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There has been recent immense interest in the use of machine learning techniques in
the prediction and screening of atrial fibrillation, a common rhythm disorder present with
significant clinical implications primarily related to the risk of ischemic cerebrovascular
events and heart failure. Prior to the advent of the application of artificial intelligence in
clinical medicine, previous studies have enumerated multiple clinical risk factors that can
predict the development of atrial fibrillation. These clinical parameters include previous
diagnoses, laboratory data (e.g., cardiac and inflammatory biomarkers, etc.), imaging
data (e.g., cardiac computed tomography, cardiac magnetic resonance imaging,
echocardiography, etc.), and electrophysiological data. These data are readily available
in the electronic health record and can be automatically queried by artificial intelligence
algorithms. With the modern computational capabilities afforded by technological
advancements in computing and artificial intelligence, we present the current state of
machine learning methodologies in the prediction and screening of atrial fibrillation as
well as the implications and future direction of this rapidly evolving field.

Keywords: atrial fibrillation, electrocardiogram, echocardiography, risk factor, prediction, deep learning, machine
learning

INTRODUCTION

Atrial fibrillation (AF) is the most common arrhythmia worldwide with its burden expected to
continue to increase with the aging population. AF is diagnosed clinically, requiring detection of
the arrhythmia on formal electrocardiographic testing. Improvements in monitoring technology,
including high-fidelity long-term monitors, have increased the yield for the detection of AF, thereby
enhancing our knowledge of the true clinical burden of AF.

Beyond detection, there has been immense interest in prediction of AF using both clinical
risk factors as well as objective testing. Numerous clinical risk scores have been proposed,
incorporating readily available variables from the patient’s medical history, such as age, ethnicity,
height, weight, blood pressure, smoking status, medication use, and comorbidities (Schnabel et al.,
2009; Chamberlain et al., 2011; Alonso et al., 2013; Suenari et al., 2017; Li et al., 2019; Hu and Lin,
2020; Lip et al., 2020; Himmelreich et al., 2021). Abnormalities in both cardiac and inflammatory
biomarkers have been shown to augment the predictive ability of clinical prediction scores (O’Neal
et al., 2016). Structural cardiac abnormalities, including atrial fibrosis and atrial enlargement, as
well as associated manifestations on physiologic parameters such as mitral inflow Doppler and
atrial strain have been shown to be predictive of AF (De Vos et al., 2009; Caputo and Mondillo,
2012; Hwang et al., 2015). Likewise, electrocardiographic (ECG), particularly P wave morphology,
has been well-studied and shown to have predictive utility. Overall, there is an abundance of clinical
variables that have been shown to be predictive of AF, individually or in limited pairings.
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With advancements in artificial intelligence technology and
the rapid accumulation of digital clinical data, machine learning
has the potential to analyze and synthesize seemingly disparate
variables to predict AF in such a way that vastly surpasses
conventional methods (Siontis et al., 2020). Machine learning
algorithms can not only assist in processing imaging or
electrocardiographic data, but it may also be able to incorporate
and interpret large amounts of clinical data and discover new
clinical patterns and concepts. We seek to present the latest
review of conventional and machine learning methodologies in
the prediction of AF.

THE PRESENT STATE OF MACHINE
LEARNING TECHNIQUES

At the core of machine learning is the convergence of
statistical analytics and computer engineering. Machine learning
algorithms are able to process complex inputs, such as images,
and discern subtle relationships that may not be evident with
traditional statistical methods. Machine learning techniques can
be categorized broadly into three categories: supervised learning,
unsupervised learning, and reinforcement learning. Supervised
learning requires labels during training, such as the presence or
absence of incident AF. Therefore, the algorithm is provided with
both the input variables as well as outcome labels. Unsupervised
learning seeks to identify relationships within the data without
the assistance of labels. Various methods such as clustering
have been described for this method of learning. Reinforcement
learning uses the concept of reward maximization, in which
the machine learning algorithm assumes the role of an agent
that receives either positive or negative reinforcement to guide
decision making (Thrun and Littman, 2000; Koohy, 2017; Géron,
2019). For the purposes of this review, we will discuss the most
used learning method, supervised learning.

Supervised learning itself utilizes different methods including
regression modeling, random forests, and neural networks. In
regression modeling, both with and without machine learning,
preselected variables undergo regression analysis to determine
their ability to predict an outcome. Machine learning improves
upon these traditional modeling techniques by its ability
to analyze large and complex datasets. Techniques include
classification algorithms such as Support Vector Machine and
K-Nearest Neighbor (Sultana et al., 2016). Random forests utilize
branching decision trees, empirically deriving thresholds to
determine how the data should be split (Koohy, 2017; Géron,
2019; Uddin et al., 2019).

Neural networks have fundamentally changed the machine
learning landscape. Fundamentally, the network architecture is
comprised of layers and processing units within each layer called
nodes. Data is analyzed in one layer and then transmitted to
the next layer, such that a node in a deeper layer receives
inputs from one or more nodes in the prior layer. All neural
networks have an input layer to process input data and an output
layer while a deep neural network continues numerous “hidden”
intermediary layers and nodes. Convolutional neural networks
utilize the concept of “convolutions,” whereby nodes in a deeper

layer only receive input from select subset of nodes from the
previous layer. Therefore, these networks seek to identify local
correlations and preserve local special dependences, which is
particularly important for image processing. It also allows for
more efficient computational processing by reducing the input
data into smaller localized convolved features via methods of
dimensionality reduction (Stankovic and Mandic, 2021).

There are a vast array of different machine learning
techniques, which by themselves can be the subject of reviews and
textbooks. For the clinician, we have summarized the different
supervised machine learning techniques, including names of
techniques one might encounter, as well as the general advantages
and disadvantages in Table 1.

FROM CLINICAL DATA

Validated clinical risk scores to predict AF, such as the FHS,
ARIC, CHARGE-AF, C2HEST, and HATCH score, utilize readily
obtainable clinical variables, such as age, ethnicity, height, weight,
blood pressure, smoking status, antihypertensive medication use,
history of diabetes, heart failure myocardial infarction, etc. Based
on these readily available variables from the patient history, these
risk scores have shown adequate model discrimination for the
prediction of incident AF (area under the receiver operator curve,
AUCs, generally around 0.70) (Schnabel et al., 2009; Chamberlain
et al., 2011; Alonso et al., 2013; Suenari et al., 2017; Li et al., 2019;
Hu and Lin, 2020; Lip et al., 2020; Himmelreich et al., 2021).
AUCs, or c-statistic, are commonly used in studies of diagnostic
test performance as an overall indicator of test performance
(Bradley, 1997). Other measures of test performance, though
not universally reported, include accuracy (proportion of correct
assessments), precision (or positive predictive value), and recall
(or sensitivity). Due to inconsistencies with reporting these other
measures of test performance, which limits comparison among
studies, we will largely focus on AUCs. The studies for these
validated clinical risk scores to predict AF are summarized in
Table 2.

The addition of serologic testing of common cardiac
biomarkers, including natriuretic peptides and C-reactive
protein, has been shown to enhance the predictive ability of
such clinical risk scores (Sinner et al., 2014). Additional markers
of chronic kidney disease, such as Cystatin C, and endothelial
dysfunction have also been shown to be associated with AF,
though no studies have been shown that the addition of these
parameters enhances the predictive ability of existing clinical risk
scores (O’Neal et al., 2016).

With the abundance of clinical and laboratory data available
in digital format, recent investigators have started to evaluate the
use of machine learning in predicting AF using the electronic
health record. To facilitate this, organizations have developed
a common data models for analysis, one prime example being
the Observational Medical Outcomes Partnership Common Data
Model in an effort to synchronize data from disparate sources
for systematic analysis (FitzHenry et al., 2015). In a recent large
study of nearly 2 million patients from the University of Colorado
health systems by Tiwari et al. (2020) investigators applied a
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TABLE 1 | Advantages and disadvantages of different supervised machine learning techniques.

Examples Advantages Disadvantages

Linear/logistic regression Simple and easy to implement Reduced accuracy with variables with complex relationships

k-Nearest Neighbor Simple and can handle noisy instances or instances with
missing attribute value

Computationally taxing, does not identify variables that are
important for classification

Support vector machines More robust than ordinary regression and can classify
semi-structured/unstructured data

Computationally taxing, does not handle data noise well

Random forests Performs well in large datasets and identifies variables that are
important for classification

Computationally taxing, easy to overfit

Neural networks Detects complex non-linear relationships between variables Computationally taxing, cannot access decision making
process (“blackbox”)

TABLE 2 | Original and validation studies of clinical AF risk scores.

Clinical AF risk score Original study Example validation*

FHS
(Age, sex, BMI, SBP, hypertension treatment,
PR interval, clinically significant cardiac
murmur, CHF)

4,764 patients from the United States
AUC 0.78 (95% CI 0.76–0.80) (Schnabel et al., 2009)

49,599 patients from the United States
0.734 (0.724–0.744) (Shulman et al., 2016)

ARIC
(Age, race, height, SBP, hypertension
treatment, smoking status, precordial murmur,
left ventricular hypertrophy, left atrial
enlargement, DM, CAD, CHF)

14,546 patients from the United States
AUC 0.765; 95% CI, 0.748–0.781 (Chamberlain et al.,
2011)

None

CHARGE-AF
(Age, ethnicity, height, weight, blood pressure,
smoking, antihypertensive use, DM, CHF, MI)

18,556 patients from the United States
AUC 0.765 (95% CI: 0.748–0.781) (Alonso et al., 2013)

114,475 patients from the Netherlands
AUC 0.74 (95% CI: 0.73–0.74) (Himmelreich
et al., 2021)

C2HEST
(CAD/COPD, hypertension, age, CHF,
hyperthyroidism)

471,446 patients from China
AUC 0.75 (95% CI: 0.73–0.77) (Li et al., 2019)

1,047,330 patients from Denmark
AUC 0.588 (95% CI: 0.585–0.591) (Lip et al.,
2020)

HATCH
(Hypertension, age, stroke/TIA, COPD, CHF)

670,804 patients from Taiwan
AUC 0.716 (95% CI: 0.710–0.723 (Suenari et al., 2017)

692,691 patients from Taiwan
AUC 0.771 (no CI provided) (Hu and Lin, 2020)

AF, atrial fibrillation; AUC, area under the curve; BMI, body mass index; CAD, coronary artery disease; CHF, congestive heart failure; COPD, chronic obstructive pulmonary
disease; DM, diabetes mellitus; MI, myocardial infraction; SBP, systolic blood pressure; TIA, transient ischemic attack.
*Studies selected for explanatory purposes and may not be an exhaustive list.

machine learning model to over 200 most common health record
features, including demographics and comorbidity data, and
derived a model with an AUC of 0.79 to detect incident AF in
a 6 month timeframe, which is in line with non-machine learning
clinical AF risk scores. In another study of over 2 million primary
care patients from the United Kingdom by Sekelj et al. (2021)
another machine learning algorithm achieved an AUC of 0.83
in the development dataset and 0.87 in the validation dataset to
detect incident AF in a registry that spanned 7 years, indicating
better performance compared to traditional risk scores.

When comparing the AI algorithms to the traditional risk
scores, many factors may impact and limit the interpretation
of the test performance. Firstly, there is significant variation in
the duration of follow-up for each study, ranging from as short
as 6 months to more than 10 years. This clearly significantly
impacted the proportion of patients at study termination with
incident AF (1% vs. 10%, respectively) (Schnabel et al., 2009;
Tiwari et al., 2020). It is possible that limited follow-up such
as 6 months in the Tiwari AI study may have reduced the test
performance in part due to the limited duration of follow-up,

where “false positives” (i.e., AI screening positive, AF negative
at 6 months) would have been “true positives” if given sufficient
time to manifest or vice versa with “true negatives” at the end of
study turning into “false negatives” (Tiwari et al., 2020).

In a recent study by Hill et al. (2019) of nearly 3 million
patients in the United Kingdom, the investigators compared
a machine learning algorithm with time-varying covariates to
the CHARGE-AF risk score. The use of time-varying covariates
represents yet another technique in neural networks, in which
the input covariates are not static but are allowed to be
incorporated into the model at varying time points during
the study period. This means that the temporal association
between a covariate and the outcome becomes another critical
factor during the development of these neural networks. In this
study, the found that the time-varying model had an AUC of
0.827 while the traditional CHARGE-AF risk score applied to
the same population had an AUC of 0.725. Using the time-
varying methodology, they were able to determine that congestive
heart failure diagnosed within the most recent 91-day quarter
contributed the most to the prediction of incident AF. This study

Frontiers in Physiology | www.frontiersin.org 3 October 2021 | Volume 12 | Article 752317

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-752317 October 23, 2021 Time: 15:4 # 4

Tseng and Noseworthy Machine Learning Prediction of AF

not only showed the benefits of using different machine learning
techniques to extract potentially clinically relevant predictors
(such as time-dependent variables), but also that the machine
learning algorithms performed more robustly than traditional
risk scores (Hill et al., 2019). While these algorithms have not
been tested prospectively nor have they been validated in external
health systems, the size and scale of these massive projects
far exceed previous studies of conventional clinical risk scores
for AF, and shows the increasing promise of utilizing easily
accessible data from the electronic health record to predict the
risk of incident AF.

FROM CARDIAC IMAGING DATA

AF is often associated with distinct structural heart
abnormalities that are apparent on cardiac imaging, including
echocardiography, CT and MRI. Oftentimes, these structural
abnormalities result from conditions that predispose patients to
AF, such as diastolic dysfunction, but AF can also itself lead to
valvular regurgitation. From an echocardiography perspective,
previous studies have shown that left atrial volumes, measures
of diastolic dysfunction, ventricular wall thickness, strain
echocardiography can be associated with the risk of new-onset
AF (Xu et al., 2011; Caputo and Mondillo, 2012; Hirose et al.,
2012). Newer, non-conventional measurements such as the
total atrial conduction time, as a marker of atriopathy, was also
shown to be associated with development of AF in a smaller
cohort of 249 patients (De Vos et al., 2009). Cardiac CT to
evaluate the left atrial appendage have demonstrated mixed
results on prediction of AF after AF ablation (Ebersberger et al.,
2020). However, left atrial thickness as a marker of atriopathy
on cardiac CT has been shown to be associated with increased
risk of transition for paroxysmal AF to chronic AF as well
as low-voltage areas as potential sites of ablation (Nakamura
et al., 2011; Nakatani et al., 2020). Given the unique ability of
MRI to evaluate tissue characteristics, left atrial fibrosis by late
gadolinium enhancement on cardiac MRI has been shown to
be associated with new-onset AF. One study with 182 patients
evaluated the predictive ability of left atrial fibrosis>6% and
derived an AUC of 0.67, which was further enhanced to 0.80
after adding history of hypertension and left ventricular ejection
fraction (Siebermair et al., 2019). Overall, the use of these
imaging parameters to predict AF have largely been restricted to
small association and procedural studies, and there has not been
systematic use of imaging data to develop or refine existing risk
scores for predicting AF.

Machine learning has likewise begun to make headway
in image analysis. Unlike the categorical or numerical input
of data from the electronic health records, images require
additional sophisticated methodologies when applying machine
learning, yet the fundamental theory remains similar (Fu et al.,
2019). Small-scale studies have started to investigate the use
of machine learning on cardiac imaging. In a small study on
cardiac CT using machine learning to evaluate left atrial and
pulmonary vein morphology in 203 patients undergoing AF
ablation, the machine learning algorithm was able to predict

AF recurrence after ablation using these CT images with an
AUC of overall AUC of 0.87 (Firouznia et al., 2021). A similar
study of 68 patients using cardiac CT left atrial morphology
to predict AF recurrence after ablation demonstrated an
AUC of 0.78 when combining imaging and clinical features
(Atta-Fosu et al., 2021).

However, there have not been investigations in the use
of machine learning in cardiac imaging to predict new-
onset AF. Given multiple factors, including the complexity
of image processing, machine learning in cardiac imaging
has focused on image acquisition, processing, and basic
interpretation (Chang et al., 2020). Future studies will be
needed to develop the role of machine learning in prognosis
and detection of non-imaging diagnoses such as AF. As
such, large population-based studies may not be feasible,
related to the costs of screening asymptomatic patients with
imaging and significant selection bias for patients who have
indications to undergo cardiac imaging tests. Nonetheless,
machine learning in cardiac imaging for AF will undoubtedly play
an important role in periprocedural prognosis and management,
and perhaps with well-designed studies can help with the
prediction of AF.

FROM ELECTROPHYSIOLOGICAL DATA

Pathophysiologic changes in AF can also manifest itself
as abnormalities on electrophysiology testing, such as
electrocardiography and invasive intracardiac electrograms.
Previous studies have shown that ECG findings, such
as P-wave duration, dispersion and amplitude as well as
premature atrial contraction morphology and frequency,
have been shown to be predictive of incident AF, achieving
AUCs ranging from 0.69 to 0.87 (Dilaveris et al., 2000;
Thong et al., 2004; Yoshizawa et al., 2014). One study
evaluated premature atrial contraction characteristics and
percent burden as a risk factor for AF among 652 patients
who underwent Holter monitoring, with an AUC of 0.58
(Im et al., 2018).

Intracardiac electrograms are generally obtained during an
electrophysiology study in patients with known or suspected
arrhythmia. Therefore, there have not been studies specifically
evaluating the predictive ability of electrogram features on new-
onset AF. However, elements of the intracardiac electrogram
have been shown to be correlated with the risk of AF
recurrence after ablation. For example, in one study on
140 patients, multiple electrogram characteristics including
dominant frequency, regularity index and organizational index
of fibrillatory electrograms have shown predictive value for AF
recurrence after AF ablation (Szilagyi et al., 2018).

The use of machine learning on the ECG to predict new-onset
AF has been the subject of immense inquiry recently. Unlike
the use of machine learning to process cardiac imaging, the
processing of electrocardiographic signals is highly standardized
using a static time series dataset and more easily interpretable
compared to a series of images, including moving images like in
echocardiography. In a large study from the Mayo Clinic of over
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600,000 ECGs in normal sinus rhythm, a convolutional neural
network was developed with a robust AUC of 0.87 for predicting
new-onset AF, with further augmentation of the AUC to 0.90
for patients with multiple ECGs (Attia et al., 2019). A small
study by Ebrahimzadeh et al. (2018) in 53 patients of extended
ECG recordings sought to evaluate different machine learning
techniques using heart rate variability analysis in extended ECG
monitoring to predict initiation of AF. In this self-controlled
study, all patients had an episode of paroxysmal AF, in which a
5-min ECG segment obtained 30 min prior to the onset of AF
(“AF” label) was compared to a 5-min ECG segment obtained
45 min after termination of AF (“non-AF” label). Unlike the
convolutional neural network used in the Mayo Clinic study
in which the features of the neural network are hidden, the
investigators identified multiple features from the heart rate
variability signal, including linear, non-linear and time frequency
features, in order to develop the machine learning model.
They found that the combined machine learning approach
performed better than traditional machine learning classifiers
(Multilayer Perceptron, K-Nearest Neighbor, Support Vector
Machine) (accuracy of 98.21% vs. 91.90–93.76%, respectively)
(Ebrahimzadeh et al., 2018).

Thus, there are numerous techniques in machine learning
being explored for the use of electrophysiological data
to predict AF. These techniques range from different
“traditional” machine learning classification algorithms
to convolutional neural networks. No direct comparison
between traditional models and machine learning models in
ECG interpretation have been performed to date. However,
machine learning methodologies allow analysis of large
quantities of ECG data that may be too cumbersome and
time consuming to perform manually and has thus far
allowed for the development of prediction models with
strong diagnostic performance.

FUTURE DIRECTION

As the reader considers the various sections in this review
from clinical data to electrophysiological data, we can see
that machine learning, while still in its infancy, has begun
to drastically improve our ability to predict AF. There are
current worldwide efforts and clinical trials to prospectively
test and harness the potential of AI in clinical practice
for AF. In the United States, the Batch Enrollment for
AI-Guided Intervention to Lower Neurologic Events in
Unrecognized AF, or BEAGLE trial, seeks to assess the
performance of AI on detecting AF on normal sinus ECGs
in adult patients who do not have a previous diagnosis of
AF and are eligible for anticoagulation based on standard
stroke risk stratification (Yao et al., 2021). Similar efforts
are being undertaken in France, United Kingdom, the
Netherlands, Finland, and Germany, some also testing the
utility of AI applied to ECGs obtained by portable devices
(ClinicalTrials.gov, 2021a,b,c,d,e).

Despite these important advancements, there is still significant
room for growth within this space.

(1) Integration of all modalities of data: While siloed
approaches are often necessary in the beginning to refine
specific methodologies as it pertains to different modalities
of data, we have seen from conventional studies that the
combination of data (e.g., clinical, laboratory, imaging,
etc.) often leads to the highest predictive ability for any
clinical risk score. This same principle should be applied
to machine learning algorithms, such that the development
of a machine learning algorithm that can incorporate all
modalities of data, likely further enhancing the powerful
predictive performance of the existing AI algorithms.

(2) Advancements in our understanding and methodologies of
machine learning: At this early stage, due to the nature
of many advanced types of machine learning, including
convolutional neural networks, the signal features selected
by the AI as important predictive features in an algorithm
cannot be known (the so-called “black box”). It is
possible that future techniques will allow the algorithms
to be more explicit and informative about its own
methodologies, both to inform clinicians on novel patterns
that may advance human understanding but also to inform
researchers on potential troubleshooting issues, such as the
inadvertent use of non-medical or unrelated data in their
predictive algorithms.

(3) Implications of machine learning algorithms on
management: While the overall aim of this review is
to evaluate the role of AI in predicting AF, future studies
should undoubtedly evaluate the prospective use of these
algorithms to determine optimal management strategies for
patients. In AF, for example, there is significant implication
with AF diagnosis regarding stroke prevention via the use
of anticoagulation. Could there be important changes to
clinical outcomes and patient management based on the
results of the algorithm that can be eventually be actionable,
perhaps even before a clinical diagnosis?

CONCLUSION

There is no doubt that artificial intelligence will play a
greater role in medicine as the technology continues to
advance and our understanding of its applications continues
to grow. While still in its early stages and still flawed
by inherent limitations, machine learning shows great
promise in improving our ability to predict AF. The future
integration of clinical, imaging and electrophysiological data
will certainly improve the performance of these machine
learning algorithms, and ultimately improve the care of
patients worldwide.
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