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Background: Many critical biological processes are strongly related to protein-RNA interactions. Revealing the
protein structure motifs for RNA-binding will provide valuable information for deciphering protein-RNA recognition
mechanisms and benefit complementary structural design in bioengineering. RNA-binding events often take place
at pockets on protein surfaces. The structural classification of local binding pockets determines the major patterns

of RNA recognition.

Results: In this work, we provide a novel framework for systematically identifying the structure motifs of protein-
RNA binding sites in the form of pockets on regional protein surfaces via a structure alignment-based method. We
first construct a similarity network of RNA-binding pockets based on a non-sequential-order structure alignment
method for local structure alignment. By using network community decomposition, the RNA-binding pockets on
protein surfaces are clustered into groups with structural similarity. With a multiple structure alignment strategy, the
consensus RNA-binding pockets in each group are identified. The crucial recognition patterns, as well as the
protein-RNA binding motifs, are then identified and analyzed.

Conclusions: Large-scale RNA-binding pockets on protein surfaces are grouped by measuring their structural
similarities. This similarity network-based framework provides a convenient method for modeling the structural
relationships of functional pockets. The local structural patterns identified serve as structure motifs for the

recognition with RNA on protein surfaces.
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Background

Protein-RNA recognitions play many fundamental and vital
roles in crucial molecular interactions involved in biochem-
ical reactions and signaling transduction [1, 2]. Revealing
the RNA-binding structure motifs will provide insightful
clues for deciphering the mechanisms of protein-RNA in-
teractions and provide valuable knowledge for protein en-
gineering, such as drug target design for silencing specific
RNAs after transcription [3, 4]. Moreover, numerous dis-
eases have been found to be related to dysfunctions of
protein-RNA interactions due to RNA-mediated post-
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transcriptional gene regulation [5-7]. In this regard, deci-
phering the protein-RNA recognition code is central to
physiology and disease [8, 9]. Recently, high-throughput ap-
proaches have made tremendous progress in the detection
of protein-RNA interactions through chemical crosslinking
and immunoprecipitation (CLIP) [10, 11]. The rich avail-
ability of protein-RNA interaction data provides the mate-
rials and opportunities to reveal their binding mechanisms.
Some sequence patterns have been identified for protein-
RNA recognition, such as RNA recognition motifs and zinc
fingers [12]. The identification of binding motifs will pro-
vide a deep understanding of RNA-binding mechanisms,
such as molecular characteristics and affinity distributions
[9, 13]. These findings are often based on sequence-based
approaches in CLIP data [14, 15] and focus on the nucleo-
tide residue patterns from the side of RNAs [16]. To date,
there are numerous unique RNA-binding domains listed in
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Pfam [17] and other databases of RNA-binding specificities
such as RBPDB [18] and CLIPZ [19]. Some critical partners
in the RNA interference of miRNA-binding functions, e.g.,
Dicer and Argonaute [20], also exhibit structural specificity
and functional importance in protein-RNA interactions [21,
22]. Dissecting RNA recognition motifs from protein three-
dimensional (3D) structures is still of great interest and
importance.

Protein surfaces are among the major locations where
RNA-binding events take place [23]. Pockets are one of
the local structure patterns on protein surfaces and have
proven to be concrete locations and detail-rich environ-
ments for many critical biological reactions, such as ligand
binding [24, 25]. A protein-RNA binding pocket facilitates
the local geometry for RNA packing and constructing pro-
tein complexes to perform certain functions [26]. Recent
bioinformatics studies, such as PRNA [27], RNABindR
[28], BindN [29], and PRINTR [30], have made substantial
efforts to predict protein-RNA binding residues in
proteins, but very few methods are available to iden-
tify the structure motifs that underlie the RNA-
binding sites [2, 26, 31, 32], especially from the per-
spective of local protein surface regions. A pocket on
a protein surface is among the typical structure pat-
terns that provide the specific microenvironment
needed to bind and regulate RNAs [33, 34]. The
knowledge of RNA-binding structure motifs in the
form of pockets will reveal the local structure groups
and the underlying mechanisms involved in the rec-
ognition of RNA on protein surfaces. Identifying the
structural patterns and physicochemical specificities of
these binding pockets will greatly benefit downstream
feature studies of protein-RNA interaction.

In this work, we conduct a large-scale analysis of the
RNA-binding pockets on protein surfaces to identify the
structural motifs and patterns of protein-RNA recognition.
We first identify the RNA-binding residues in 3D protein
structures and extract the surface pockets involved in the
binding events from a compiled non-redundant protein-
RNA complex dataset. Then, the local structure similarities
among these RNA-binding pockets and the global structure
similarities among their containing or parent proteins are
measured via structure alignment methods. Using a
similarity-network-based framework, the RNA-binding
pockets and proteins are clustered into certain groups. The
correspondences of RNA-binding pockets, domains and
proteins are then investigated. The patterns of binding
structure motifs and their functional implications in
protein-RNA recognition are revealed accordingly.

Methods

Datasets

We download the RNA-binding protein complexes from
the PDB [35]. There are 896 protein-RNA complexes
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available as of the beginning of our project. We elimin-
ate complexes with protein and RNA sequences that are
too long (i.e., more than 200 residues) or too short (i.e.,
15 for protein and 5 for RNA). The homologous proteins
are removed via BLASTclust [36] with sequence similar-
ity of 25% in proteins and 60% in RNAs. In total, 158
non-redundant protein-RNA complexes remain for fur-
ther analyses. All data and software used in this paper
are available at our website: http://doc.aporc.org/wiki/
PRNACclass.

The residues that exhibit binding between protein
amino acids and RNA nucleotides are defined by Entan-
gle [37]. Several interaction types, such as hydrogen
bonding, electrostatic, hydrophobic and van der Waals
interactions, are considered simultaneously in the bind-
ing residue identification. In this work, pockets on pro-
tein surfaces refer to empty concavities that the solvent
can access. These concavities have mouth openings that
connect their interiors with the outside bulk solution.
We extract the surface accessible pockets using CASTp
[38]. As many as 7664 pockets and their coordination
are identified in these protein complexes. The RNA-
binding pockets are defined as those pockets containing
at least one RNA-binding residue detected by Entangle.
These local structure pockets contain approximately 10
amino acid residues. After removing the very tiny
pockets containing fewer than 4 residues, we obtain 786
RNA-binding pockets. We focus on the analysis of these
pockets and their corresponding parent RNA-binding
proteins (RBPs).

Framework of classification

Figure 1 shows our proposed similarity-network-based
framework for classifying the RNA-binding pockets into
structural groups. A similar strategy is implemented to
classify the parent RBPs after building a protein similar-
ity network. First, all binding pockets are extracted from
local protein surfaces. As described before, when a
pocket contains at least one RNA-binding residue, we
define it as an RNA-binding pocket. Second, we improve
our structure alignment algorithm, SAMO (Structural
Alignment by Multi-objective Optimization) [39], to pre-
cisely measure the similarities among these local struc-
tures and construct a pocket similarity network by
connecting nodes that represent pockets. When there
exists a significant similarity between two pockets, an
edge is added to link them. The pocket similarity net-
work is found to naturally conform to certain commu-
nity structures. Third, we decompose the pocket
similarity network into small clusters of RNA-binding
pockets according to the network topologies. Last but
not least, we identify the consensus binding pockets via
multiple structure alignments as the structure motifs
and local patterns of pockets in these pocket groups,
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Fig. 1 The framework for identifying structural RNA-binding motifs via pocket similarity network. 1 The RNA-binding pockets in proteins are
extracted and collected from RBPs. 2 The pocket similarity network is constructed based on the similarities among these pockets calculated by
our structure alignment algorithm SAMO. 3 The RNA-binding pockets are clustered into small groups with similar structures by decomposing the
pocket similarity network into subnetwork modules via a community detection method. 4 The RNA-binding structure motifs and sequence
patterns underlying the similar pocket groups are identified and analyzed

with the hierarchical relationships across their parent
domains and proteins.

Comparing local structure similarities

To detect the structural similarities among RNA-binding
pockets, we improve our non-sequential-order structure
alignment algorithm SAMO to compare the local struc-
tures in an all-against-all manner.

SAMO formulates the structure alignment problem as
a multiple-objective mixed integer programming prob-
lem. The first objective function is to minimize the total
square distances of the aligned residues, and the second
maximizes the total number of aligned residues. The
optimization problem is solved by an iterative algorithm.
The details of the SAMO algorithm for protein structure
alignment can be found in [39].

For pocket similarity in the work, the structure align-
ment determined the similarity metrics of RMSD (root
mean square deviation) between two RNA-binding
pockets and the number of aligned residues, Unlike
[39], in this work, the measurement is then transformed
into a Q-score as follows:

(Nalign) 2

2 )
(1 + (&gs2) >N1N2

where Ry is a normalizing factor (set as 3.0), and N; and
N, are the sequence lengths of the two pockets.

When applied to small local structures such as
pockets, the structure alignment method tends to pro-
duce many false positives. To evaluate the statistical sig-
nificance of the similarity in a population of alignments
between any pair of local structures, we consider the
similarity P-value instead of the RMSD of an alignment
in SAMO [40-42]. Specifically, we obtain the pocket
similarity significance through an empirical testing pro-
cedure. First, we randomly generate 200,000 pairs of
pockets from the PDBSelect25 proteins [43]. These pro-
teins have no obvious sequence similarities with each
other [44]. Then, the alignment P-value is computed
based on the Q-score of a particular alignment and the

Q=

total distribution of Q-scores in the population of pocket
pairs. In detail, we fit the distribution of all the Q-scores
by an extreme value distribution (EVD) and estimate the
parameters of the distribution function as,, and. Then,
the P-value for an alignment with Q-score is given by

P

In this work, the significance threshold of the struc-
ture similarity P-value is set to 0.05.

Classifying RNA-binding pockets via similarity-network-
based clustering

We embed the overall similarities among pockets into a
pocket similarity network built by linking an edge be-
tween any two pockets with significant structure similar-
ity. The RNA-binding pockets are then clustered into
groups based on the topological structure of the con-
structed similarity network. By employing a fast commu-
nity detection algorithm [45], we decompose the
network into several communities, each of which repre-
sents a cluster of structurally similar RNA-binding
pockets. Essentially, the community detection method in
the network is a hierarchical clustering with the advan-
tages of improving the distinguishing measures between
groups via the sparseness of the pocket similarity matrix
[45, 46]. After the network decomposition, we detect the
major groups in these clusters as the local structure clas-
sification of RNA-binding pockets. The structure pat-
terns in each pocket group are then identified and
investigated.

Extracting consistent multiple structure alignments

Underlying each pocket group, the pairwise align-
ments of any two pockets might be inconsistent with
each other. To obtain a consistent multiple structure
alignment for all pockets in a group, we develop a
novel multiple structure alignment algorithm based
on the pairwise alignments of SAMO. Supposing that
residue of pocket is aligned with the residue of
pocket in the output of SAMO, we denote ;
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otherwise. The aim of multiple pocket alignment is to
derive a consensus structure from these pairwise
alignments. The problem can be formulated as an
optimization problem as follows:

max Y > Sjiikeic

1si,j<sM 15k l.csN

1<i<s M,1< k <N

1<i< M, 1< ¢ <N,

where x;. denotes whether residue k in pocket i is
matched to residue ¢ of the consensus structure. M and
N refer to the number of pockets in a group and the
residue length of the pocket, respectively. The objective
function is to maximize the number of aligned residue
pairs consistent with the consensus structure. The con-
straints guarantee one-to-one residue matching between
any pocket and the consensus structure. The
optimization problem is solved using a greedy strategy.
We first identify a seed of three pockets in a group with
maximal consistent aligned residue pairs. Then, the
other pockets are greedily added to the seed to
maximize the objective function by solving a maximum
weight matching problem [47]. The seed is iteratively re-
vised according to the optimal matching and regarded as
the output consensus alignment of pockets after the final
iteration.
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Coordinating RNA-binding pockets with domains and
proteins

To detect the upper-level structure characteristics of
RBPs that contain these grouped pockets, we coordinate
and map the RNA-binding pockets with their parent
RBPs. The sequence domains and global structures
where the pockets are located are identified accordingly.
A “bottom-up” hierarchical model of RNA-binding
structures, from pockets and domains to global tertiary
structures, is built up. Joint analyses of their structural
complementarity in protein-RNA recognition are then
performed. Here, the networks are illustrated using
Cytoscape (http://www.cytoscape.org), and the structures
are depicted using Pymol (http://www.pymol.org).

Results and discussion

RNA-binding pocket groups

Based on the pocket similarity network modeling the
structural similarities among RNA-binding pockets, a
community detection algorithm is employed to decom-
pose the network into smaller groups of similar pockets.
Figure 2 illustrates the heatmap of global similarities
among these RNA-binding pockets and the major identi-
fied pocket groups via a network-based clustering
strategy.

In Fig. 2(a), the significantly similar pockets form
several blue blocks. We find that the near half of
RNA-binding pockets cannot identify their signifi-
cantly similar partners (yellow parts). This result indi-
cates the diversity and flexibility of RNA-binding local

=

Fig. 2 The global view of pocket similarity and the identified pocket groups in the RNA-binding pocket similarity network. aThe heatmap of the
structure similarities of RNA-binding pockets on the protein surface. b The pocket similarity network with different colored and numbered groups.
A 3D pocket structure is displayed for a representative pocket of each of six major groups
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structures on protein surfaces. The feasible space of
RNA-binding local structures is very large, and many
different shapes can perform RNA-binding functions
on protein surfaces. More interestingly, a central
block can be found in the global heatmap shown in

Page 5 of 13

consistency in RNA-binding local structures; that is,
many pockets can find matching partners with similar
shapes. The diversity and consistency of the clustering
results reveal the complexity of the mechanism and
structural space of local protein regions for recogniz-

Fig. 2(a). The results provide evidence of the ing RNA.
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Fig. 3 The sequence motif logos of six pocket groups and the ratios of active RNA-binding residues in each corresponding position. The
sequence motif logos and bar graphs are drawn based on the results of the multiple structure alignment shown in Additional file 1: Figure S1
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We focus on the significantly similar pocket pairs with
P-value < 0.05 and build up the pocket similarity net-
work by linking similar pockets. Figure 2(b) illustrates
the pocket similarity network and the underlying com-
munities. We identify the topological communities that
naturally cluster the pockets into similar groups. Six
major pocket groups are identified from the pocket simi-
larity network. Accordingly, the RNA-binding pockets
are classified into the six pocket groups numbered in
Fig. 2(b). The pockets in a group are illustrated in the
same color. For simplicity, the isolated pockets that lack
any significantly similar partner are not displayed, and
the few pockets not belonging to the six groups are col-
ored as gray nodes. In each group, a representative
pocket of the highest degree is presented as a larger
node in the network, with a 3D pocket structure nearby.
The local 3D structures demonstrate the structural pat-
terns of pocket residues, which are formulated into bind-
ing pockets for interacting with RNA molecules. In our
non-redundant RNA-binding proteins, the six pocket
groups establish the main structure templates of RNA
recognition occurring on protein surfaces. Thereafter, we
converge our further analyses on the six identified RNA-
binding pocket groups.

For instance, 79 pockets are clustered in Group 1, and
pocket 1GAX:168:A (protein_ID:pocket_ID:chain_ID) is
the representative pocket of this group. The middle
number refers to the pocket ID in the protein chain.
Several pockets in the RBP, e.g., 1P6V:A, are classified
into the same group, e.g, 1P6V:38:A, 1P6V:43:A,
1P6V:49:A and 1P6V:55:A, while some pockets in the
same protein are classified into other groups, e.g,
1P6V:33:A in Group 2. This finding indicates that the
pockets in the same protein are not always classified into
the same group.

Patterns of RNA-binding pocket groups
The sequence patterns of RNA-binding pocket groups
are investigated by concatenating the component amino
acids for each pocket, as illustrated in Additional file 1:
Figure S1 and Fig. 3. The residues of a pocket are scat-
tered and unordered in the parent protein sequence.
That is, they are neighbors on the protein surface from a
spatial perspective but not in the primary sequence, and
they are not in the same sequential order in different
proteins since the structure alignments are obtained by
the non-sequential-order structure alignment method.
For each group, we extract a multiple structure align-
ment, and the sequences of some representative pockets
are exhibited in Additional file 1: Figure S1. The original
residue positions in the parent protein sequences are
shown on the right top of each residue individually. The
sequence motifs after multiple structural alignments are
illustrated by the sequence logos in Fig. 3. The ratios of
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active RNA-binding residues in each position are also
shown in positions corresponding to the locations. The
patterns shown in the sequence motifs are not very sig-
nificant, and the active binding residues are not obvi-
ously enriched in specific positions. This result implies
that the functions of binding pockets are not simply de-
termined by the primary protein sequence or single resi-
dues. Instead, the binding pockets should be studied as
an undivided whole local structure, from a systematic
perspective.

Note that these proteins are selected without sequence
similarity, and the pocket similarities are measured by
the non-sequential-order structure alignment algorithm.
There is also no requirement of global structure similar-
ity. Although there is no significant similarity among the
protein sequences, global structures, and even the
concatenated pocket sequences, the local structure simi-
larity among pockets determines the functionality of
RNA-binding. There is no significant structure similarity
across the six pocket groups. Different groups contain
their own spatial patterns. The pocket structures, such
as the representative structures shown in Fig. 2(b), can
be regarded as the structure motifs of binding RNAs.
The structure patterns indicate that the pockets provide
the detailed structural environments and complementary
components for recognizing their RNA partners.

The low sequence similarity underlying each group
also indicates few enriched residues playing crucial roles
in RNA-binding. Instead of sequence equivalence, a few
residues adopt a local spatial shape that interacts with
RNA on the protein surfaces. Several specific amino acid
residues play essential roles in one pocket, and several
pockets cooperate with each other in the binding. For
example, the RBP 1GAX:A contains four RNA-binding
pockets, of which 1GAX:115:A, 1GAX:118:A and
1GAX:168:A are clustered in Group 1 and 1GAX:236:A
in Group 2. The pocket 1GAX:168:A is the hub pocket
shown as the representative 3D structure in Fig. 2(b).
From the sequences of Group 1, we can easily find that
leucine is enriched in these pockets. The five residues in
each pocket construct a cavity on the protein surface
and are not ordered in the primary protein sequence.
While they form a certain structural complementarity
for recognizing specific RNA, their local spatial patterns
cause the interaction to occur at the atomic and molecu-
lar levels.

Classification of RNA-binding domains and global
structures

In the former sections, we constructed the pocket simi-
larity network by comparing the local RNA-binding cav-
ities in an all-against-all manner. Using network-based
clustering, we identified six major groups of RNA-
binding pockets, which are local spatial patterns and



Liu et al. BMC Bioinformatics (2017) 18:27

structural templates involved in the recognition of RNA.
Obviously, these local structure motifs occur in their
parent domains and proteins. From a hierarchical per-
spective, from the pocket and domain to the global
structure, it is valuable to reveal the high-level upstream
similarity among these parent RNA-binding domains
and global structures.

Checking the sequence components of these RBPs, we
find that most of the RNA-binding pockets are located
in certain RNA-binding domains. Most of the RBPs
(102/158) contain at least one annotated RNA-binding
domain, some of which are shown in Additional file 1:
Table S1. The Pfam [17] domain and superfamily anno-
tations are illustrated, having been generated using a
hidden Markov model. As shown in Supplementary
Table S1, most of the proteins can be classified in the
Pfam domain superfamily clans, while several domains
such as ‘Elongation factor Tu C-terminal domain; ‘Elong-
ation factor SelB, winged helix’ and ‘PAZ domain’ still
cannot currently find their corresponding clans (shown
at the bottom of Supplementary Table S1). Some pro-
teins also contain several domains. For instance, protein
1UOB:B has ‘tRNA synthetases class I (C) catalytic do-
main’ and ‘DALR domain’. Both are related to tRNA
synthesis. The consistency and diversity of the domains
in RBPs indicate the functional complexity of protein-
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RNA binding events, such as ‘tRNA synthetases, ‘RNA
polymerase, ‘RNA recognition motif, ‘Ribonuclease;, and
“Zinc finger’.

Although the RBPs lack significant sequence similarity
with each other (less than 25%), some of them contain
the same RNA-binding domains. For instance, both pro-
teins 1YTU:A and 3 F73:A contain the ‘Piwi domain’.
The same domain underlying two proteins determines
their structure similarity. As shown in Fig. 4, they are
clustered in the same protein group according to their
global structure similarity. This finding implies that the
domain units are also important for performing RNA-
binding functions in the global protein structures. Some
proteins such as 1F7U:A contain several domains, which
indicates that they will perform multiple functional roles
with RNAs. Different parts of the protein structure per-
form different RNA-binding-related activities. It is
already known that the RNA-binding domains specify
the sequence profiles and patterns of the local structure
basis of protein-RNA recognition [1, 12].

The pockets are local regions and particular subparts of
the RNA-binding domains. Based on the similarity net-
work framework, we identified the major groups of RNA-
binding local structures, which illustrates that the RNA-
binding domains fold into certain local 3D structure pat-
terns, and the resulting pockets formed on protein
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surfaces facilitate the local sites and environments for
binding to RNA partners. We should analyze the RNA-
binding local structures on protein surfaces to decipher
their functional importance and complexity, as well as to
identify specific RNA-binding structure motifs [24].

Note that sequence alignment cannot reveal homolo-
gous relationships among these RNA-binding proteins.
The classification of global protein structures provides a
higher-level overview of the relationships among pro-
teins in the recognition of RNA. In a network-based
framework similar to pocket group identification, we
build a protein similarity network for describing the glo-
bal structure similarities among these RBPs. That is, one
node represents one protein, and when the global struc-
ture similarity between two proteins exceeds a given
threshold of significance (P-value < 0.05), two nodes are
linked by an edge. In this way, we implement a rapid
community structure detection method to classify the
RBPs into 12 groups. Figure 4 illustrates these identified
protein groups with some representative proteins and
their child RNA-binding pockets. From the correspond-
ence between two levels of elements, we find no strict
consistency between protein groups and pocket groups.
In Fig. 4, the pockets are uniformly shown in their re-
spective group colors. The pockets of the same-group
proteins are not always classified into the same pocket
group, which demonstrates the complexity of RNA-
binding functionality from the perspective of global and
local structure components. In fact, the pockets of the
same-group proteins are flexibly categorized into diverse
pocket groups with different colors, and vice versa.

Although similar RBP structures contain similar RNA-
binding pockets, we find that there exist inconsistent
correspondences between proteins and pockets. For in-
stance, proteins 1ASY:A and 2GTT:L are in the same
protein group, but their RNA-binding pockets are not in
the same group. In another example, protein 1QTQ:A
has four pockets, 1QTQ:16:A, 1QTQ:56:A, 1QTQ:58:A
and 1QTQ:64:A, that are located in three different
pocket groups. These examples imply that RNA-binding
events occur mainly in the specific local structure envi-
ronments of pockets. The protein-RNA recognition is a
very specifically functional event in these local struc-
tures. Thus, the results of this study confirm that RNA-
binding function in proteins is more conserved in the
local structure space than in the global structure space
of RBPs.

Thus far, there are still no direct functional annota-
tions of these local structure pockets on protein surfaces.
To perform a functional enrichment analysis of these
pocket groups, we use the gene ontology (GO) [48] mo-
lecular functions of their parent proteins to implement
functional annotation analysis via DAVID [49]. For illus-
tration, Table 1 lists the top 5 significant GO molecular
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functions in the six pocket groups. The full lists with sig-
nificance P-value corrections are available on our web-
site. According to Table 1, we find that some RNA-
binding-related functions are enriched in these pocket
groups, such as ‘nucleotide binding’ and ‘forming
aminoacyl-tRNA and related compounds’. The under-
lying functions in each pocket group indicate the func-
tional importance of these analyzed pockets in binding
RNAs. An important research topic in the near future is
to determine the concrete functions of these binding
pockets. Functional annotations of the protein surfaces
will greatly help to decipher the code-like principles of
protein-RNA interaction and recognition [50].

Case study of RNA-binding structure motifs

We classified the RNA-binding pockets by a similarity-
network-based framework via all-against-all structure
comparisons. The correspondence between different
levels of RNA-binding components such as sequences,
structures, domains, pockets, and residues has been ana-
lyzed accordingly. For a detailed illustration of the iden-
tified RNA-binding structure motifs, Fig. 5 shows a case
study of structure motifs in five RBPs, ie., 1B23:P,
1B7F:A, 1CVJ:A, 2AKE:A, and 3RW6:A. Figure 5(a) is
the multiple sequence alignment, and Fig. 5(b) illustrates
the comparison of the pockets, domains, and global
structures.

In Fig. 5(a), there is no significant sequence similarity
in the sequence alignments. The RNA-binding amino
acids in contact with RNA nucleotides are shown in yel-
low. The RNA-binding pockets are shown by red resi-
dues, which are scattered irregularly in the primary
sequences. There is only one pair of proteins with sig-
nificant global structure similarity, ie., 1B7F:A and
1CVJ:A. They are connected by a red edge in the center
of Fig. 5(b). Three pairs of proteins, i.e., 1B23:P-1CVJ:A,
1B7F:A-1CVJ:A, and 1B23:P-1B7F:A, contain similar do-
mains, which are linked by yellow edges. Among them,
the pair 1B7F:A-1CVJ:A contains the same ‘RNA recog-
nition motif’ (RRM) domain. The RRM domain is the
main substructure of their global 3D structures. How-
ever, the RNA-binding domains in the five proteins are
not all similar to each other. Although proteins 1B23:P,
2AKE:A and 3RW6:A contain no such RRM domain,
they contain the domains ‘Elongation factor Tu GTP-
binding domain; tRNA synthetases class I' and ‘Leucine
Rich Repeat’, respectively. The domain similarities de-
scribed by the yellow edges of 1B23:P-1B7F:A and
1B23:P-1CVJ:A 1B23:P and 1B7F:A are determined by
the structure similarities between domain “Elongation
factor Tu domain” (in 1B23:P) and RRM domain (in
1B7F:A and 1CVJ:A). The domain has been shown to be
critically involved in RNA-binding [51].
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Table 1 Functional analysis of the GO molecular functions of the six pocket groups. ‘Group’ is the pocket group ID. Term’ refers to the
GO molecular functions with their descriptions. Some pockets in the group are listed as ‘Representative pockets’. ‘P-value’ is the
enrichment significance. Note that the functions of the parent proteins are used to implement the calculations because there are no GO
annotations of these pockets thus far. For each term, ‘Count’ refers to the number of proteins containing the GO term in the ‘Population
total background RBPs. ‘List total’ refers to the number of proteins in one group. ‘Population hits’ is the number of proteins annotated
with the term. (In DAVID, there are slightly different numbers in ‘List total’ and ‘Population total’ for one group when calculating a
specific GO term). For conciseness, we list only the top 5 terms in each group; the complete tables are available from our website

Group  Term Count List Population Population P-value  Representative pockets
total hits total
Group 1 GO:0046914 ~ transition metal ion binding 10 32 17 123 0.032977 1U0B:40:B, TUVL:183:A, 2BH2:32:A,
2IPY:137:A, 3EPH:130:A
G0:0043167 ~ion binding 1 30 27 119 0.071152 1U0B:40:B, TUVL:183:A, 2BH2:32:A, 3EPH:130:A
GO:0046872 ~ metal ion binding 1 30 27 119 0.071152 1U0B40B, TUVL:183:A, 2BH2:32:A, 3EPH:130:A
GO:0043169 ~ cation binding " 30 27 119 0.071152 1UOBA40:B, TUVL:183:A, 2BH2:32:A, 3EPH:130:A
GO:0016779 ~ nucleotidyltransferase activity 5 30 24 123 0.097784 1H38:166:A, TUVL:183:A
Group 2 GO:0000166 ~ nucleotide binding 27 52 44 119 0.005401 TA9N:58B, TASY:38:A, 1B23:24:P, 1COA13A,
1QVIE57:A, 1QTQ16A, TUVLI129A, 2AKE13:A,
2F8K8:A, 3EPH:97:A, 3MOJ:8:B, 3RWE:56:A
G0O:0032559 ~ adeny! ribonucleotide binding 20 52 30 119 0.008157 1ASY:38A, 1COAN3A, 1QTQI1EA, 2AKE13A,
3EPH97:A, 3MOJ8B
GO:0005524 ~ ATP binding 20 52 30 119 0.008157 TASY:38:A, 1COA3:A, 1QTQ:16:A, 2AKE13:A,
3EPH:97:A, 3MOJ:8:B
GO:0004812 ~ aminoacyl-tRNA ligase activity 11 52 15 119 0.043756 1ASY:38A, 1COAT3A, 1QTQ16A, 2AKET13:A
GO:0046914 ~ transition metal ion binding 14 52 21 119 0.045022 TUVL:129A, 1ZBL:22:A, 2B3J46:A, 3EPH:97:A
Group 3 GO:0030554 ~ adeny! nucleotide binding 18 51 30 119 004838  1F7U:34:A, 1QTQ:25:A, 3EPH:112:A
GO:0001882 ~ nucleoside binding 18 51 30 119 004838  1F7U:34:A, 1QTQ25:A2A8V:16B3EPH:112:A
G0:0001883 ~ purine nucleoside binding 18 51 30 119 0.04838  1F7U:34:A, 1QTQ:25:A2A8V:16.B3EPH:112:A
G0:0032553 ~ ribonucleotide binding 20 51 35 119 0.061405 1F7U:34:A, 2A8V:16:B, 3EPH:112:A
GO:0032555 ~ purine ribonucleotide binding 20 51 35 119 0.061405 1F7U:34:A, 2A8V:16:B, 3EPH:112:A
Group 4 G0O:0046914 ~ transition metal ion binding 6 14 21 119 0.052374 1UO0B:78B, TUVL:73:A, 2BH2:89:A, 3EPH:50:A
G0:0043167 ~ ion binding 6 14 27 119 0.13911  TUVL73:A, 2BH2:89:A
GO:0043169 ~ cation binding 6 14 27 119 0.13911  TUVL73:A, 2BH2:89:A
GO:0046872 ~ metal ion binding 6 14 27 119 0.13911  TUVL73:A, 2BH2:89:A
GO:0000166 ~ nucleotide binding 8 14 44 119 0.151441 1CVIJ135:A, 1 N78:58:A, 2A8V:9:B
Group 5 GO:0016876 ~ ligase activity, forming 9 42 15 119 0.08969  1COANT7:A, 1EIY:142:B, 1J1U:24:A 2AKE:32:A
aminoacyl-tRNA and related compounds
GO:0004812 ~ aminoacyl-tRNA ligase activity 9 42 15 119 0.08969  1COA:17:A, TEIY:142:B, 1JTU24:A, 2AKE32A
GO:0046872 ~ metal ion binding 12 42 27 119 0.287759 1EIY:142:B, 1YTU:82A
G0:0032553 ~ ribonucleotide binding 14 42 35 119 0422562 1COANT7:A, 1EIY:142:B, 1J1U:24:A
G0:0030554 ~ adenyl nucleotide binding 12 42 30 119 046644  1COANT:A, 1EIY:142:B, 1J1U24:A
Group 6 GO:0046914 ~ transition metal ion binding 10 41 21 119 0.229275 1UOB:49:B, 1UVL:243:A, 2BH2:56:A,
2IPY:165:A, 3EPH:116:A
GO:0000166 ~ nucleotide binding 18 41 44 119 0.245078 1A9N:73:B, 1CVJ:120:A
GO:0008173 ~RNA methyltransferase activity 4 41 6 119 032238  2BH2:56:A, 3BT7:93:A
GO:0046872 ~ metal ion binding " 41 27 119 0416938 1YTU:76:A
G0:0043167 ~ion binding 1 41 27 119 0416938 1YTU:76:A

Notably, the RNA-binding pockets in these proteins
are significantly similar, shown as a green clique in the
center of Fig. 5(b). It is easy to understand that similar
global protein structures contain similar pockets, such

as 1B7F:A and 1CVJ:A. Analogously, similar domains
imply similar pockets, such as 1B23:P and 1B7F:A. These
similarities of global and domain structures imply similar
RNA-binding functionality. The RNA-binding pockets
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Fig. 5 Details of an example local structure motif in RBPs. a The multiple sequence alignment of five RBPs with the locations of RNA-binding
pockets and residues. b The similarities among global protein structures, sequence-based domains and local pockets. Significant similarity is
represented by an edge in different colors corresponding to different levels, i.e,, green for pocket, yellow for domain and red for global structure.
Some proteins contain similar domains, while others do not. All five proteins contain similar RNA-binding pockets serving as local structure motifs,
which determine the similar RNA-binding functionality
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are the determinants of their specificity. When the simi-
larity both between global protein structures and both
between domains disappears, these proteins still can
contain similar pockets. This finding directly proves that
different global structures and different domains can
contain similar local structure binding motifs, i.e., the
RNA-binding pockets on protein surfaces. We align
these pockets purely by their 3D structures, and they
have no direct relationships with sequence domains and
secondary structures due to their discontinuous residue
locations in the primary protein sequence. They are flex-
ibly located on protein surfaces that can cover different
domains and across various secondary structure ele-
ments. The annotations show that these five proteins
contain the function of ‘G0O:0000166 ~ nucleotide bind-
ing’ [48]. Fig. 5 confirms that regardless of whether pro-
teins contain similar global structures or domains, if
they have similar pockets that can recognize RNA mole-
cules and bind to them, the proteins will participate in
the RNA-binding functionality. The pocket performs the
specific RNA-binding functions and works as a func-
tional unit interacting with RNA. The results also clearly
suggest that the identification of RNA-binding structure
motifs should involve extracting the structure patterns
in these regional surfaces, instead of from global protein
structures and domains.

Figure 5(b) also demonstrates a case of an RNA-
binding structure motif. The functional flow is from ‘glo-
bal’ protein to ‘domain’ to ‘pocket’ as shown in the top-
right legend of Fig. 5(b). The similarities of global struc-
tures and domains are not regularly necessary require-
ments for binding RNA. The structure motifs, in the
form of pockets on protein surfaces, endow the protein
with the ability of RNA-binding. This finding indicates
that the flexibility of the global structure and the strict
requirements for the local structures outline valuable
strategies for detecting the possibility of certain targets
in drug design techniques. The importance of local
structure motifs is strengthened by our proposed
similarity-network-based framework of structure com-
parison and classification.

Conclusions

In this paper, we conducted a systematic analysis of
RNA-binding pockets on protein surfaces to reveal the
binding structure motifs in protein-RNA recognition.
After extracting the large-scale RNA-binding pockets on
protein surfaces, we improved our non-sequential-order
structure alignment algorithm, SAMO, to better meas-
ure local similarities and proposed a similarity-network-
based framework to cluster the pockets into similar
groups. Then, in these groups, we developed a multiple
structure alignment strategy to identify their consensus
alignment and coordinate the correspondences between
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the RNA-binding pockets and their parent proteins. The
multi-level analyses demonstrate the RNA-binding
structure neighbors in different spaces of protein com-
ponents, i.e., global structure, domain and pocket. Using
the similarity-network-based strategy, we revealed the
major groups of RNA-binding structure motifs in the
form of pockets and their patterns of RNA-binding.

Specifically, we identified the protein-RNA binding
pockets in non-redundant RBPs. By implementing a
similarity-network-based clustering method, we identi-
fied the major classes of RNA-binding pockets and the
corresponding classes of the parent sequence domains
and global structures. The similarities in these RNA-
binding domains and global proteins are not inherently
consistent with the similarities among RNA-binding
pockets. Very different proteins and domains might con-
tain similar RNA-binding pockets. These findings pro-
vide direct evidence for the importance of binding
pockets on protein surfaces in the protein-RNA recogni-
tion. The results highlight that the RNA-binding pockets
are the functional units providing structural specificity
for recognizing RNAs. The classified binding pockets
and their structure patterns are potentially valuable in
RNA-interaction-related protein design and engineering.
As increasing numbers of structures of protein-RNA
complexes become available, the set of identified pocket
groups will be expanded, and some novel patterns will
be revealed using the classification strategy. The pro-
posed framework of identifying RNA-binding structure
motifs can be flexibly generalized and extended to study
other local structures, such as ligand-binding residues
and protein-interacting hotspots.
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Additional file 1: Table S1. Some RBPs and their corresponding
domains and families. Table S2. The overlapping number of pockets in
the six groups. Table S3. Functional GO annotations for the five proteins
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sequences of the RNA-binding pockets. (PDF 314 kb)
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