using a single-center registry, we studied the records of 512 COVID-19 patients. First, the 
most important variables were identified using Chi-square test (at p < 0.01) and logistic regression (with odds 
ratio at P < 0.05). Second, we trained seven decision tree (DT) algorithms (decision stump (DS), Hoeffding tree 
(HT), LMT, J-48, random forest (RF), random tree (RT) and REP-Tree) using the selected variables. Finally, the 
models’ performance was evaluated. Furthermore, we used an external dataset to validate the prediction models. 
Results: Using the Chi-square test, 20 important variables were identified. Then, 12 variables were selected for 
model construction using logistic regression. Comparing the DT methods demonstrated that J-48 (F-score of 
0.816 and AUC of 0.845) had the best performance. Also, the J-48 (F-score = 80.9% and AUC = 0.822) gained 
the best performance in generalizability using the external dataset. 
Conclusions: The study results demonstrated that DT algorithms can be used to predict ICU admission re-
quirements in COVID-19 patients based on the first time of admission data. Implementing such models has the 
potential to inform clinicians and managers to adopt the best policy and get prepare during the COVID-19 time- 
sensitive and resource-constrained situation.   

1. Introduction 

Coronavirus disease 2019 (COVID-19) is a life-threatening infection 
caused due to a recently originating zoonotic virus, named severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. The COVID-19 
symptoms range from asymptomatic to mild or moderate symptoms 
such as fever, cough, shortness of breath, fatigue and other baseline 
clinical manifestations that start in the first week after infection [2,3]. 
Later, critical complications may develop in some patients including 
dyspnea, severe pneumonia and organ dysfunctions that need patients to 
be admitted to intensive care units (ICUs) [4]. Approximately 20% of 
COVID-19 patients must be hospitalized and almost 20–30% of 
in-hospital COVID-19 patients need to enter the ICU for urgent care [5]. 

In Iran, the ICU admission rate is estimated at 32% of hospitalized pa-
tients and the ICU death rate is about 39% [6]. Currently, the ICU re-
sources are limited; generally, more than 50% of its beds are occupied 
under normal conditions [7]. 

The pandemic situation poses a great hazard to worldwide health 
and welfare. Despite all the preventive and lockdown measures to slow 
the spreading and contain the virus, the global healthcare systems have 
been stunned with high demands for hospital ICU resources such as 
personal protective equipment (PPE), ICU beds and medical ventilators 
[8]. To manage these scarce resources in the best possible way and 
enable an effective and efficient sharing, prognosis models for individual 
disease courses and outcomes are essential [9,10]. Healthcare providers 
can use predictive models to prioritize patients at increased risk of 
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clinical deteriorating and public health authorities can use them to 
inform target public health interventions [11,12]. 

Several studies have been pursued to detect factors contributing to 
poor outcomes resulting from COVID-19 [13–16]. Some studies have 
revealed that machine learning (ML) can be applied to construct effec-
tive predictive models for critical and fatal courses in COVID-19 patients 
[17–19]. ML classifiers comprise supervised and unsupervised tech-
niques; we employed supervised ones in our study. In these methods, a 
part of the data is used as a training section to develop models and the 
remaining data is for testing the developed models [20]. To predict 
disease progression, patient condition deterioration, need for ICU hos-
pitalization and intubation risk, previous studies have employed mul-
tiple supervised ML models, including artificial neural networks (ANNs), 
DT, support vector machine (SVM), random forest (RF) and Naive Bayes 
(NB) [15,21]. 

ML helps analyze a large dimensional dataset automatically and re-
veals significant hidden relationships or patterns. ML-based approaches 
can increase sensitivity and specificity by training data on COVID-19 
patients [11]. However, the likelihood of some methods, including DT 
algorithms, has not yet been addressed in enhancing the prediction ca-
pabilities of COVID-19 poor outcomes. It is also required to find tech-
niques for producing precise predictions [22]. In this study, to address 
these issues, we retrospectively analyzed the data of COVID-19 patients 
easily available at the time of admission to the hospital. We studied the 
most affecting clinical features for ICU admission. Furthermore, we 
developed and compared various DT algorithms to distinguish 
COVID-19 patients with high likelihood for ICU admission from those 
without. 

2. Material and methods 

2.1. Study design and participants 

This study retrospectively reviewed a COVID-19 hospital-based 
registry database from Ayatollah Talleghani Hospital (COVID-19 
referral center), Abadan city, Southwest of Khuzestan Province, Iran, 
from February 9, 2020, to December 20, 2020. During the study period, 
7214 suspected cases with COVID-19 were referred to Ayatollah Tall-
eghani Hospital’s ambulatory and emergency departments (EDs), of 
whom 2253 cases were introduced as positive RT-PCR COVID-19, 2472 
as negative and 2489 as unknown. After applying the inclusion/exclu-
sion criteria, 512 hospitalized record cases were entered into the study 
(311 and 201 records belonged to ICU and non-ICU admitted, respec-
tively) Fig. 1. 

2.2. Study features 

The included cases were defined based on 53 features in five cate-
gories including patient’s basic information such as age (year), sex 
(men/women), height (centimeters), weight (Kg) and blood group (five 
features), clinical features such as cough (Have/Haven’t), nausea 
(Have/Haven’t), headache (Have/Haven’t), gastrointestinal (GI) mani-
festation (Have/Haven’t), chill (Have/Haven’t), loss of taste (Have/ 
Haven’t) and smell (Have/Haven’t), rhinorrhea (Have/Haven’t), sore 
throat (Have/Haven’t), contusion (Have/Haven’t), fever (Have/ 
Haven’t), muscular pain (Have/Haven’t), vomiting and dyspnea (Have/ 
Haven’t), history of personal diseases such as cardiac disease (Have/ 
Haven’t), smoking (Yes/No), pneumonia (Have/Haven’t), hypertension 
(Have/Haven’t), alcohol addiction (Have/Haven’t), diabetes (Have/ 
Haven’t) and other underlining diseases (Have/Haven’t), laboratory 

Fig. 1. Flow chart describing patient selection.  
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information such as red-cell count, hematocrit, hemoglobin, absolute 
lymphocyte count, blood calcium, blood potassium, absolute neutrophil 
count, alanine aminotransferase (ALT), magnesium, activated partial, 
prothrombin time, alkaline phosphatase, platelet count, hypertensive 
troponin, creatinine, white cell count, aspartate aminotransferase (ASP), 
blood glucose, total bilirubin, erythrocyte sedimentation rate (ESR), c- 
reactive protein, albumin, thromboplastin time, lactate dehydrogenase 
(LDH), blood phosphorus, blood sodium and blood urea nitrogen (BUN), 
remedies such as oxygen therapy (Have/Haven’t), length of hospitali-
zation (day) and an attribute serving as an output variable (ICU 
admission (Yes, No)). In Table 1, more details about the laboratory 
variables are represented. 

2.3. Preprocessing 

First, the incomplete case records with many missing values (more 
than 70%) were excluded from the analysis. Also, the remaining missing 
cells were credited with the mean and 9999 values of each variable for 
quantitative and qualitative fields, respectively. In addition, noisy and 
abnormal values, errors, duplicates and meaningless data were checked 
by two health information management experts (M: SH and H: KA) 
collaborating with two infectious diseases specialists and one hematol-
ogist. For different interpretations about data preprocessing, we con-
tacted the corresponding physicians. 

2.4. Feature selection 

The feature selection process is a beneficial statistical method for 
determining the most important variables highly correlated with the 
dependent (output) variable, especially in large-scale databases [23]. 
Benefits of this statistical process include preventing from overfitting the 
data mining algorithms, better classifying the dataset samples in terms 
of performance, investigating the fewer variables for work simplification 
and better clustering the samples in databases without classes [24]. In 
this study, the independence test of Chi-square (Equation (1)) was uti-
lized for weighting the features based on their importance in predicting 
ICU hospitalization among COVID-19 patients. In Equation (1), Oi and Ei 
are the observed and expected variables existing for the variables, 
respectively. P < 0.01 was regarded as the significant level in this 
respect. Also, logistic regression was utilized for determining the vari-
ables with the high odd ratio at p < 0.05 before the model construction. 

χ2=
(Oi − Ei)

2

Ei
(1)  

2.5. Model development and evaluation 

In this section, first, a set of the best variables for predicting ICU 
hospitalization was selected using independence test of Chi-square. 
Then, logistic regression analysis was performed to calculate odd ratio 
with specific Wald at P < 0.05. Afterwards, seven DT algorithms, 
including the decision stump (DS), Hoeffding tree (HT), LMT, J-48, 
random forest (RF), random tree (RT) and REP-Tree, were trained for 
developing the prediction models for predicting ICU hospitalization. 
Finally, the DT predictivity capabilities were compared to select the 
most performing algorithms ones. The 10 fold cross-validation was 
utilized in this respect. The performance criteria were positive predic-
tive value (PPV), negative predictive value (NPV), sensitivity, speci-
ficity, accuracy and F-score (Equation 2 through 7, respectively). 

We obtained all the performance criteria using the confusion matrix, 
including the true positive (TP), false positive (FP), false negative (FN) 
and true negative (TN). The TP and TN are ICU and non-ICU admitted 
cases that are correctly classified by the model. Also, FN and FP are the 
cases incorrectly classified by the model. 

PPV=TP/(TP+ FP) (2) 

Table 1 
The characteristics of laboratory variables.  

NO Variable (Units) Ranges Description 

1 Blood creatinine 
(mg/dL)1 

Reference: 0.7–1.3 
(men), 0.6–1.1 (women) 
Low: <0.7 (men), <0.6 
(women), High: >1.3 
(men), >1.1 (women) 

The creatinine rate in 
the blood 

2 Red cell count (mc/ 
mL)2 

Reference: 4.35–5.65 
(men), 3.92–5.13 
(women) 

The red cells count in 
plasma 

Low: <4.35 (men), 
<3.92 (women) 
High: > 5.65 (men) >
5.13 (women) 

3 Hematocrit (L/L)3 Reference: 0.40–0.54 
(men), 0.37–0.47 
(women) 

The proportion of the 
red cells count to the 
plasma cells count 

Low: <40 (men) 
<0.37 (women) 
High: >0.54 (men) >
0.47 (women) 

4 Hemoglobin rate 
(g/dL)4 

Reference: 14.0–17.5 
(men) 12.3–15.3 
(women) 

The protein rate in red 
blood cells that carries 
iron 

Low: <14.0 (men) <
12.3 (women) 
High: >17.5 (men) >
15.3 (women) 

5 Platelet count 
(Cells/μL)5 

Reference: 
150,000–400,000. 

Number of platelet cells 
count in the plasma 

Low: <150000 
High: >400000 

6 Absolute 
lymphocyte count 
(103 Cells/μL)5 

Reference: 1–4.8 The absolute number of 
lymphocyte cells in the 
blood that can be 
acquired by multiplying 
the number of white 
cells and lymphocyte 
percentage 

Low:< 1 
High:> 4.8 

7 Absolute neutrophil 
count (103Cells/ 
μL)5 

Reference: 2.5–6 The absolute number of 
neutrophil cells in the 
blood that can be 
acquired by multiplying 
the number of white 
cells and neutrophil 
percentage 

Low <2.5 
High:> 6 

8 Blood calcium (mg/ 
dL)1 

Reference: 8.6–10.3 The calcium rate in the 
blood Low: <8.6 

High: >10.3 
9 Blood sodium 

(mEq/L)6 
Reference: 135-145 The sodium rate in the 

blood Low:< 135 
High:> 145 

10 Blood magnesium 
(mEq/L)6 

Reference: 1.3–2.1 The magnesium rate in 
the blood Low<1.3 

High: >2.1 
11 Blood phosphor 

(mg/dL)1 
Reference: 3.4–4.5 The phosphor rate in the 

blood Low: <3.4 
High:> 4.5 

12 Blood potassium 
(mEq/L)6 

Reference: 3.5–5.2 The potassium rate in 
the blood Low: <3.5 

High>5.2 
13 Blood urea nitrogen 

(mg/dL)1 
Reference: 6-24 Amount of urea nitrogen 

found in blood Low: <6 
High:> 24 

14 Total bilirubin (mg/ 
dL)1 

Reference: 1.2 Amount of bilirubin in 
the blood Low:< 1.2 

High:> 1.2 
15 Aspartate 

aminotransferase 
(units/L)7 

Reference: 8-33 The amount of aspartate 
aminotransferase 
enzymes in the blood 

Low: <8 
High:> 33 

16 Alanine 
aminotransferase 
(units/L)7 

Reference: 29–33 (men) 
19–25 (women) 

The amount of alanine 
aminotransferase 
enzymes in the blood Low: <29 (men) < 19 

(women) 
High: >33 (men) > 25 
(men) 

(continued on next page) 
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NPV=TN/(TN+FN) (3)  

Sensitivity=TP/(TP+FN) (4)  

Specificity=TN/(TN+FP) (5)  

Accuracy=TP + TN/(TP+FN+TN+FP) (6)  

F − Score=TP / (TP+ 1 / 2(FP+ FN) (7) 

Moreover, the area under the ROC curve (AUC) of seven DT algo-
rithms was compared in terms of their ability to classify the samples. In 
the next step, the best DT algorithm for predicting ICU hospitalization 
among COVID-19 patients was obtained by comparing their perfor-
mance measured using the mentioned evaluation criteria. Finally, the 
best performing algorithm was described and the most weighted clinical 
rules were extracted. 

2.6. Ethical consideration 

Ethical Committee Board of Abadan University of Medical Sciences 
(ethics code: IR. ABADANUMS.REC.1400.110) approved the study. To 
protect the privacy and confidentiality of the patients, we concealed the 
unique identification information of all the patients in the process of 
data collection and presentation. 

3. Results 

3.1. Characteristics of participants 

After applying the inclusion/exclusion criteria, in total, 512 patients 
met the eligibility criteria. Of these, 388 (75.78%) were male and 124 
(24.22%) were female with the median age of 57.25 (interquartile 
18–100, mean +/ SD = 57.25+/ 17.606). Also, 311 (60.75%) were 
ICU admitted and 201 (39.25%) were non-ICU admitted. 

3.2. Features and their importance 

After using the independence test of Chi-square, 20 variables had 
significant relationship with output class (ICU hospitalization) at P <
0.01, as shown in Table 2. 

Given the information in Table 1, the length of hospitalization (x2 

=28.71), loss of smell (x2 =13.372), history of other underlining dis-
eases (x2 =23.277) and cardiac disease (x2 =12.491), blood pressure (x2 

=13.281), activated partial thromboplastin time (x2 =117.458), age (x2 

=35.292) and pleural fluid (x2 =30583) had a good relationship with 
ICU hospitalization possibility at P < 0.001. Thus, they were considered 
as the most important determinants to predict ICU hospitalization. Re-
sults of determining the odds ratio of 20 important variables in pre-
dicting ICU hospitalization among COVID-19 patients are demonstrated 
in Table 3. 

Based on the information provided by Table 2, a set of 12 variables 
such as length of hospitalization (ORs = 2.022) 95% ORs CI = [1.225, 

Table 1 (continued ) 

NO Variable (Units) Ranges Description 

17 Serum albumin (g/ 
dL)8 

Reference: 3.4–5.4. albumin amount which 
are in vertebrate blood Low: <3.4 

High:> 5.4 
18 Blood glucose (mg/ 

dL)1 
Reference: <140 The glucose rate in the 

blood Diabetes: >200 
Prediabetes: 140-199 

19 Lactate 
dehydrogenase 
(Units/L)7 

Reference: 140 -280 Amounts of lactic acid 
dehydrogenase in the 
blood 

Low: <140 
High: >280 

20 Activated partial 
thromboplastin 
time (s)9 

Reference: 30-40 Measures the time that 
the clot is formed in a 
blood specimen 

Fast:<30 
Slow: >40 

21 Prothrombin time 
(s)9 

Reference: 11–13.5. Fast: 
<11 

Measures the time that 
the liquid portion of 
blood are clotted Slow: >13.5 

22 Alkaline 
phosphatase (Units/ 
L)7 

Reference: 44-147 The amount of Alkaline 
phosphatase enzymes in 
the blood 

Low: <44 
High:> 147 

23 C-reactive protein 
(mg/L)10 

Reference: <10 The amount of this 
protein in the blood and 
increases in 
inflammation conditions 

High: ≥10. 

24 Erythrocyte 
sedimentation rate 
(mm/hr)11 

Reference: 0–22 (men), 
0–29 (women) 
Abnormal: >22 (men), 
>29 (women) 

Measure the quantity at 
which red-type blood 
cells subsist at the end of 
a test tube containing a 
blood specimen 

25 White cell count 
(Cells/mL)12 

Reference: 4500–11,000 The white-type cells 
count in the plasma Low:<4500 

High:> 11000 
26 Hypersensitive 

troponin (ng/L)13 
Normal: =<14 This test can be used for 

heart attack and 
insufficiency, in other 
words the >14 in 
bloodstream indicates 
heart attack 

Abnormal: >14 

1- Milligram per deciliter. 2- Million cells per microliter. 3- Number of red cells 
per liter per number of cells per liter. 4- Grams per deciliter. 5- Number of cells 
per microliter. 6- Miliequivalents per liter. 7- Units per liter. 8- Grams per 
deciliter. 9-Seconds. 10- Milligrams per liter. 11- Millimeters per hour. 12- Cell 
per microliter. 13- Nanograms per liter. 

Table 2 
The most important variable at P < 0.01 using Chi-squared test.  

No. Variable name Variable 
type 

Frequency or 
mean ± SD 

x2 P (level) 

1 Length of 
hospitalization 

Numeric 5.03 ± 2.188 28.71 <0.001 

2 Contusion Nominal Have (180) 7.97 <0.01 
Haven’t (302) 

3 Oxygen therapy Nominal Have (437) 7.99 <0.01 
Haven’t [45] 

4 Dyspnea Nominal Have (442) 7.023 <0.01 
Haven’t [40] 

5 Loss of taste Nominal Have (124) 8.722 <0.01 
Haven’t (358) 

6 Loss of smell Nominal Have (137) 13.372 <0.001 
Haven’t (345) 

7 Runny nose Nominal Have (202) 10.239 <0.01 
Haven’t (280) 

8 Other underline 
diseases 

Nominal Have (339) 23.277 <0.001 
Haven’t (143) 

9 Cardiac diseases Nominal Have (157) 12.491 <0.001 
Haven’t (325) 

10 Blood pressure Nominal Have (189) 13.281 <0.001 
Haven’t (293) 

11 Diabetes Nominal Have (124) 10.026 <0.01 
Haven’t (358) 

12 White cell count Numeric 9684 ± 1241 196.616 <0.01 
13 Absolute lymphocyte 

count 
Numeric 21.702 ±

12.01 
83.41 <0.01 

14 Absolute neutrophil 
count 

Numeric 76.71 ±
12.765 

97.661 <0.01 

15 Blood sodium Numeric 138.27 ± 3.44 40.667 <0.01 
16 Blood glucose Numeric 148.4 ±

96.946 
12.884 <0.01 

17 Activated partial 
thromboplastin time 

Numeric 35.453 ± 9.25 117.458 <0.001 

18 Hypertensive 
troponin 

Nominal Abnormal 
[38] 

14.588 <0.01 

Normal (444) 
19 Age Numeric 57.25 +/

17.606 
35.292 <0.001 

20 Pleural fluid Nominal Have (275) 30.583 <0.001 
Haven’t (78)  
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3.166], age (ORs = 3.565) 95% ORs CI = [2.227, 5.708], activated 
partial thromboplastin time (ORs = 3.004) 95% ORs CI = [1.977, 
5.031], diabetes (ORs = 2.776) 95% ORs CI = [1.437, 3.285], cardiac 
disease (ORs = 2.671) 95% ORs CI = [1.323, 3.396], other underlining 
diseases (ORs = 1.499) 95% ORs CI = [1.002, 1.945], runny nose (ORs 
= 1.570) 95% ORs CI = [1.315, 2.030], loss of smell (ORs = 1.474) 95% 
ORs CI = [1.242, 1.929], loss of taste (ORs = 1.489) 95% ORs CI =
[1.254, 1.943], oxygen therapy (ORs = 1.375) 95% ORs CI = [1.055, 
2.545], dyspnea (ORs = 1.335) 95% ORs CI = [2.032, 4.523] and 
pleural fluid (ORs = 1.222) 95% ORs CI = [0.89, 2.999] had the higher 
odds ratio than other variables with higher specific Wald along with DF 
= 1 at P < 0.05 in predicting ICU hospitalization among the COVID-19 
patients. Therefore, they were used for building DT models. 

3.3. Predictive performance of the models 

The results of classifying the sample in the selected DT algorithms 
with specific characteristics are shown below: 

DS: Batch size = 100, Number of decimal places = 2, TP = 278, FP =
137, FN = 13 and TN = 54. 

HT: Batch size = 100, Grace period = 200, Hoffding tie threshold =
0.05, Split confidence = 1.0E-7, Split criterion = Info gain, TP = 254, FP 
= 117, FN = 37 and TN = 74. 

J-48: Batch size = 100, Confidence factor = 0.25, Minimal object 
number = 2, Number of seed = 1, Fold number = 3, TP-269, FP = 117, 
FN = 22 and TN = 126. 

LMT: Batch size = 15, Minimum instances in leaves = 15, Number of 
boosting iterations = -1, Number of decimal places = 2, TP = 254, FP =
89, FN = 37 and TN = 102. 

RF: Bach size and bag size = 100, Number of decimal places = 2, Max 
depth = 0, Number of iterations = 100, Number of seed = 1, TP = 233, 
FP = 73, FN = 58 and TN = 118. 

RT: Batch size = 100, Number of decimal places = 2, Minimum 
variance property = 0.001, Number of seed = , TP = 211, FP = 95, FN =
80 and TN = 96. 

REP-Tree: Batch size = 100, Minimum variance property = 0.001, 
Number of folds = 3, Number of seed = 1, TP = 257, FP = 88, FN = 34 
and TN = 103. 

Based on the information provided, the DS and J-48 tree algorithms 
with TP = 278 and TN = 126 acquired the best performance in classi-
fying the ICU hospitalized versus the non-hospitalized cases, respec-
tively. Some of the DT algorithm performance criteria are depicted in 
Fig. 2. 

Based on Fig. 1, DS had lower specificity (specificity = 0.28) than 
other algorithms, meaning this algorithm’s lowest capacity in classifying 
the negative cases (non-hospitalized COVID-19 patients). On the con-
trary, the sensitivity of this algorithm (sensitivity = 0.96) was higher 
than others, which demonstrated its better ability in classifying positive 
cases (hospitalized COVID-19 patients) in this research. In general, the J- 
48 algorithm based on the PPV, NPV and accuracy obtained better 
performance than others. 

Considering F-score as a criterion related to the strength of algo-
rithms in classifying both positive and negative cases demonstrated that 
the J-48 algorithm with the F-score of 0.816 had better ability than the 
others in this respect. Also, the LMT (F-score = 0.729), RF (F-score =
0.726) and REP-tree (F-score = 0.737) had desirable performance in this 
regard. The ROCs of all DT algorithms are depicted in Fig. 3. The vertical 
and horizontal vertices showed sensitivity and 1-specificity, 
respectively. 

Based on comparing the AUC of the selected DT algorithms, it is 
determined that the J-48 algorithm with the AUC of 0.845 had more 
area under the ROC curve than other algorithms. The ROC diagram of 
this algorithm was closer to sensitivity or TP and, simultaneously, 
farther than 1-specificity or FP, which demonstrated the better perfor-
mance of this algorithm in classifying ICU and non-ICU COVID-19 hos-
pitalized patients. Generally, the results of comparing different DT 
algorithms for predicting ICU hospitalization among COVID-19 patients 
using various evaluation criteria demonstrated that the J-48 algorithm 
with PPV = 0.805, NPV = 0.85, sensitivity = 0.924, specificity = 0.659, 
accuracy = 0.819, F-score = 0.816 and AUC = 0.845 had the higher 
performance than other DT algorithms in classifying the ICU and non- 
ICU cases. The important characteristics for building the tree are 
mentioned below with more details. 

3.4. Important characteristics for constructing the J-48 algorithm with the 
highest performance 

Batch size = 100, Binary split = haven’t, Collapse tree = true, 
Confidence factor = 0.25, Minimum number of objects = 2, Number of 
decimal places = 2, Number of folds = 3, Reduced error pruning = have 
and Number of seed = 1. 

In Fig. 4, we brought the pruned J-48 algorithm with confidence 
factor = 0.25 for classifying the samples of ICU and non-ICU COVID-19 
patients. According to the drawn tree with SIZE = 31 and number of 
leaves = 16, we found five important points of the tree’s leave. Most of 
the dataset samples were classified and the clinical rules for predicting 
ICU hospitalization among the COVID-19 patients were extracted. We 
considered the activated partial thromboplastin time as the tree’s root. 
They existed in the tree’s 1st, 3rd, 11th, 14th and 16th leaves with 64, 
46, 189, 57 and 66 samples, respectively. Now, we interpreted two 
numbers of these five extracted rules belonging to these five important 
leaves with more classified samples. 

Rule 1: IF (Activated partial thromboplastin time >31 && Age>65, 
&& activated partial thromboplastin time≤41 && Diabetes = No && 
Loss of smell = No && Pleural fluid = Yes THEN ICU = 0. (189/25). 

Rule 2: IF (Activated partial thromboplastin time >31 && Age>65, 
&& activated partial thromboplastin time≤41 && Diabetes = Yes && 
Loss of taste = No THEN ICU = 0. (66/20). 

In rule 1 based on the J-48, we can interpret that, if a COVID-19 
patient has an activated partial thromboplastin time between 31 and 
41 with age and without loss of smell and history of having diabetes and 

Table 3 
The most important determinant in predicting ICU hospitalization using odds 
ratio.  

No Variable Wald df P-value Odds 
ratio 

95% Confidence 
interval for odds 
ratio 

Lower Upper 

1 Oxygen therapy 4.007 1 0.031 1.375 1.055 2.545 
2 Dyspnea 3.830 1 0.036 1.335 2.032 4.523 
3 Loss of taste 4.565 1 0.033 1.489 1.254 1.943 
4 Loss of smell 4.726 1 0.030 1.474 1.242 1.929 
5 Runny nose 3.473 1 0.042 1.570 1.315 2.030 
6 Other underline 

disease 
2.690 1 0.010 1.499 1.002 1.945 

7 Cardiac disease 3.137 1 0.028 2.671 1.323 3.396 
8 Blood pressure 0.179 1 0.673 0.853 0.408 1.784 
9 Diabetes 3.356 1 0.031 2.776 1.437 3.285 
10 White-cell count 0.000 1 0.092 1.000 1.000 1.000 
11 Absolute 

lymphocyte count 
0.075 1 0.784 0.987 0.899 1.084 

12 Absolute neutrophil 
count 

0.878 1 0.349 1.042 0.956 1.135 

13 Sodium 0.816 1 0.366 1.039 0.956 1.129 
14 Glucose 0.885 1 0.347 1.002 0.998 1.007 
15 Activated partial 

thromboplastin time 
4.072 1 0.017 3.004 1.977 5.031 

16 Hypersensitive 
troponin 

5.741 1 0.117 0.016 0.001 0.471 

17 Age 6.380 1 0.012 3.565 2.227 5.708 
18 Pleural fluid 2.285 1 0.025 1.222 0.89 2.999 
19 Length of 

hospitalization 
3.101 1 0.019 2.022 1.225 3.166 

20 Contusion 2.277 1 0.131 0.622 0.336 1.152  
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pleural fluid with the probability of 86%, the person will not be admitted 
in ICU. In rule 2, if a COVID-19 patient has an activated partial throm-
boplastin time between 31 and 41 with higher age and history of dia-
betes and without loss of taste with the probability of 69%, the COVID- 
19 patients will not enter the ICU. 

The results of external cohort validation of the predictive model 
using the confusion matrix are shown in Table 4. 

As shown in Fig. 5, the J-48 decision tree algorithm with AUC =
0.822 gained acceptable performance in predicting the ICU admission 
using the test dataset in an external environment. The performance was 
near the internal test results, which used cross-validation (AUC =
0.845). Generally, the J-48 decision tree with F-score = 80.9% and AUC 
= 0.822 had the common performance, especially in classifying the ICU- 
admitted cases. 

4. Discussion 

With the COVID-19 outbreak, the global health system faces chal-
lenges from the overwhelming workload of health staff to decreased 
resources such as ICU beds and ventilators. The shortage in ICU re-
sources and increasing number of patients will force health policy-
makers and managers to rely on scientific and specified programs to deal 
with limited hospital resources. Predicting which patients are at high 
risk for progression and poor outcomes can guide physicians in selecting 
appropriate treatment and allocating scarce specialized and vital 
equipment toward critically ill patients [25]. ML prediction models 
create remarkable opportunities to identify the most involved factors 
and best decisions about each situation. This study aimed to develop 

prediction models for estimating ICU hospitalization among COVID-19 
patients based on data that are easily obtained at the first time of 
admission. For this purpose, seven DT methods, including DS, HT, LMT, 
J-48, RF, RT and REP-tree, were trained using 512 de-identified case 
records of COVID-19 in-hospital patients. For this purpose, we used 
Abadan COVID-19 registry, including 201 samples of non-ICU admitted 
and 311 ICU admitted patients. 

4.1. Features of interest 

This single-center retrospective study, first, determines and ranks 
contributing predictors affecting ICU admission. Selecting reliable and 
clinically relevant predictors related to COVID-19 patients could help 
improve the accuracy of prediction models. In addition, the selection of 
significant variables in predictive models can provide insight into fore-
casters and their acceptable relations to the pathophysiology of clinical 
decline in COVID-19 patients [26]. We identified 20 important factors 
for predicting the needing ICU care for COVID-19 hospitalized patients 
based on the independence test of Chi-square. Logistic regression was 
used to determine the variables with the high odds ratio. Accordingly, in 
our study, old age, length of hospitalization, activated partial throm-
boplastin time, diabetics, cardiac diseases, runny nose, loss of smell, loss 
of taste, oxygen therapy, dyspnea and pleural fluid had a high odds ratio 
with specific Wald at p < 0.05. So, they were selected as the most 
contributing factor in predicting COVID-19 ICU admission. The results 
of our study demonstrated that three variables of old age (ORs = 3.565) 
95% ORs CI = [2.227, 5.708], activated partial thromboplastin time 
(ORs = 3.004) 95% ORs CI = [1.977, 5.031] and history of diabetes 

Fig. 2. Different evaluation criteria of decision tree algorithms.  

Fig. 3. AUC of different decision tree algorithms.  
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(ORs = 2.776) 95% ORs CI = [1.437, 3.285] had the top variables ac-
cording to odds ratio. 

Many studies have been focused on determining the key risk factors 
for ICU admission. COVID-19 patients with the underlining diseases 
such as hypertension [27], diabetes [28], cancer [29] and lung diseases 
[30] were considered to be susceptible to having poor prognosis. They 
had higher risk of admission to an ICU, invasive ventilation or death. 
Results of prior studies have also shown that older age [31], decreased 
oxygen saturation [32], high sequential organ failure assessment score 
[33], higher D-dimer [34], leukocytosis [35] and high fever [36] are 
regarded as the most effective factors for predicting COVID-19 ICU risk. 
In general, high compliance is observed from classifying and prioritizing 
variables in the reviewed studies with the most common variables in our 
study. 

4.2. Developed predictive models 

In our study, the DT algorithms were trained using the selected top 
variables as input data. The results of comparing the different selected 
DT algorithms demonstrated using the J-48 generally, with F-score =
0.816 and AUC = 0.845 had the best performance in classifying the ICU 
and non-ICU COVID-19 hospitalized patients. 

In some of the related studies, the functionality of these algorithms in 
COVID-19 prediction has been investigated. Goncalves et al. (2020) 
retrospectively studied 827621 confirmed COVID-19 patients’ data from 
Centers for Disease Control and Prevention (CDC) of COVID-19 case 
surveillance database. They tested 10 DT–based ensemble ML methods 

Fig. 4. Pruned J-48 decision tree algorithm.  

Table 4 
Confusion matrix for external dataset.   

Predicted ICU 
admitted 

Predicted non-ICU 
admitted 

Total 

Real ICU admitted 53 8 61 
Real non-ICU 

admitted 
17 30 47 

Total 70 38 108 

Based on Table 4, we obtained the predictive model performance criteria as PPV 
= 75.7%, NPV = 32%, sensitivity = 86.9%, specificity = 63.8%, accuracy =
76.8% and F-score = 80.9%. The ROC of the J-48 for the external dataset is 
depicted in Fig. 5. 

Fig. 5. The ROC of J-48 for the external dataset.  
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on the selected dataset for predicting COVID-19 deterioration in ICU 
hospitalized patients. Finally, the best significant results were observed 
from the AdaBoost model (AUC of 91.91%) [22]. Castiglioni et al. 
(2021) also conducted a retrospective analysis on data of 270 COVID-19 
and non-COVID-19 cases. They then developed an intelligent model 
based on DT algorithms to predict the need for hospitalization of 
COVID-19 patients. Their results showed that the model developed using 
J-48 with 0.81 of AUC gained the best performance [37]. Besides, 
Famiglini (2021) compared three DT classifiers’ performance based on 
4995 CBC tests to predict ICU admission in COVID-19 patients. The 
experimental results showed that the ensemble decision tree (EDT) was 
introduced as the most suitable algorithm (AUC of 88%) [38]. Ahmad 
et al. (2021) retrospectively assessed the 600 laboratory findings of 
confirmed and negative COVID-19 patients using 18 variables. Ten DT 
algorithms were tested and the XGBoost DT algorithm gained the best 
predictive performance with the AUC of 0.873 [39]. Another work by 
Vetrugno et al. (2020) analyzed the data of 198 COVID-19 hospitalized 
patients and showed that the DT achieved the highest accuracy to pre-
dict the need for hospitalization or home monitoring of confirmed or 
suspected cases with the ROC of 0.75 [40]. Finally, Talebi et al. (2020) 
designed a DT-based model for predicting the COVID-19 patient status 
using chest x-ray data of 1078 COVID-19 confirmed patients. The result 
showed classification and regression tree (CART) gained optimum pre-
dictive performance with accuracy, sensitivity and specificity of 93.3%, 
72.8% and 97.1%, respectively [41]. The result of comparing the DT 
algorithms demonstrated that J-48 with the F-score of 0.816 and AUC of 
0.845 had the best performance. 

4.3. Strength and limitations 

The developed models in our study had several opportunities for 
clinical use as a screening tool for potential infectious disease outbreaks 
such as the current COVID-19 crisis. These models reduced the current 
uncertainty and ambiguity in the COVID-19 clinical practice by 
providing measurable, non-subjective and evidence-based approaches 
[42,43]. Accurate prediction of patient admission to the ICU could 
support the optimal allocation of limited hospital resources, improve the 
quality of care and reduce patients mortality [43]. Early identification of 
at-risk patients may potentially reduce the need for imminent ICU beds 
and invasive mechanical ventilators. In addition, the use of these pre-
dictive models can increase the rate of timely transfer to the ICU, lead to 
a reduction in mortality and result in shorter stay in the ICU. This could 
reduce ambiguity by providing quantitative, objective and 
evidence-based models for risk classification, forecasting and ultimately 
care planning [44,45]. 

This study had some limitations that need to be addressed. First, 
because of analyzing a single-center and retrospective database, we 
were not able to include even more patients in the analysis. However, 
the used dataset was collected at Ayatollah Talleghani Hospital that 
delivered only special care to COVID-19 patients. Even so, the data of 
another COVID-19 hospital center was used to perform external vali-
dation of the proposed models for increasing the accuracy prediction. 
The small sample size could be acceptable criticism, but the dataset 
analyzed in our study were manually gathered and adjusted. The data 
were not exported electronically from the database, in which missing 
data is common, and the validity of the information was not verified. 
Second, this study only included 12 clinical variables available at the 
initial time of admission. It does not mean these should be the only 
criteria for predicting ICU admission. However, according to the aim of 
the present study, it is sufficient to consider only the routine clinical 
features of patients at the beginning of hospitalization. Although the 
limitation of using data at the point of admission encourages adopting 
the models in patients’ triage, events that occur during patients’ hos-
pitalization period may change their clinical course, which is not un-
derstood by the available admission data. Third, the dynamic variations 
of some significant variables must be followed up to recognize patients 

at higher risks of poor outcomes in a better and timely manner. Finally, 
the selected dataset lacked important clinical variables such as radio-
logical and imaging indicators. In future, the performance accuracy of 
our model and its generalizability will be enhanced if we test more ML 
techniques in a larger, multicenter and prospective dataset, which is 
equipped with more qualitative and validated data. 

5. Conclusions 

This study identified the highly ranked clinical predictors that can 
predict the likelihood of ICU admission more precisely. Based on these 
findings, we developed and compared some DT-driven prediction 
models. In particular, it was observed that the J-48 model performed 
best on classification accuracy among other DT algorithms. This method 
had the potential to provide frontline clinicians with an objective in-
strument to manage COVID-19 patients more efficiently in such time- 
sensitive, resource-demanding, and potentially resource-constrained 
situations. Finally, the comparison results of prediction models’ per-
formance in this study were satisfactory to some extent and we believe 
further investigations are needed to validate our model in the larger, 
multi-central and more qualitative dataset. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

We thank the Abadan University of Medical Sciences research deputy 
for financially supporting this project. (IR.ABADANUMS. 
REC.1400.110). 

References 

[1] Gheysarzadeh A, Sadeghifard N, Safari M, Balavandi F, Falahi S, Kenarkoohi A, 
et al. Report of five nurses infected with severe acute respiratory syndrome 
coronavirus 2 during patient care: case series. Elsevier; 2020. p. 100694. 

[2] Wang Z, Deng H, Ou C, Liang J, Wang Y, Jiang M, et al. Clinical symptoms, 
comorbidities and complications features in severe and non-severe patients with 
COVID-19: a systematic review and meta-analysis without cases duplication. 2020. 

[3] Falahi S, Abdoli A, Kenarkoohi A. Claims and reasons about mild COVID-19 in 
children. New Microbes New Infect 2021;41:100864. 

[4] Lechien JR, Chiesa-Estomba CM, Place S, Van Laethem Y, Cabaraux P, Mat Q, et al. 
Clinical and epidemiological characteristics of 1420 European patients with mild- 
to-moderate coronavirus disease 2019. J Intern Med 2020;288(3):335–44. 

[5] Smith EM, Lee ACW, Smith JM, Thiele A, Zeleznik H, Ohtake PJ. COVID-19 and 
post-intensive care syndrome: community-based care for ICU survivors. Home 
Health Care Manag Pract 2021;33(2):117–24. 

[6] Abate SM, Ali SA, Mantfardo B, Basu B. Rate of intensive care unit admission and 
outcomes among patients with coronavirus: a systematic review and Meta-analysis. 
PLoS One 2020;15(7 July). 

[7] Sadeghi A, Eslami P, Moghadam AD, Pirsalehi A, Shojaee S, Vahidi M, et al. COVID- 
19 and ICU admission associated predictive factors in Iranian patients. Casp J 
Intern Med 2020;11:S512–9. 

[8] Supady A, Curtis JR, Abrams D, Lorusso R, Bein T, Boldt J, et al. Allocating scarce 
intensive care resources during the COVID-19 pandemic: practical challenges to 
theoretical frameworks. Lancet Respir Med 2021;9(4):430–4. 

[9] Lichtner G, Balzer F, Haufe S, Giesa N, Schiefenhövel F, Schmieding M, et al. 
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