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Abstract: In our previous study, we developed an automatic sample injection system for pillar array
columns for quantitative analysis. An autosampler was used to maintain a constant sample injection
volume. However, the sample was diluted during injection using the autosampler, thus deteriorating
the analytical reproducibility. In this study, we have substituted the autosampler with a syringe
pump to overcome the abovementioned problem and improve the system. Sample dilution was
avoided by filling the entire capillary with the sample at a constant rate. This improved system also
increased the analytical reproducibility. In the previous system, the relative standard deviation (RSD)
exceeded 17% of the peak height for coumarin dyes. In contrast, the improved system decreased the
RSD to the range 1.2–1.8%. The analytical reproducibility was evaluated by using five types of amino
acids. The RSD of each peak height was within 3.0%, confirming good reproducibility. These results
indicate that the sample injection method developed in this study can be applied to biological sample
analyses as a simple quantitative analysis method for pillar array columns.

Keywords: microchip; on-chip liquid chromatography; automation; amino acids; miniaturization

1. Introduction

High-performance liquid chromatography (HPLC) has good quantitativity and an-
alytical reproducibility, and it is widely used as an important analytical tool in various
fields such as food chemistry, life sciences, and clinical research [1–5]. The most widely
used HPLC column is a particle-packed column fabricated by packing the column with
silica-based or polymeric materials with particle diameters within the range of 1.5–5 µm [6].
However, the separation efficiency of such columns is limited because the particles cannot
be packed perfectly and uniformly [7,8]. To overcome this problem, pillar array columns
with a completely uniform internal structure and regularly arranged microsized pillars
have recently been developed [9–19]. Pillar array columns can significantly reduce eddy
diffusion and lead to better resolution than particle-packed columns do. Several types
of microfluidic separation channels such as nano LC and capillary LC have also been
developed in recent years. Nevertheless, pillar array columns have superior separation
ability as compared to the former [9].

Previously, the use of pillar array columns involved manual injection of samples.
However, owing to the requirement of a small amount of sample (approximately 1 nL) to
be injected, accurate control of the injection volume is difficult, which limits the use of pillar
array columns for quantitative analysis. Thus, an automated sample injection system that
can provide a constant sample injection volume has been developed for the quantitative
analysis of biological samples using pillar array columns [11]. The constant sample injection
volume is maintained by introducing an autosampler to the system. However, the sample
introduced from the autosampler is diluted by the mobile phase before reaching the pillar
array column, and the dilution factor changes for each analysis. Therefore, there are
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variations in the concentration of the injected sample. The present study overcomes this
disadvantage by changing the injection system from an autosampler to a syringe pump.
Dilution of the sample can be avoided by filling the entire capillary with the sample at a
constant rate. The improved system leads to an increase in the analytical reproducibility.

2. Results and Discussion
2.1. Previously Developed Automated Sample Injection System

In our previous study, an automated sample injection system was developed to main-
tain a constant sample injection volume. The analytical system comprised two pumps
(one for the sample and the other for the mobile phase), a six-way valve controlled by a
PC, and an autosampler; thus, sample introduction and valve switching were performed
automatically. Although we attempted to reproduce the injection conditions, especially by
maintaining a constant injection volume, the reproducibility of peak heights deteriorated
during repeated analysis. This variation was particularly evident in low-concentration
samples. In the analysis of coumarin dyes, the relative standard deviation (RSD) of the
peak heights for C525 and C545 was 17.9% and 17.6%, respectively. Since the RSD was
higher at lower concentrations, dilution of the samples was responsible for the reduced
reproducibility. We concluded that samples introduced from the autosampler were diluted
by the mobile phase before reaching the pillar array column and that the dilution factor
varied with the injection time.

2.2. Improved Automated Sample Injection System

With the previously designed system, the sample tended to be diluted because it was
carried to the chip by the mobile phase. We envisaged that if the duration required to reach
the chip can be shortened by decreasing the distance between the capillary of the autosam-
pler and the chip, dilution of the sample could be avoided; hence, the system performance
would be enhanced. However, shortening the distance between the autosampler and the
chip to 50 cm was challenging, and thus, we adopted another method for improvement.
We hypothesized that dilution of the sample could be avoided by filling the capillary with
the sample. We improved the system by substituting the autosampler with a syringe pump
for transferring the sample to the chip, as shown in Figure 1. The valve, which was initially
at position X, was shifted to position Y after filling the sample in the syringe. The syringe
pump injected the sample at a constant rate. The sample was forced out, and the cross
portion between the separation and sample flow paths was filled with the sample. The
sample at the cross part was injected into the separation flow path by switching the valve
and setting it to position X.
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Figure 1. Schematic of the improved automated sample injection system. Figure 1. Schematic of the improved automated sample injection system.

In this system, sample dilution can be avoided by filling the entire capillary, connecting
the pillar array column, with the sample. Furthermore, the syringe moves at a constant
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speed with the aid of a syringe pump; therefore, the force applied to the syringe remains
constant. The sample occupies the cross portion at a constant speed. The rotating time
(opening and closing time) of the switching valve can be maintained at a constant value
by using the PC control valve. Thus, this improved system can inject samples with good
reproducibility and prevent sample dilution.

2.3. Optimization of the Improved Automated Sample Injection System

With the improved system, parameters such as the flow rate of the syringe pump and
the switching time of the valve were optimized. Initially, the flow rate of the syringe pump
was investigated. Since a shorter analysis time is preferable, the upper limit of the syringe
pump was set at 8.78 µL/min. Next, the valve switching time was investigated using two
coumarin dyes. Considering the volume of the capillary (internal diameter of 100 µm and
length of 40 cm) leading to the pillar array column being approximately 3 µL, we attempted
to identify the appropriate valve switching time. Thus, we set the valve switching time
to approximately 20 s (≈60 s × 3/8.78). Based on the approximation, different switching
times of 15, 21, and 24 s were examined. Chromatograms obtained at each switching
time are shown in Figure 2. As expected, the injected sample was not sufficient to reach
the chip after 15 s, and only small peaks were observed. After 24 s, the volume of the
injected sample was in excess, which deteriorated the peak shapes as an excess volume of
the injected sample flowed into the separation channel (pillar array column). However,
after 21 s, the injected volume was sufficient to reach the chip and produce sharp peaks.
Therefore, the valve-switching time was set as 21 s.
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2.4. Evaluation of the Improved Automated Sample Injection System

The reproducibility of the improved automatic sample injection system was evaluated
by analyzing two coumarin dyes. RSD of peak heights for both dyes were 1.2–1.8%.
The new system showed excellent results even at low concentrations. In contrast, our
previous method did not show good reproducibility. Good linearities at concentrations
of 5–50 µM were obtained for the dyes with a correlation coefficient of more than 0.998.
These results demonstrated the improved reproducibility of the new system over that of
the previous system.

2.5. Application of the System to Analyze Amino Acids in Human Plasma

The improved automatic sample injection system for pillar array columns was used for
the analysis of biological samples. Pillar array columns are suitable for biomarker analysis
in clinical samples because of their rapid separation capability. In this study, branched-chain
amino acids (BCAAs) were used as the target analytes. BCAAs are a group of essential
amino acids with aliphatic side-chains and branched chains. There are three BCAAs among
the proteinogenic amino acids: Leu, Ile, and Val. Recent studies revealed that the BCAA



Molecules 2022, 27, 4715 4 of 6

concentrations increase during the progression of myeloid leukemia, establishing them as
useful biomarkers of the disease [20].

Standard amino acid samples were analyzed. In addition to BCAAs, Pro and Phe were
considered analytes because they have similar retention times on pillar array columns and
should be separated from BCAAs. For fluorescence detection using fluorescence microscopy,
amino acids were derivatized with NBD-F, a fluorescence derivatization reagent. NBD–
amino acids were separated using a mobile phase of water/acetonitrile/trifluoroacetic acid
(90:10:0.02, v/v/v) (Figure 3A).
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The calibration curves of all the standard target amino acids (5–80 µM) were linear,
with the correlation coefficients exceeding 0.985. The reproducibility of NBD–amino acid
analysis was also investigated, and RSD was 1.6–3.0% (n = 3).

Next, the quantitative analysis of five amino acids (Pro, Val, Ile, Leu, and Phe) in
human plasma samples was conducted. The obtained chromatogram is shown in Figure 3B.
The intraday precision ranged between 5.6% and 12.2% (n = 3). Therefore, this system can
be applied to the quantitative analysis of amino acids in a biological matrix.

3. Conclusions

An automated sample injection system for pillar array columns was improved to
resolve the dilution problem of a previous system. The improved system showed better
analytical reproducibility for coumarin dyes, with RSDs of less than 1.8%. The improved
system was applied to the quantitative analysis of amino acids in human plasma. The pre-
cision was within 12.2% for the investigated amino acids, confirming good reproducibility.
The results suggest that the developed system can be used to analyze biological samples by
a simple quantitative method with pillar array columns.

4. Materials and Methods
4.1. Chemicals

Coumarin dyes, coumarin 525 and coumarin 545, were purchased from Exciton (Day-
ton, OH, USA). Amino acids—DL-proline (Pro), DL-valine (Val), DL-isoleucine (Ile), DL-
leucine (Leu), and DL-phenylalanine (Phe)—were obtained from Sigma-Aldrich (St. Louis,
MO, USA). The fluorescence derivatization reagent NBD-F was purchased from Dojindo
Molecular Technologies (Kumamoto, Japan), and trifluoroacetic acid (TFA) was sourced
from Wako Pure Chemicals (Osaka, Japan). Dimethyloctadecylchlorosilane was purchased
from Tokyo Chemical Industry (Tokyo, Japan). Acetonitrile (HPLC-grade) was obtained
from Merck KGaA (Darmstadt, Germany). A Milli-Q system (Merck KGaA) was used for
water purification.

4.2. Microchip Fabrication and Modification

The microchip was fabricated using multistep ultraviolet photolithography and deep
reactive-ion etching. A pillar array column with a total length of 110 mm was fabricated on
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a 20 × 20 mm2 microchip (Figure 4). The channel widths were 400 µm in the straight section
and 110 µm in the curved section. The depths of the pillar array column and the injection
section were 30 and 60 µm, respectively. The pillar size was 3 µm on the side, and the
interpillar distance was 2 µm. The fabricated pillar array column was C18 modified with
dimethyloctadecylchlorosilane for reversed-phase separation. Details of the fabrication
and modification of the pillar array columns are provided in our previous paper [16].
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4.3. Derivatization Conditions for Amino Acids with NBD-F

Amino acids (Pro, Val, Ile, Leu, and Phe) were fluorescently derivatized with NBD-F.
To 100 µL of 20 mM amino acid aq., 700 µL of 200 mM borate buffer (pH 8.5), and 100 µL of
10 mM NBD-F in acetonitrile were added. The mixture was heated at 60 ◦C for 5 min. To
stop the derivatization, 100 µL of 1 M HCl was added.

4.4. Pretreatment of Human Plasma

Human plasma purchased from Sigma-Aldrich (St. Louis, MO, USA) was used. The
pretreatment was performed according to the following procedure with reference to a
previous report [14]. Accordingly, 400 µL of acetonitrile and 400 µL of methanol were
added to 200 µL of human plasma, and the mixture was centrifuged at 10,000× g at 4 ◦C for
40 min. Then, 400 L of the supernatant was evaporated to dryness under reduced pressure
at 30 ◦C, and 80 µL of water was added to the residue. The prepared solution was used as
the plasma sample.

4.5. Chromatographic Conditions

The mobile phase for coumarin analysis was water/acetonitrile (65:35, v/v) at a flow
rate of 1 µL/min (LC-20AD nano pump, Shimadzu, Kyoto, Japan). In the case of amino acid
analysis, we used water/acetonitrile/TFA (90:10:0.02, v/v/v) as the mobile phase. The flow
path was switched using a high-pressure six-way valve (FCV-20H, Shimadzu). Fluorescence
excitation was performed using a metal halide lamp. The filter cube was composed of an
excitation filter (BP460–490, Olympus, Tokyo, Japan), a dichroic mirror (505DRLP, Omega
Optical, Brattleboro, VT, USA), and an emission filter (HQ 535/50m, Chroma Technology,
Rockingham, VT, USA). An IX70 inverted microscope system (Olympus, Tokyo, Japan)
and an electron-multiplying charge-coupled device camera (iXon3, Andor Technologies,
South Windsor, CT, USA) were used to observe the fluorescence images. Detection was
performed near the outlet of the pillar array column.
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(Hirotaka Koyama); writing—original draft preparation, H.K. (Hiroshi Kuroki); writing—review and
editing, H.K. (Hirotaka Koyama) and M.T. All authors have read and agreed to the published version
of the manuscript.
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