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Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) affects approximately
1% of the general population. It is a chronic, disabling, multi-system disease for which
there is no effective treatment. This is probably related to the limited knowledge about its
origin. Here, we summarized the current knowledge about the pathogenesis of ME/CFS
and revisit the immunopathobiology of Epstein-Barr virus (EBV) infection. Given the
similarities between EBV-associated autoimmune diseases and cancer in terms of poor
T cell surveillance of cells with EBV latency, expanded EBV-infected cells in peripheral
blood and increased antibodies against EBV, we hypothesize that there could be a
common etiology generated by cells with EBV latency that escape immune surveillance.
Albeit inconclusive, multiple studies in patients with ME/CFS have suggested an altered
cellular immunity and augmented Th2 response that could result from mechanisms of
evasion to some pathogens such as EBV, which has been identified as a risk factor in a
subset of ME/CFS patients. Namely, cells with latency may evade the immune system in
individuals with genetic predisposition to develop ME/CFS and in consequence, there
could be poor CD4 T cell immunity to mitogens and other specific antigens, as it has been
described in some individuals. Ultimately, we hypothesize that within ME/CFS there is a
subgroup of patients with DRB1 and DQB1 alleles that could confer greater susceptibility
to EBV, where immune evasion mechanisms generated by cells with latency induce
immunodeficiency. Accordingly, we propose new endeavors to investigate if anti-EBV
therapies could be effective in selected ME/CFS patients.

Keywords: chronic fatigue syndrome, myalgic encephalomyelitis, EBV EBNA-1, HLA-II alleles, cancer, CD4+ CTL,
autoimmunity, immunotherapy
INTRODUCTION

Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is a life-limiting, multi-system
disease for which there is no effective treatment (1). It is characterized by unexplained disabling
fatigue and a combination of unspecific symptoms that last for at least 6 months (2, 3). At least nine
disease definitions have been developed. Its prevalence ranges in between 0.1% and 2.5% of the
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general population (4), depending on the diagnostic criteria
being applied (Supplemental Table 1). The annual incidence
of cases with ME/CFS in the United Kingdom is of 14.8 per
100,000 people (5).

Pathogenesis of ME/CFS
The cause of this syndrome is unknown. However, there is a
growing body of evidence supporting the role of dysfunction in
immune, neuro-endocrine, and autonomic systems, and several
biologically based theories are currently being investigated.
Hormonal alterations have been identified in some individuals
with ME/CFS, whereby hypocortisolism might produce fatigue-
like symptoms (1, 6–8). Lipid and energy metabolism
dysfunction are also thought to contribute to the etiology of
ME/CFS. Genetic predisposition or common environmental
exposure to infectious or toxic agents, may be associated with
some family histories with high prevalence of ME/CFS (1, 9–14).

Infectious triggering a chronic inflammatory response has
long been a hypothesized risk factor for the development of ME/
CFS due to the large number of individuals with a history of
infection prior to the onset of symptoms. Clinical manifestations
of the disease such as chronic fatigue and flu-like symptoms, may
be explained by the presence immunological alterations leading
to reduced cytotoxic activity and altered metabolism of natural
killer (NK) cells and T lymphocytes, reduced T cell responses to
mitogens and other specific antigens, or the presence of chronic
low-grade systemic inflammation with increased levels of
proinflammatory cytokines and oxidative stress (1, 2, 15–18).

Another hypothesis is autoimmunity due to the presence of
autoantibodies against nuclear, membrane and neurotransmitter
receptor structures in some patients (1, 19). This hypothesis has
prompted several research groups to seek for an association
between the expression of certain HLA-II alleles and the
development of ME/CFS. Accordingly, HLA-DQA1*01, HLA-
DQB1*06 (20), DQB1*0303 (21), HLA-DQ3, HALA-DR4 and
HLA-DR5 (22) have been associated with increased risk of ME/
CFS, but the robustness of the data supporting this association is
limited (20, 23). Thus, the possibility that some individuals with
genetic predisposition may develop ME/CFS after stimulus (e.g.,
infection) and subsequent autoimmunity, remains to be
demonstrated (12, 20, 22). In such cases, the diagnostic criteria
could take into account the pathogen involved in the disease
onset, which could potentially improve patient’ stratification
and management.

Interestingly, ME/CFS was first described in reference to a
post Epstein-Barr fatigue. Infection with viruses such as Epstein-
Barr (EBV), but also with human herpesvirus (HHV) -6,
cytomegalovirus (CMV), human parvovirus B19 and
enteroviruses (24–30), as well as bacterial and parasite
infections (31), have been suggested as risk factors. However,
infection prior to its onset is not true of all ME/CFS patients and
its etiological significance remains uncertain.

Here, we revisited the immunopathobiology of EBV infection
before summarizing contradictory data about a possible
association between chronic EBV infection and ME/CFS in
some patients. Consistent with this hypothesis, we finalized
Frontiers in Immunology | www.frontiersin.org 2
this mini review describing possible therapeutic options
against EBV.
IMMUNOPATHOBIOLOGY OF THE
EPSTEIN-BARR VIRUS

EBV belongs to the family of g-herpesvirus (32). Amongst other
cell types, it infects B cells of adjacent lymphoid tissues before
establishing a lifelong latent infection in memory B cells (I/0
latencies). Indeed, the virus maintains a latent state as an
episome without expressing viral genes, allowing B cells with
latency 0 and some B cells with latency I to escape immune
surveillance (Figure 1A) (33–36).

Efficient B cell infection by EBV requires up to 5 envelope
glycoproteins, whereby gp42 ultimately promotes entry of the
virus into B cells through the interaction with host MHC class II
molecules (37, 38). Gp42 binds to b1 domain of the b chain of
HLA-DR -DQ, or –DP and blocks TCR-HLA-DR interactions
impairing antigen presentation (37–39). Hence, gp42-expressing
B cells show reduced ability to activate CD4 T cells (37).
Furthermore, gp42 can be presented as a membrane protein
bound to MHC-II molecules or in a soluble form (s-gp42). Both
have been detected during the lytic phase in Burkitt lymphoma
(latency I), suggesting that soluble gp42 is generated during EBV
lytic infection and inhibits the presentation of HLA-II restricted
antigens to T cells (40). Noteworthy, EBNA-1 specific cytotoxic
CD4 T cells are decreased in patients with post-transplant
lymphoproliferative disorders (41), in some pediatric forms of
Burkitt lymphoma (42, 43), in EBV-positive lymphoma (44), in
lymphomas associated with HIV infection (45), and in
lymphoma infiltrating the central nervous system (45). By
contrast, the immune response in healthy individuals is
sufficient to control EBV infection (35, 46).

Genetic Predisposition to EBV Infection
The diversity of human leukocyte antigen (HLA) molecules
results from selective pressure during co-evolution with
pathogens (47, 48). A characteristic of HLA diversity is the
long-term persistence of allelic lineages, which causes trans-
species polymorphisms to be shared among closely related
species (48). In humans, there are 13 allelic lineages of DRB1
(48) and, according to the phylogenetic relationship between the
different DRB genes of primates (hominoids, New World and
Old World monkeys) described by Bontrop et al, the DRB1*04,
*03 and *02 lineages are the oldest, with the DRB1*04 lineage
being the most ancestral (49). Since EBV is the only human-
adapted member of the genus Lymphocryptovirus, transferred to
a hominid ancestor (50), it could be hypothesized that immune
evasion mechanisms of the EBV have more effectively evolved
among older allelic lineages of DRB1. Such an hypothesis could
help explaining why individuals with haplotypes DR2-DQ6,
DR3-DQ2 or DR4-DQ8 are less resistant to EBV infection and
are at greater risk of developing EBV-related disorders
(Supplemental Table 2) (34).
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FIGURE 1 | Immunopathobiology of Epstein-Barr virus (EBV) infection. (A) EBV is transmitted to the host through saliva from a carrier individual, and infects
pharyngeal epithelial cells followed by naïve tonsillar B cells through interactions between gp350 and gp42 glycoproteins of the viral envelope with CD21 and MHC
class II molecules (MHC-II), respectively. Lytic infection produces new viral particles that infect more epithelial cells. Subsequently, these EBV-infected B cells enter
into a latency phase in the periphery, where they express a specific set of viral genes, including LMP1, LMP2A, EBNAs and EBER (latency III). These latent III B cells
progress through the germinal center reaction into latency II and emerge as memory B cells with I/0 latencies that establish a lifelong latent infection. The immune
response of the healthy host is sufficient to maintain control of the EBV infection. NK cells in tonsil produce high levels of IFN-g that withhold the transformation of B
cells by EBV during earlier stages of the infection. Both, type III and type II latent B cells are controlled by NK and T cells specific to latent proteins. By contrast,
memory B cells with type I latency are only controlled by activated EBNA-1 specific CD4 T cells. EBV-infected plasma cells can periodically enter in lytic phase, but
are controlled by CD4 and CD8 T cells with specificity for EBV lytic proteins. The programs of the viral latent cycle are expressed in various EBV-associated diseases.
Latency I is found in Burkitt lymphoma, latency II in Hodgkin lymphoma and latency III in post-transplantation lymphoproliferative disease (PTLD) and AIDS-associated
diffuse large B-cell lymphoma (DLBCL). EBV-latency I B cells escaping the surveillance of EBNA-1-specific CD4 T cells could lead to autoimmunity by presenting
EBNA-1 in MHC-II/gp42, which may cause cross-reaction with own antigens. (B) EBNA1 is presented to CD4 T cells on MHC class II molecules in EBV-infected B
cells. Both, MHC-II bound gp42 and soluble gp42 facilitate immune evasion by preventing activation and recognition of T cell receptors (TCR) in CD4 T cells. In
addition, some EBV miRNAs could directly reduce CD4 T cell cytotoxicity through the intercellular exosomal pathway or inhibit MHC class II-mediated antigen
processing and presentation in the host cell. By contrast, activation of Th1 CD4 T cells, would favor co-stimulation of CD8 T cells, NK cells and macrophages.
Increased levels of IFN-g in response to EBV infection can induce expression of MHC class II molecules in other cells such as epithelial cells, endothelial cells,
pancreatic beta cells, fibroblasts, keratinocytes and glial cells, allowing them to act as non-professional antigen-presenting cells that can become infected by EBV
through gp42/MHC-II interaction. If these cells also express low levels of CD21 (thymocytes, a subset of peripheral T lymphocytes, follicular dendritic cells, astrocytes
and some epithelial cells), they may further facilitate EBV entry by interacting gp350 with CD21. IFN-g released by NK cells may withhold the transformation of B cells
by EBV during the early stages of infection, but it fails to inhibit the proliferation of fully transformed EBV-infected B cells (latency). CD8 T cells do not recognize
EBNA1 in EBV-transformed cells, since it is presented in MHC class II molecules. Only EBNA1-specific CD4 T cells have cytotoxic activity against EBNA1-expressing
B cells, causing them to enter apoptosis and become phagocyted by macrophages. However, EBV transformed B cells release IL-10, TGF-b, CCL20 and exosomes
(containing EBERs and CCL20), which attract T regulatory (Treg) cells to the site of infection inhibiting antigen-stimulated CD4 effector T cells. IL-10 released by EBV
transformed B cells during EBNA1 presentation, favors a Th2 (over Th1) immune response that also inhibits CD8 T cells and NK cells. These EBNA1 specific Th2
cells further induce antibody secretion by plasma cells. EBERs released on exosomes can activate other cells such as eosinophils that degranulate and release the
cationic eosinophilic protein (ECP). (C) EBNA1 is one of the main candidates in the generation of autoantibodies and EBNA1 specific self-reactive cytotoxic Th1 cells
in genetically predisposed individuals. EBNA-1 is subjected to citrullination and presented in MHC class II molecules after macroautophagy in EBV-infected B cells.
As gp42 binds peripherally to the b1 domain of the b chain of HLA-DR -DQ, it may confer greater susceptibility or resistance to this interaction, depending on the
host DRB1* and DQB1* allele. Post-translational modifications, such as citrullination, may form neoantigens that can generate autoimmunity when recognized by
CD4 T cells. If polarized into a Th2 phenotype, CD4 T cells will stimulate B cell differentiation into plasma cells that could secrete autoantibodies. Antigen-specific
CD4 T cells with a Th1 cytokine pattern may have cytotoxic activity, apart from co-stimulating CD8 T cells, NK cells and macrophages. Together with autoantibodies
produced by plasma cells, all these cell types would participate in the destruction of healthy cells and the development of autoimmunity.
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Other genetic predisposition factors to consider are glutamic
acid 46 (E46) and arginine 72 (R72) from HLA class II molecules
(51). R72 is fully preserved in the HLA-DR, HLA-DQ and -DP
sequences (52); by contrast, E46 is conserved in all HLA-DR,-DP
alleles and only in a small subset of HLA-DQ alleles b * 02 (b *
0201, b * 0202 and b * 0203) (53). This suggests that individuals
with HLA-DQ alleles b * 02 may have higher susceptibility to
infection in tissues with cells expressing only HLA-DQ, as well as
a higher rate of EBV infection in those cells expressing different
HLA class II isotypes along with HLA-DQ b * 02 (53).

EBV-Associated Diseases
EBV is present in more than 90% of the population and the
decreased ability of the immune system to control/eliminate EBV
infection may be responsible for causing EBV-associated diseases
(35, 54) such as rheumatoid arthritis (34, 55, 56), systemic lupus
erythematosus (34, 57, 58), Sjögren’s syndrome (34), multiple
sclerosis (59–61), myasthenia gravis (62), diabetes mellitus type 1
(53), fulminant type diabetes (63), celiac disease (64),
autoimmune thyroiditis (65, 66), Hodgkin and non-Hodgkin
lymphoma (35, 67) (Supplemental Table 2).

Tissue infiltrating B cells with EBV latency in a genetically
predisposed individual, would trigger the activation of virus-
specific IFN-g producing Th1 CD4 T cells. High IFN-g levels
would induce the upregulation of MHC class II molecules
(Figure 1B) on the surface of different cell types (e.g.,
epithelial cells, endothelial cells, pancreatic beta cells,
fibroblasts, keratinocytes, glial cells, etc.), allowing them to
function like non-professional antigen-presenting cells.
Likewise, MHC class II upregulation would improve the
infection capacity of EBV through the interaction with gp42
(68, 69). Co-expression of MHC-II molecules and CD21 (e.g.,
thymocytes, a subset of peripheral T lymphocytes, follicular
dendritic cells, astrocytes and some epithelial cells) would
further increase the risk of EBV infection through the
interaction between gp350 and CD21 (69). These mechanisms
have been hypothesized in patients with autoimmune thyroiditis
with EBV transformed B cell infiltrate in the thyroid tissue (65,
66). The same principle could potentially apply to the intestinal
mucosa in celiac disease (70), to the pancreatic islets in type 1
diabetes (53), to the central nervous system and multiple
sclerosis (60, 71), to the exocrine glands and the Sjögren’s
syndrome (34, 72), to the thymus and myasthenia gravis (62),
as well as to the synovial joints and rheumatoid arthritis (38, 73,
74). Can the same principle be applied to a subgroup of patients
with ME/CFS?
A HYPOTHETICAL ASSOCIATION
BETWEEN EBV AND ME/CFS

As mentioned above, EBV infection has been identified as a risk
factor in a subgroup of ME/CFS patients (3, 28, 75). There are
studies showing a statistically significant elevation of anti-EBV-
dUTPase antibodies (75, 76), a defective EBV-specific B and T
cell response (77), a high rate of active EBV infection (28),
Frontiers in Immunology | www.frontiersin.org 4
serologic evidence of EBV reactivation with elevated IgM
antibodies against late VCA antigen (78–80), and a positive
up-regulation of EBV-induced gene 2 (EBI2) mRNA in
peripheral blood mononuclear cells (PBMC) (3) from a
subgroup of patients with ME/CFS. However, serological
observations related to EBV were not always confirmed and,
accordingly, the association between EBV infection and ME/
CFS is not established (81–85). Furthermore, the presence of an
active EBV infection in a subgroup of ME/CFS patients has
been actively debated, because most studies revealed no
increase in EBV viral load in ME/CFS patients. If a third state
of virus, defined as abortive/lytic/leaky replication (86) could
explain the presence of certain EBV proteins (BRRF1 and
BLLF3) with the potential capacity to contribute to the
symptomatology of ME/CFS (82, 87), is an hypothesis that
remains unconfirmed.

Multiple studies in patients with ME/CFS have demonstrated
decreased cytotoxic activity of NK cells, increased IL-10 levels
and augmented Th2 response. Also an expansion of Tregs and
impaired T cell response to mitogens and other specific antigens
(1, 2, 12, 16, 88–91). Based on the mechanisms of immune-
escape developed by latency I (EBNA-1) cells, established after
primary EBV infection, a cause-effect association between EBV
infection and the disease onset in a subgroup of ME/CFS
patients, could be hypothesized. Accordingly, IL-10 released by
both EBV-transformed B cells and Tregs would favor a Th2 type
immune response (43), and gp42-mediated disruption of TCR-
MHC-II interaction would further decrease CD4 T cell
activation, leading to poor CD4 T cell immunity to mitogens
and other specific antigens, which have been described in some
patients with ME/CFS (2). All these immune evasion
mechan i sms t r i gg e r ed by l a t en t c e l l s i nduce an
immunodeficiency that allows EBV-transformed B cells,
especially EBV latent I cells, to escape from immune
surveillance. This could potentially help explaining the reduced
EBNA-1-specific CD4 T-cell response, increased EBV latent cells
(77), and increased EBV abortive lytic replication (EBV dUTPase
in exosomes) (75), observed in a subgroup of patients with ME/
CFS. If the infiltration and proliferation of EBV-transformed B
cells in the intestinal mucosa is related to the chronic
inflammation that is observed in some ME/CFS patients (15,
92–94), remains unknown. However, the results described above
and the hypotheses we generated accordingly, must be
interpreted with caution because there are numerous other
studies that failed to reproduce the findings of decreased
cytotoxic activity of NK cells, increased IL-10 levels and
augmented Th2 response (83, 89, 90, 95–97). These
discrepancies may be due to disease heterogeneity, different
degrees of ME/CFS severity and duration, and different
analytical methods (15, 28, 89, 97–99).

If the hypotheses described above were to be true, the
subgroup of ME/CFS patients with EBV infection could have
increased risk of developing autoimmune diseases (19, 100,
101), latent viral reactivations (e.g., herpesviruses, Parvovirus
B19) and cancer (83, 102–107), namely EBV-associated
lymphoma (108). Additionally, HLA-II alleles associated with
November 2021 | Volume 12 | Article 656797
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increased EBV susceptibility may also explain the higher
prevalence of cancer and autoimmune disorders (Figure 1C),
such as rheumatoid arthritis and type 1 diabetes, in first-degree
relatives of patients with ME/CFS (15, 19, 100, 109, 110).
Notwithstanding, the high prevalence of EBV among the
general population hinders the identification of this putative
subset of patients who developed ME/CFS following infection.
This is in agreement with EBV serological assessments
performed in patients and healthy individuals, from where no
conclusive results have been observed (85). Similarly, most
studies reported no increase in EBV viral load in patients
with ME/CFS (84, 111). If this is due to the fact that the
possible trigger of some EBV-associated diseases are the EBV-
latent cells rather than viral load (34, 35, 43, 63, 66, 67, 112–
114), remains unknown in ME/CFS. Thus, to our knowledge,
there is scarce evidence based in prospective cohort studies,
describing rates and associations with post-infective fatigue
syndrome (i.e., ME/CFS) following proven acute EBV.
THERAPEUTIC OPTIONS AGAINST EBV:
IS THERE A ROLE IN ME/CFS?

Limited knowledge about the origin of ME/CFS has hampered
the development of effective treatment. Current strategies
include administering nutritional supplements to overcome
deficiencies and symptomatic treatment with analgesics,
steroids or antidepressants (Supplemental Table 3) (1, 115).
Thus, if a putative association between EBV infection and the
onset of ME/CFS exists, the development of biomarkers that
could identify patients in whom this may occur, would create a
window of opportunity for tailored treatment against EBV.

B-cell depletion using several infusions of rituximab over 12
months was not associated with clinical improvement in patients
with ME/CFS (116). Similarly, results of trials using antivirals
have been inconclusive and, in some cases, contradictory (115).
Accordingly, anecdotal observations of the resolution of
symptoms in some ME/CFS patients with elevated levels of
anti-EBV antibodies, after treatment with rituximab (100, 117)
or antivirals (e.g., valaciclovir and valgancinclovir) (118, 119),
have not been confirmed in large series. If B-cell depletion agents
and antivirals were poised to show greater efficacy if used in a
putative subgroup of patients in whom acute EBV triggered ME/
CFS, remains obviously unknown. Furthermore there are no
effective treatments to eradicate EBV latency in patients with
EBV-associated disorders (120–122). Antiviral agents do not
eradicate latent cells (120, 121), while rituximab does not
remove all EBV-infected cells nor restores cellular immunity
against EBV. Moreover, it induces further immunosuppression
by targeting CD20 positive infected and uninfected healthy B
cells (120, 122, 123). The combination of antiviral agents or
intravenous immunoglobulins with rituximab can be used to
treat EBV-associated disorders (121), but merely prolongs time
until next relapse, since the combination of both therapies does
not completely eliminate EBV infection in genetically
predisposed hosts.
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Other treatments such as EBV-specific adoptive T cell
immunotherapy could potentially yield some benefit (124),
since EBNA-1 is expressed during the lytic cycle, as well as by
almost all EBV-infected cells, with the exception of those with
latency 0 (125–127). However, EBNA-1 is poorly immunogenic
and is not always presented in MHC class II molecules of B cells
with EBV latency (46); thus, these cells (especially those with
latency I) could escape EBNA-1-specific T cell immunotherapy.
Another alternative proposed by Dalton et al. is the use of low
doses of DNA demethylation agents (e.g., decitabine and 5-
azacitidine) during a short period (Figure 2A) for the treatment
of latency I EBV-associated lymphoma, which induces the
transformation of latent I B-cells into latent II and III,
thereby allowing EBV-specific T cells to recognize them due
to increased expression of immunogenic viral antigens (i.e.,
LMP1, EBNA2, EBNA3A and EBNA3C) (128). Such an effect
could even persist after treatment interruption (128).
Furthermore, DNA demethylation agents may restore the
expression of HLA-II molecules in EBV-transformed
lymphoblastoid cell lines (129, 130) and induce apoptosis in
EBV-transformed epithelial cells (Figure 2B) (131, 132).
Therefore, if our hypothesis about the presence of an
acquired immunodeficiency after EBV infection in genetically
predisposed individuals with EBV-associated diseases holds
t rue , i t cou ld be specu la t ed that low-dose DNA
demethylation agents for short-term treatment followed by
EBV-specific T cell immunotherapy (128) and antiviral agents
(because of the increased lytic infection by the use of DNA
demethylation agents) could be beneficial. Such an approach
may also be potentially useful in cases where ME/CFS develops
from other viruses such as the HHV-6, CMV and human
parvovirus B19 (24–29), since these DNA viruses use CpG
DNA methylation as an immune evasion mechanism. Namely,
the viral genome is largely methylated during the latency phase
thereby preventing viral expression and genome replication;
instead, it is restored to a non-methylated state during the lytic
phase during latency, which is restored to a non-methylated
state during the lytic phase (133–136).
CONCLUSIONS AND
FUTURE DIRECTIONS

If the link between EBV infection and ME/CFS could be
demonstrated, it would warrant future research endeavors on a
potential association between decreased activation of CD4 T cells
and HLA class II alleles with greater predisposition to EBV
infection. Such biomarkers could help to better define a
hypothetical subgroup of patients with EBV-associated ME/CFS.
Additional research about the efficacy of anti-EBV therapies in these
patients would then be warranted. The identification of successful
treatment would potentially prevent the development of this or
other diseases associated with this pathogen. Interestingly, a recent
prospective study investigating risk factors for developing ME/CFS
in college students following infectious mononucleosis, found that
those who developed ME/CFS had more physical symptoms and
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immune irregularities at baseline (137). If the association between
the expression of certain HLA-II alleles and higher susceptibility to
develop ME/CFS exists, individuals with post infectious
mononucleosis fatigue syndrome could be an interesting group to
study and test the hypothesis discussed in this review.
Frontiers in Immunology | www.frontiersin.org 6
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FIGURE 2 | Schematic model of treatment with DNA demethylation agents followed by adoptive immunotherapy of EBV-specific T cells. (A) Administration of low-
dose DNA demethylation agents (e.g. decitabine) restores the expression of MHC class II molecules and induces expression of LMP1, EBNA-2 and EBNA-3C in
EBV-latency I B cells, improving the recognition of these cells by EBV-specific T cells (either autogenous or after adoptive immunotherapy). EBNA-1-specific CD4 T
cells can only recognize latent I cells exhibiting EBNA-1 in MHC class II molecules since EBNA-1 is poorly immunogenic. (B) DNA demethylation agents (e.g.
decitabine) induce lytic infection and apoptosis in EBV-transformed epithelial cells. Antiviral agents prevent viral replication.
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